Skip to main content

Advertisement

Log in

Soluble neuropilin targeted to the skin inhibits vascular permeability

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Neuropilin 1 (NRP1) is a co-receptor for vascular endothelial growth factor (VEGF165), an inducer of vascular permeability and angiogenesis. Numerous physiological factors enhance VEGF expression and function but only a few have been shown to be negative regulators. Previously, we have shown that the naturally occurring soluble form of NRP1 (sNRP1) inhibits binding of VEGF165 to endothelial cells in vitro and impairs tumor growth in vivo. To investigate the role of sNRP1 in the regulation of vascular development and function, sNRP1 expression was targeted to the skin, where it is not normally expressed, using a keratin 14 (K14) promoter expression construct. K14-sNRP1 transgenic mice displayed normal skin architecture with a subtle abnormal vascular phenotype. While the overall number of skin blood vessels remained unchanged, the lumen size of smooth muscle-associated dermal vessels was reduced. K14-sNRP1 mice had reduced vascular permeability in response to VEGF165, but also to VEGF121 and platelet activating factor, suggesting that the lack of permeability was not solely due to the sequestration of VEGF. sNRP1 also reversed the increase in inflammation and edema induced by transgenic VEGF overexpression in cutaneous delayed-type hypersensitivity reactions. In summary, sNRP1 appears to primarily regulate vessel permeability while its effect on physiological angiogenesis is less evident in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTH:

delayed-type hypersensitivity

EC:

endothelial cell

EGF:

epidermal growth factor

FGF:

fibroblast growth factor

H&E:

hematoxylin and eosin

HIF:

hypoxia inducible factor

K1:

keratin 1

K14:

keratin 14

NRP1:

neuropilin 1

PlGF:

placenta growth factor

PAF:

platelet activating factor

SMA:

smooth muscle actin

sNRP1:

soluble neuropilin 1

Tg:

transgenic

TC:

trichrome

VEGF/VPF:

vascular endothelial growth factor/vascular permeability factor

References

  1. Fujisawa H, Kitsukawa T. (1998). Receptors for collapsin/semaphorins. Curr Opin Neurobiol 8:587–92

    Article  PubMed  CAS  Google Scholar 

  2. Kitsukawa T, Shimizu M, Sanbo M, et al. (1997). Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19(5):995–1005

    Article  PubMed  CAS  Google Scholar 

  3. Kolodkin AL, Levengood DV, Rowe EG, et al. (1997). Neuropilin is a semaphorin III receptor. Cell 90(4):753–62

    Article  PubMed  CAS  Google Scholar 

  4. Soker S, Takashima S, Miao HQ, et al. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92(6):735–45

    Article  PubMed  CAS  Google Scholar 

  5. Kawasaki T, Kitsukawa T, Bekku Y, et al. (1999). A requirement for neuropilin-1 in embryonic vessel formation. Dev Suppl 126(21):4895–902

    CAS  Google Scholar 

  6. Takashima S, Kitakaze M, Asakura M, et al. (2002). Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci U S A 99(6):3657–62

    Article  PubMed  CAS  Google Scholar 

  7. Ferrara N. (1999). Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–43

    Article  PubMed  CAS  Google Scholar 

  8. Feng D, Nagy JA, Pyne K, et al. (1999). Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation 6(1):23–44

    Article  PubMed  CAS  Google Scholar 

  9. Dvorak HF, Nagy JA, Feng D, et al. (1999). Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132

    PubMed  CAS  Google Scholar 

  10. Cross MJ, Dixelius J, Matsumoto T, et al. (2003). VEGF-receptor signal transduction. Trends Biochem Sci 28(9):488–94

    Article  PubMed  CAS  Google Scholar 

  11. Gagnon ML, Bielenberg DR, Gechtman Z, et al. (2000). Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity. Proc Natl Acad Sci USA 97(6):2573–8

    Article  PubMed  CAS  Google Scholar 

  12. Rossignol M, Gagnon ML, Klagsbrun M. (2000). Genomic organization of human neuropilin-1 and neuropilin-2 genes: Identification and distribution of splice variants and soluble isoforms. Genomics 70(2):211–22

    Article  PubMed  CAS  Google Scholar 

  13. Mamluk R, Gechtman Z, Kutcher ME, et al. (2002). Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain. J Biol Chem 277(27):24818–25

    Article  PubMed  CAS  Google Scholar 

  14. Yamada Y, Takakura N, Yasue H, et al. (2001). Exogenous clustered neuropilin 1 enhances vasculogenesis and angiogenesis. Blood 97(6):1671–8

    Article  PubMed  CAS  Google Scholar 

  15. Kishimoto J, Ehama R, Ge Y, et al. (2000). In vivo detection of human vascular endothelial growth factor promoter activity in transgenic mouse skin. Am J Pathol 157(1):103–10

