Skip to main content
Log in

Examining the role of Rac1 in tumor angiogenesis and growth: a clinically relevant RNAi-mediated approach

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis, the sprouting of new blood vessels from the pre-existing vasculature, is a well established target in anti-cancer therapy. It is thought that the Rho GTPase Rac1 is required during vascular endothelial growth factor (VEGF)-mediated angiogenesis. In the present study, we have used a clinically relevant RNA interference approach to silence Rac1 expression. Human umbilical vein endothelial cells were transiently transfected with non-specific control siRNA (siNS) or Rac1 siRNA (siRac1) using electroporation or Lipofectamine 2000. Functional assays with transfected endothelial cells were performed to determine the effect of Rac1 knockdown on angiogenesis in vitro. Silencing of Rac1 inhibited VEGF-mediated tube formation, cell migration, invasion and proliferation. In addition, treatment with Rac1 siRNA inhibited angiogenesis in an in vivo Matrigel plug assay. Intratumoral injections of siRac1 almost completely inhibited the growth of grafted Neuro2a tumors and reduced tumor angiogenesis. Together, these data indicate that Rac1 is an important regulator of VEGF-mediated angiogenesis. Knockdown of Rac1 may represent an attractive approach to inhibit tumor angiogenesis and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    Article  PubMed  CAS  Google Scholar 

  2. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    Article  PubMed  CAS  Google Scholar 

  3. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  PubMed  CAS  Google Scholar 

  4. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  PubMed  CAS  Google Scholar 

  5. Bryan BA, D’Amore PA (2007) What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell Mol Life Sci 64(16):2053–2065

    Article  PubMed  CAS  Google Scholar 

  6. Merajver SD, Usmani SZ (2005) Multifaceted role of Rho proteins in angiogenesis. J Mammary Gland Biol Neoplasia 10(4):291–298

    Article  PubMed  Google Scholar 

  7. Fryer BH, Field J (2005) Rho, Rac, Pak and angiogenesis: old roles and newly identified responsibilities in endothelial cells. Cancer Lett 229(1):13–23

    Article  PubMed  CAS  Google Scholar 

  8. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9(9):690–701

    Article  PubMed  CAS  Google Scholar 

  9. Bayless KJ, Davis GE (2002) The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci 115(Pt 6):1123–1136

    PubMed  CAS  Google Scholar 

  10. Koh W, Mahan RD, Davis GE (2008) Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci 121(Pt 7):989–1001

    Article  PubMed  CAS  Google Scholar 

  11. Tan W, Palmby TR, Gavard J, Amornphimoltham P, Zheng Y, Gutkind JS (2008) An essential role for Rac1 in endothelial cell function and vascular development. FASEB J 22(6):1829–1838

    Article  PubMed  CAS  Google Scholar 

  12. Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81(5):682–687

    Article  PubMed  CAS  Google Scholar 

  13. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E (2000) Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19(26):3013–3020

    Article  PubMed  CAS  Google Scholar 

  14. Aznar S, Fernandez-Valeron P, Espina C, Lacal JC (2004) Rho GTPases: potential candidates for anticancer therapy. Cancer Lett 206(2):181–191

    Article  PubMed  CAS  Google Scholar 

  15. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349

    Article  PubMed  CAS  Google Scholar 

  16. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112

    Article  PubMed  CAS  Google Scholar 

  17. Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265(1):23–32

    Article  PubMed  CAS  Google Scholar 

  18. Pille JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, Maksimenko A, Lu H, Vannier JP, Soria J, Malvy C, Soria C (2006) Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 17(10):1019–1026

    Article  PubMed  CAS  Google Scholar 

  19. Xue Y, Bi F, Zhang X, Zhang S, Pan Y, Liu N, Shi Y, Yao X, Zheng Y, Fan D (2006) Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel-Lindau suppression and HIF1alpha activation. Int J Cancer 118(12):2965–2972

    Article  PubMed  CAS  Google Scholar 

  20. Golzio M, Mazzolini L, Ledoux A, Paganin A, Izard M, Hellaudais L, Bieth A, Pillaire MJ, Cazaux C, Hoffmann JS, Couderc B, Teissie J (2007) In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery. Gene Ther 14(9):752–759

