Skip to main content

Antiangiogenic Gene Therapy

  • Reference work entry
  • First Online:
Handbook of Electroporation
  • 125 Accesses

Abstract

Angiogenesis is one of the crucial steps in tumor development and progression, as the formation of a blood vessel network within the tumor enables the tumor to grow and allows tumor cells to enter the blood stream and form distant metastases. Signaling molecules consist mainly of soluble ligands and their receptors on endothelial cells, and the most representative activators are vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF-β), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF/FGF2). Targeting of angiogenesis activators or the delivery of inhibitors by gene electrotransfer is a promising approach for cancer therapy. Gene electrotransfer is based on electroporation, a physical method, which causes a transient increase in cell membrane permeability due to the application of electric pulses and thus enables the transport of large molecules into cells. Gene electrotransfer was already used to deliver antiangiogenic plasmids or small interfering molecules (siRNA) into cells, targeting different molecular targets involved in angiogenesis, including VEGF pathway, TGF-β and endoglin pathway, integrins, FGF2, and others. Gene electrotransfer of plasmids encoding different antiangiogenic molecules has been proven to be safe, feasible, and effective. Various in vitro and in vivo studies demonstrated its great potential for further research. This approach could easily be implemented into everyday clinical practice. For ensuring safer gene electrotransfer in clinical practice, the use of tissue-specific plasmids, without antibiotic resistance gene, would be preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Husein B, Abdalla M, Trepte M, Deremer DL, Somanath PR (2012) Antiangiogenic therapy for cancer: an update. Pharmacotherapy 32:1095–1111. doi:10.1002/phar.1147

    Article  Google Scholar 

  • Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8:604–617. doi:10.1038/nrc2353

    Article  Google Scholar 

  • Bosnjak M et al (2013) Biological properties of melanoma and endothelial cells after plasmid AMEP gene electrotransfer depend on integrin quantity on cells. J Membr Biol 246:803–819. doi:10.1007/s00232-013-9550-y

    Article  Google Scholar 

  • Bosnjak M et al (2015) Gene electrotransfer of plasmid AMEP, an integrin-targeted therapy, has antitumor and antiangiogenic action in murine B16 melanoma. Gene Ther 22:578–590. doi:10.1038/gt.2015.26

    Article  Google Scholar 

  • Bossard C, Van den Berghe L, Laurell H, Castano C, Cerutti M, Prats AC, Prats H (2004) Antiangiogenic properties of fibstatin, an extracellular FGF-2-binding polypeptide. Cancer Res 64:7507–7512. doi:10.1158/0008-5472.CAN-04-0287

    Article  Google Scholar 

  • Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  Google Scholar 

  • Cemazar M, Jarm T, Sersa G (2010) Cancer electrogene therapy with interleukin-12. Curr Gene Ther 10:300–311

    Article  Google Scholar 

  • Cichon T, Jamrozy L, Glogowska J, Missol-Kolka E, Szala S (2002) Electrotransfer of gene encoding endostatin into normal and neoplastic mouse tissues: inhibition of primary tumor growth and metastatic spread. Cancer Gene Ther 9:771–777. doi:10.1038/sj.cgt.7700497

    Article  Google Scholar 

  • Crokart N et al (2013) Potentiation of radiotherapy by a localized antiangiogenic gene therapy. Radiother Oncol 107:252–258. doi:10.1016/j.radonc.2013.03.018

    Article  Google Scholar 

  • Daugimont L et al (2011) Antitumoral and antimetastatic effect of antiangiogenic plasmids in B16 melanoma: higher efficiency of the recombinant disintegrin domain of ADAM 15. Eur J Pharm Biopharm 78:314–319. doi:10.1016/j.ejpb.2011.02.001

    Article  Google Scholar 

  • Dolinsek T et al (2013) Multiple delivery of siRNA against endoglin into murine mammary adenocarcinoma prevents angiogenesis and delays tumor growth. PLoS One 8, e58723. doi:10.1371/journal.pone.0058723

    Article  Google Scholar 

  • Dolinsek T et al (2015a) Endoglin silencing has significant antitumor effect on murine mammary adenocarcinoma mediated by vascular targeted effect. Curr Gene Ther 15:228–244

