Skip to main content

Patch Clamp in Use of Electroporation Mechanisms Studies

  • Reference work entry
  • First Online:
Handbook of Electroporation
  • 172 Accesses

Abstract

Exposure of cells to strong pulsed electric fields shifts the membrane potential to values far outside the physiological voltage range and elicits membrane permeabilization, purportedly due to aqueous pore formation (“electroporation”). These pores allow passage of usually membrane-impermeable solutes, offering various biomedical applications. In this tutorial essay, the reader is introduced to patch clamp techniques (both “classical” manual patch clamp and more advanced automated versions). Benefits as well as potential drawbacks of these techniques are explained with respect to studying membrane properties at poorly studied “supraphysiological voltages” that are hardly accessible by any other method. Using a glass microelectrode, the cellular membrane is homogenously charged to defined voltages (known as “voltage clamp”). The current response elicited by a voltage pulse provides information on dielectric properties of the membrane and on membrane permeabilization by putative membrane pores. Recent scientific progress in this field is briefly summarized. Analysis of current voltage relations covering a broad voltage range allows to exactly determine the threshold potentials of pore formation (separately at both positive and negative voltages). In a more refined biophysical approach, data are interpreted in terms of a transition between a low-conductance, non-porated and a high -conductance, porated state of the membrane described by Boltzmann distributions. Ion selectivity of electropores can be probed by polarizing the membrane to induce pore formation and subsequently shifting the membrane voltage to opposite polarity at a fast, approximately constant rate (voltage ramp protocols). These experiments indicated cation selectivity of electropores. By using cations of various molecular diameter, a pore size of about 1.8 nm was extrapolated. Moreover, post-pulse recordings with the patch clamp technique revealed that the membrane remains permeabilized for a long time (in the range of minutes) after field exposure. Among other things, this effect is amplified by repetitive pulsing, suggesting that a memory effect is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • André FM, Rassokhin MA, Bowman AM, Pakhomov AG (2010) Gadolinium blocks membrane permeabilization induced by nanosecond electric pulses and reduces cell death. Bioelectrochemistry 79:95–100. doi:10.1016/j.bioelechem.2009.12.007

    Article  Google Scholar 

  • Behrends JC, Fertig N (2007) Planar patch clamping. In: Walz W (ed) Patch-clamp analysis: advanced techniques, Neuromethods, vol 38, 2nd edn. Humana Press, Totowa, pp 411–433

    Chapter  Google Scholar 

  • Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543. doi:10.1007/s00232-012-9434-6

    Article  Google Scholar 

  • Fertig N, Blick RH, Behrends JC (2002) Whole cell patch clamp recording performed on a planar glass chip. Biophys J 82:3056–3062

    Article  Google Scholar 

  • Gabriel B, Teissie J (1999) Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophys J 76:2158–2165

    Article  Google Scholar 

  • Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflüg Arch 391:85–100

    Article  Google Scholar 

  • Hille B (2001) Ion channels of exitable membranes, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Ivorra A, Rubinsky B (2007) In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry 70:287–295. doi:10.1016/j.bioelechem.2006.10.005

    Article  Google Scholar 

  • Krassen H, Pliquett U, Neumann E (2007) Nonlinear current–voltage relationship of the plasma membrane of single CHO cells. Bioelectrochemistry 70:71–77. doi:10.1016/j.bioelechem.2006.03.033

    Article  Google Scholar 

  • Leguebe M, Silve A, Mir LM, Poignard C (2014) Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments. J Theor Biol 360:83–94

    Article  MATH  Google Scholar 

  • Meissner ST (1998) Electroporation of the vacuolar-attached patch-clamp configuration allows access to the tonoplast resistance and estimation of its specific conductance. Plant Sci 133:91–103

    Article  Google Scholar 

  • Neumann E, Kakorin S, Tœnsing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16. doi:10.1016/S0302-4598(99)00008-2

    Article  Google Scholar 

  • Pakhomov AG, Kolb JF, White JA et al (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663. doi:10.1002/bem.20354

    Article  Google Scholar 

  • Pakhomov AG, Bowman AM, Ibey BL et al (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385:181–186. doi:10.1016/j.bbrc.2009.05.035

