Skip to main content

Advertisement

Log in

Biological Properties of Melanoma and Endothelial Cells after Plasmid AMEP Gene Electrotransfer Depend on Integrin Quantity on Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The data on the biological responsiveness of melanoma and endothelial cells that are targeted by Antiangiogenic MEtargidin Peptide (AMEP) are limited; therefore, the antiproliferative, antimetastatic and antiangiogenic effects of AMEP were investigated in murine melanoma and human endothelial cells after plasmid AMEP gene electrotransfer into the cells in vitro. Plasmid AMEP, a plasmid coding for the disintegrin domain of metargidin targeting specific integrins, had cytotoxic and antiproliferative effects on murine melanoma and human endothelial cells. Among the metastatic properties of cells, migration, invasion and adhesion were investigated. Plasmid AMEP strongly affected the migration of murine melanoma and human endothelial cell lines and also affected the invasion of highly metastatic murine melanoma B16F10 and human endothelial cell lines. There was no effect on cell adhesion on MatrigelTM or fibronectin in all cell lines. The antiangiogenic effect was shown with tube formation assay, where human microvascular endothelial cell line (HMEC-1) proved to be more sensitive to plasmid AMEP gene electrotransfer than the human umbilical vein endothelial cell line (HUVEC). The study indicates that antiproliferative and antimetastatic biological responses to gene electrotransfer of plasmid AMEP in murine melanoma cells were dependent on the integrin quantity on melanoma cells and not on the expression level of AMEP. The strong antiangiogenic effect expressed in human endothelial cell lines was only partly dependent on the quantity of integrins and seemed to be plasmid AMEP dose dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamis AP, Shima DT (2005) The role of vascular endothelial growth factor in ocular health and disease. Retina 25:111–118

    Article  PubMed  Google Scholar 

  • Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA (1990) Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res 50:6757–6764

    CAS  PubMed  Google Scholar 

  • Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8:604–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571

    Article  CAS  PubMed  Google Scholar 

  • Campana LG, Valpione S, Falci C, Mocellin S, Basso M, Corti L, Balestrieri N, Marchet A, Rossi CR (2012) The activity and safety of electrochemotherapy in persistent chest wall recurrence from breast cancer after mastectomy: a phase-II study. Breast Cancer Res Treat 134:1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Wilson I, Dachs GU, Tozer GM, Sersa G (2004) Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy—spatial and time dependent distribution. BMC Cancer 4:81

    Article  PubMed Central  PubMed  Google Scholar 

  • Cemazar M, Jarm T, Sersa G (2010) Cancer electrogene therapy with interleukin-12. Curr Gene Ther 10:300–311

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Le Breton A, Preat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9:2961–2973

    Article  CAS  PubMed  Google Scholar 

  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daugimont L, Vandermeulen G, Defresne F, Bouzin C, Mir LM, Bouquet C, Feron O, Preat V (2011) Antitumoral and antimetastatic effect of antiangiogenic plasmids in B16 melanoma: higher efficiency of the recombinant disintegrin domain of ADAM 15. Eur J Pharm Biopharm 78:314–319

    Article  CAS  PubMed  Google Scholar 

  • Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gehl J (2008) Electroporation for drug and gene delivery in the clinic: doctors go electric. Methods Mol Biol 423:351–359

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Kuphal S, Bauer R, Bosserhoff AK (2005) Integrin signaling in malignant melanoma. Cancer Metast Rev 24:195–222

    Article  CAS  Google Scholar 

  • Linnert M, Iversen HK, Gehl J (2012) Multiple brain metastases—current management and perspectives for treatment with electrochemotherapy. Radiol Oncol 46:271–278

    Article  PubMed Central  PubMed  Google Scholar 

  • Mali B, Jarm T, Snoj M, Sersa G, Miklavcic D (2013) Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur J Surg Oncol 39:4–16

    Article  CAS  PubMed  Google Scholar 

  • Markelc B, Bellard E, Sersa G, Pelofy S, Teissie J, Coer A, Golzio M, Cemazar M (2012) In vivo molecular imaging and histological analysis of changes induced by electric pulses used for plasmid DNA electrotransfer to the skin: a study in a dorsal window chamber in mice. J Membr Biol 245:545–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miklavcic D, Sersa G, Brecelj E, Gehl J, Soden D, Bianchi G, Ruggieri P, Rossi CR, Campana LG, Jarm T (2012) Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 50:1213–1225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizejewski GJ (1999) Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med 222:124–138