    Article  PubMed  CAS  Google Scholar 

  21. Bodles-Brakhop AM, Heller R, Draghia-Akli R (2009) Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Mol Ther 17(4):585–592

    Article  PubMed  CAS  Google Scholar 

  22. D’Amico G, Robinson SD, Germain M, Reynolds LE, Thomas GJ, Elia G, Saunders G, Fruttiger M, Tybulewicz V, Mavria G, Hodivala-Dilke KM (2010) Endothelial-Rac1 is not required for tumor angiogenesis unless alphavbeta3-integrin is absent. PLoS One 5(3):e9766. doi:10.1371/journal.pone.0009766

    Article  PubMed  Google Scholar 

  23. Garrett TA, Van Buul JD, Burridge K (2007) VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp Cell Res 313(15):3285–3297

    Article  PubMed  CAS  Google Scholar 

  24. Connolly JO, Simpson N, Hewlett L, Hall A (2002) Rac regulates endothelial morphogenesis and capillary assembly. Mol Biol Cell 13(7):2474–2485

    Article  PubMed  CAS  Google Scholar 

  25. Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR, Symons M (2005) Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 24(53):7821–7829

    Article  PubMed  CAS  Google Scholar 

  26. Sawada N, Salomone S, Kim HH, Kwiatkowski DJ, Liao JK (2008) Regulation of endothelial nitric oxide synthase and postnatal angiogenesis by Rac1. Circ Res 103(4):360–368

    Article  PubMed  CAS  Google Scholar 

  27. Hoang MV, Nagy JA, Senger DR (2011) Active Rac1 improves pathologic VEGF neovessel architecture and reduces vascular leak: mechanistic similarities with angiopoietin-1. Blood 117(5):1751–1760. doi:10.1182/blood-2010-05-286831

    Article  PubMed  CAS  Google Scholar 

  28. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239

    Article  PubMed  CAS  Google Scholar 

  29. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231

    Article  PubMed  CAS  Google Scholar 

  30. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh CB, Bjerkvig R, Niclou SP (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108(9):3749–3754

    Article  PubMed  CAS  Google Scholar 

  31. van der Meel R, Symons MH, Kudernatsch R, Kok RJ, Schiffelers RM, Storm G, Gallagher WM, Byrne AT (2011) The VEGF/Rho GTPase signalling pathway: a promising target for anti-angiogenic/anti-invasion therapy. Drug Discov Today. doi:10.1016/j.drudis.2011.01.005

  32. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG (2007) Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 6(7):541–555

    Article  PubMed  CAS  Google Scholar 

  33. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070. doi:10.1038/nature08956

    Article  PubMed  CAS  Google Scholar 

  34. Sun D, Xu D, Zhang B (2006) Rac signaling in tumorigenesis and as target for anticancer drug development. Drug Resist Updat 9(6):274–287

    Article  PubMed  CAS  Google Scholar 

  35. Santel A, Aleku M, Roder N, Mopert K, Durieux B, Janke O, Keil O, Endruschat J, Dames S, Lange C, Eisermann M, Loffler K, Fechtner M, Fisch G, Vank C, Schaeper U, Giese K, Kaufmann J (2010) Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin Cancer Res 16(22):5469–5480. doi:10.1158/1078-0432.CCR-10-1994

    Article  PubMed  CAS  Google Scholar 

  36. Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, Nam EJ, Mora EM, Stone RL, Lu C, Lee SJ, Roh JW, Nick AM, Lopez-Berestein G, Sood AK (2010) Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 16(15):3910–3922. doi:10.1158/1078-0432.CCR-10-0005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding is acknowledged from Science Foundation Ireland in the context of the Molecular Therapeutics for Cancer Ireland, Strategic Research Cluster. We further acknowledge funding received from the EU Marie Curie Industry Academia Pathways and Partnership program in the context of the ‘AngioTox’ initiative.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Byrne.

Additional information

P. Vader and R. van der Meel contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 20,253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vader, P., van der Meel, R., Symons, M.H. et al. Examining the role of Rac1 in tumor angiogenesis and growth: a clinically relevant RNAi-mediated approach. Angiogenesis 14, 457–466 (2011). https://doi.org/10.1007/s10456-011-9229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9229-x

Keywords

Navigation