    Article  Google Scholar 

  • Pliquett UF, Schoenbach KH (2009) Changes in electrical impedance of biological matter due to the application of ultrashort high voltage pulses. IEEE Trans Dielectr Electr Insul 16:1273–1279. doi:10.1109/TDEI.2009.5293938

    Article  Google Scholar 

  • Pliquett U, Krassen H, Frantescu CG, et al (2005) Asymmetric changes in membrane conductance due to hyper-and depolarization: probing with current and voltage clamp. In: IFMBE Proceedings, p 1923

    Google Scholar 

  • Pusch M, Neher E (1988) Rates of diffusional exchange between small cells and a measuring patch pipette. Pflüg Arch 411:204–211

    Article  Google Scholar 

  • Saulis G (2010) Electroporation of cell membranes: the fundamental effects of pulsed electric fields in food processing. Food Eng Rev 2:52–73. doi:10.1007/s12393-010-9023-3

    Article  Google Scholar 

  • Sigworth FJ (1995) Electronic design of the patch clamp. In: Sakmann B, Neher E (eds) Single-channel recording. Springer, Berlin, pp 95–127

    Chapter  Google Scholar 

  • Silve A (2011) Nouveaux dispositifs pour l’application contrôlée d’impulsions électriques nanosecondes et pour la détection de leurs effets sur les cellules: Nouveaux résultats et hypothèses sur les paramètres contrôlant l’électroperméabilisation des cellules biologiques. PhD Thesis, Paris

    Google Scholar 

  • Silve A, Rocke S, Frey W (2015) Image processing for non-ratiometric measurement of membrane voltage using fluorescent reporters and pulsed laser illumination. Bioelectrochemistry 103:39–43

    Article  Google Scholar 

  • Siwy Z, Gu Y, Spohr HA et al (2002) Rectification and voltage gating of ion currents in a nanofabricated pore. Europhys Lett EPL 60:349–355. doi:10.1209/epl/i2002-00271-3

    Article  Google Scholar 

  • Tekle E, Astumian RD, Chock PB (1994) Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci USA 91:11512–11516

    Article  Google Scholar 

  • Tovar O, Tung OL (1992) Electroporation and recovery of cardiac cell membrane with rectangular voltage pulses. Am J Physiol 92:1128–1136

    Google Scholar 

  • Walz W, Boulton AA, Baker GB (2002) Patch-clamp analysis. Humana Press, Totowa

    Book  Google Scholar 

  • Wegner LH (2013) Cation selectivity of the plasma membrane of tobacco protoplasts in the electroporated state. Biochim Biophys Acta 1828:1973–1981. doi:10.1016/j.bbamem.2013.04.010

    Article  Google Scholar 

  • Wegner LH (2015) The conductance of cellular membranes at supra-physiological voltages. Bioelectrochemistry 103:34–38

    Article  Google Scholar 

  • Wegner LH, Boer AHD (1999) Activation kinetics of the K+ outward rectifying conductance (KORC) in xylem parenchyma cells from barley roots. J Membr Biol 170:103–119. doi:10.1007/s002329900541

    Article  Google Scholar 

  • Wegner LH, Schönwalder S (2012) Electroporation of plant cells studied with the patch clamp technique. In: Proceedings of Euro-Asian Pulse Power Conference on international conference high-power particle beams

    Google Scholar 

  • Wegner LH, Flickinger B, Eing C et al (2011) A patch clamp study on the electro-permeabilization of higher plant cells: supra-physiological voltages induce a high-conductance, K+ selective state of the plasma membrane. Biochim Biophys Acta BBA – Biomembr 1808:1728–1736. doi:10.1016/j.bbamem.2011.01.016

    Article  Google Scholar 

  • Wegner LH, Frey W, Schönwälder S (2013) A critical evaluation of whole cell patch clamp studies on electroporation using the voltage sensitive dye ANNINE-6. Bioelectrochemistry 92:42–46

    Article  Google Scholar 

  • Wegner LH, Frey W, Silve A (2015) Electroporation of DC-3F cells is a dual process. Biophys J 108:1660–1671

    Article  Google Scholar 

  • Yarmush ML, Golberg A, Serša G et al (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320. doi:10.1146/annurev-bioeng-071813-104622

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars H. Wegner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Wegner, L.H. (2017). Patch Clamp in Use of Electroporation Mechanisms Studies. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-32886-7_147

Download citation

Publish with us

Policies and ethics