    PubMed  CAS  Google Scholar 

  16. Detmar M, Yeo KT, Nagy JA, et al. (1995). Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol 105(1):44–50

    Article  PubMed  CAS  Google Scholar 

  17. Detmar M, Brown LF, Schon MP, et al. (1998). Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111(1):1–6

    Article  PubMed  CAS  Google Scholar 

  18. Bielenberg DR, McCarty MF, Bucana CD, et al. (1999). Expression of interferon-beta is associated with growth arrest of murine and human epidermal cells. J Invest Dermatol 112(5):802–9

    Article  PubMed  CAS  Google Scholar 

  19. Oura H, Bertoncini J, Velasco P, et al. (2003). A critical role of placental growth factor in the induction of inflammation and edema formation. Blood 101(2):560–7

    Article  PubMed  CAS  Google Scholar 

  20. Gad SC, Dunn BJ, Dobbs DW, et al. (1986). Development and validation of an alternative dermal sensitization test: The mouse ear swelling test (MEST). Toxicol Appl Pharmacol 84(1):93–114

    Article  PubMed  CAS  Google Scholar 

  21. Bates D, Taylor GI, Minichiello J, et al. (2003). Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1. Dev Biol 255(1):77–98

    Article  PubMed  CAS  Google Scholar 

  22. Detmar M, Brown LF, Claffey KP, et al. (1994). Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 180(3):1141–6

    Article  PubMed  CAS  Google Scholar 

  23. Vassar R, Rosenberg M, Ross S, et al. (1989). Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci USA 86(5):1563–7

    Article  PubMed  CAS  Google Scholar 

  24. Larcher F, Murillas R, Bolontrade M, et al. (1998). VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 17(3):303–11

    Article  PubMed  CAS  Google Scholar 

  25. Kunstfeld R, Hirakawa S, Hong YK, et al. (2004). Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 104(4):1048–57

    Article  PubMed  CAS  Google Scholar 

  26. Iliopoulos O, Levy AP, Jiang C, et al. (1996). Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 93(20):10595–9

    Article  PubMed  CAS  Google Scholar 

  27. Fujisawa T, Watanabe J, Kamata Y, et al. (2003). Effect of p53 gene transfection on vascular endothelial growth factor expression in endometrial cancer cells. Exp Mol Pathol 74(3):276–81

    Article  PubMed  CAS  Google Scholar 

  28. Kendall RL, Thomas KA. (1993). Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 90(22):10705–9

    Article  PubMed  CAS  Google Scholar 

  29. Roeckl W, Hecht D, Sztajer H, et al. (1998). Differential binding characteristics and cellular inhibition by soluble VEGF receptors 1 and 2. Exp Cell Res 241(1):161–70

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi T, Fournier A, Nakamura F, et al. (1999). Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99(1):59–69

    Article  PubMed  CAS  Google Scholar 

  31. Fuh G, Garcia KC, de Vos AM. (2000). The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J Biol Chem 275(35):26690–5

    PubMed  CAS  Google Scholar 

  32. Byrne C, Tainsky M, Fuchs E. (1994). Programming gene expression in developing epidermis. Development 120(9):2369–83

    PubMed  CAS  Google Scholar 

  33. Schuch G, Machluf M, Bartsch G Jr., et al. (2002). In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo. Blood 100(13):4622–8

    Article  PubMed  CAS  Google Scholar 

  34. Streit M, Velasco P, Riccardi L, et al. (2000) Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. Embo J 19(13):3272–82

    Article  PubMed  CAS  Google Scholar 

  35. Ruhrberg C, Gerhardt H, Golding M, et al. (2002). Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–98

    Article  PubMed  CAS  Google Scholar 

  36. Carmeliet P, Ng YS, Nuyens D, et al. (1999). Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5(5):495–502

    Article  PubMed  CAS  Google Scholar 

  37. Detmar M. (2004). Evidence for vascular endothelial growth factor (VEGF) as a modifier gene in psoriasis. J Invest Dermatol 122:xiv

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants CA37392 and CA45548 and the Harvard Skin Disease Research Center (M.K.), NIH grants CA69184, CA86410 and CA92644 (M.D.), a grant from the Ernst Schering Research Foundation in Berlin, Germany (R.M.), and the George & Elizabeth Sanborn Foundation Fellowship through the American Cancer Society (D.R.B.). The authors thank Drs. Elazar Zelzer and Nava Almog for helpful discussions and critical reading of the manuscript. We also thank Ricky Sanchez, Hetty Eisenberg, Lauren Janes, Paula Velasco, and Lin Wu for technical assistance and Kristen Gullage for photography and graphic design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Klagsbrun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamluk, R., Klagsbrun, M., Detmar, M. et al. Soluble neuropilin targeted to the skin inhibits vascular permeability. Angiogenesis 8, 217–227 (2005). https://doi.org/10.1007/s10456-005-9009-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9009-6

Keywords

Navigation