    Article  Google Scholar 

  • Dolinsek T, Sersa G, Prosen L, Bosnjak M, Stimac M, Razborsek U, Cemazar M (2015b) Electrotransfer of plasmid DNA encoding an anti-mouse endoglin (CD105) shRNA to B16 melanoma tumors with low and high metastatic potential results in pronounced anti-tumor effects. Cancers 8. doi:10.3390/cancers8010003

    Google Scholar 

  • Figg WDFMJ (2008) Angiogenesis an integrative approach from science to medicine. Springer. http://worldcat.org. http://public.eblib.com/EBLPublic/PublicView.do?ptiID=371390

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286. doi:10.1038/nrd2115

    Article  Google Scholar 

  • Li S, Zhang L, Torrero M, Cannon M, Barret R (2005) Administration route- and immune cell activation-dependent tumor eradication by IL12 electrotransfer. Mol Ther 12:942–949. doi:10.1016/j.ymthe.2005.03.037

    Article  Google Scholar 

  • Lucas ML, Heller L, Coppola D, Heller R (2002) IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther 5:668–675. doi:10.1006/mthe.2002.0601

    Article  Google Scholar 

  • Martel-Renoir D et al (2003) Coelectrotransfer to skeletal muscle of three plasmids coding for antiangiogenic factors and regulatory factors of the tetracycline-inducible system: tightly regulated expression, inhibition of transplanted tumor growth, and antimetastatic effect. Mol Ther 8:425–433

    Article  Google Scholar 

  • Nassiri F et al (2011) Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res 31:2283–2290

    Google Scholar 

  • Prosen L, Markelc B, Dolinsek T, Music B, Cemazar M, Sersa G (2014) Mcam silencing with RNA interference using magnetofection has antitumor effect in murine melanoma. Mol Ther Nucleic Acids 3, e205. doi:10.1038/mtna.2014.56

    Article  Google Scholar 

  • Rosen LS, Gordon MS, Robert F, Matei DE (2014) Endoglin for targeted cancer treatment. Curr Oncol Rep 16:365. doi:10.1007/s11912-013-0365-x

    Article  Google Scholar 

  • Shibata MA, Morimoto J, Shibata E, Otsuki Y (2008) Combination therapy with short interfering RNA vectors against VEGF-C and VEGF-A suppresses lymph node and lung metastasis in a mouse immunocompetent mammary cancer model. Cancer Gene Ther 15:776–786. doi:10.1038/cgt.2008.43

    Article  Google Scholar 

  • Spanggaard I et al (2013) Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum Gene Ther Clin Dev 24:99–107. doi:10.1089/humc.2012.240

    Article  Google Scholar 

  • Stimac M, Dolinsek T, Lampreht U, Cemazar M, Sersa G (2015) Gene electrotransfer of plasmid with tissue specific promoter encoding shRNA against endoglin exerts antitumor efficacy against murine TS/A tumors by vascular targeted effects. PLoS One 10, e0124913. doi:10.1371/journal.pone.0124913

    Article  Google Scholar 

  • Stimac M, Kamensek U, Cemazar M, Kranjc S, Coer A, Sersa G (2016) Tumor radiosensitization by gene therapy against endoglin. Cancer Gene Ther 23:214–220. doi:10.1038/cgt.2016.20

    Article  Google Scholar 

  • Tesic N et al (2015) Endoglin (CD105) silencing mediated by shRNA under the control of endothelin-1 promoter for targeted gene therapy of melanoma. Mol Ther Nucleic Acids 4, e239. doi:10.1038/mtna.2015.12

    Article  Google Scholar 

  • Vader P et al (2011) Examining the role of Rac1 in tumor angiogenesis and growth: a clinically relevant RNAi-mediated approach. Angiogenesis 14:457–466. doi:10.1007/s10456-011-9229-x

    Article  Google Scholar 

  • Verrax J et al (2011) Delivery of soluble VEGF receptor 1 (sFlt1) by gene electrotransfer as a new antiangiogenic cancer therapy. Mol Pharm 8:701–708. doi:10.1021/mp100268t

    Article  Google Scholar 

  • Yadav L, Puri N, Rastogi V, Satpute P, Sharma V (2015) Tumour angiogenesis and angiogenic inhibitors: a review. J Clin Diagn Res 9:XE01–XE05. doi:10.7860/JCDR/2015/12016.6135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Čemažar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Čemažar, M., Dolinsek, T., Bosnjak, M., Serša, G. (2017). Antiangiogenic Gene Therapy. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-32886-7_51

Download citation

Publish with us

Policies and ethics