    Article  CAS  PubMed  Google Scholar 

  • Nath D, Slocombe PM, Stephens PE, Warn A, Hutchinson GR, Yamada KM, Docherty AJ, Murphy G (1999) Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. J Cell Sci 112(Pt 4):579–587

    CAS  PubMed  Google Scholar 

  • Niemisto A, Dunmire V, Yli-Harja O, Zhang W, Shmulevich I (2005) Robust quantification of in vitro angiogenesis through image analysis. IEEE Trans Med Imaging 24:549–553

    Article  PubMed  Google Scholar 

  • Ohno R (2006) Treatment of chronic myeloid leukemia with imatinib mesylate. Int J Clin Oncol 11:176–183

    Article  CAS  PubMed  Google Scholar 

  • Sedlar A, Dolinsek T, Markelc B, Prosen L, Kranjc S, Bosnjak M, Blagus T, Cemazar M, Sersa G (2012) Potentiation of electrochemotherapy by intramuscular IL-12 gene electrotransfer in murine sarcoma and carcinoma with different immunogenicity. Radiol Oncol 46:302–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M (2008) Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 34:232–240

    Article  CAS  PubMed  Google Scholar 

  • Spanggaard I, Snoj M, Cavalcanti A, Bouquet C, Sersa G, Robert C, Vasseur B, Attali P, Mir LM, Gehl J (2012) Proof of concept of gene therapy using plasmid AMEP in disseminated melanoma: safety and efficacy results of phase I first-in-man study. In: Abstracts of the 37th ESMO Congress, Vienna, Austria, September 28–October 2, 2012. Ann Oncol 23(Suppl 9)

  • Testori A, Tosti G, Martinoli C, Spadola G, Cataldo F, Verrecchia F, Baldini F, Mosconi M, Soteldo J, Tedeschi I, Passoni C, Pari C, Di Pietro A, Ferrucci PF (2010) Electrochemotherapy for cutaneous and subcutaneous tumor lesions: a novel therapeutic approach. Dermatol Ther 23:651–661

    Article  PubMed  Google Scholar 

  • Trochon-Joseph V, Martel-Renoir D, Mir LM, Thomaidis A, Opolon P, Connault E, Li H, Grenet C, Fauvel-Lafeve F, Soria J, Legrand C, Soria C, Perricaudet M, Lu H (2004) Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res 64:2062–2069

    Article  CAS  PubMed  Google Scholar 

  • Van Belle PA, Elenitsas R, Satyamoorthy K, Wolfe JT, Guerry D 4th, Schuchter L, Van Belle TJ, Albelda S, Tahin P, Herlyn M, Elder DE (1999) Progression-related expression of beta3 integrin in melanomas and nevi. Hum Pathol 30:562–567

    Article  PubMed  Google Scholar 

  • Varner JA, Cheresh DA (1996) Integrins and cancer. Curr Opin Cell Biol 8:724–730

    Article  CAS  PubMed  Google Scholar 

  • Zhang XP, Kamata T, Yokoyama K, Puzon-McLaughlin W, Takada Y (1998) Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem 273:7345–7350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the state budget by the Slovenian Research Agency (program no. P3-0003, project no. J3-4211). The research was conducted in the scope of LEA EBAM (French–Slovenian European Associated Laboratory: Pulsed Electric Fields Applications in Biology and Medicine) and COST Action TD1104. We would like to thank Mira Lavric (Institute of Oncology Ljubljana, Ljubljana, Slovenia) for all the valuable work she contributed to this research. Céline Bouquet is a stockholder and an employee at BioAlliance Pharma. The other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Sersa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosnjak, M., Prosen, L., Dolinsek, T. et al. Biological Properties of Melanoma and Endothelial Cells after Plasmid AMEP Gene Electrotransfer Depend on Integrin Quantity on Cells. J Membrane Biol 246, 803–819 (2013). https://doi.org/10.1007/s00232-013-9550-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9550-y

Keywords

Navigation