Skip to main content

Planar Patch Clamping

  • Protocol
Patch-Clamp Analysis

Part of the book series: Neuromethods ((NM,volume 38))

Abstract

The technique of patch clamping can be seen in retrospect as a combination of two separate lines of development that both originated in the 1960s and 1970s. The classical biophysics of the nerve impulse had by then been established in the squid giant axon using a combination of (1) voltage clamping with axial wire electrodes and (2) internal perfusion or dialysis. This combination had given experimenters control of both the electrical and the chemical gradients governing membrane ion flux. The problem of the day was to extend this type of analysis to smaller, noncylindrical, cellular structures (such as neuronal somata) that would not allow insertion of metal wires, let alone tolerate any of the procedures used for internal perfusion or dialysis of squid axons. While intracellular glass microelectrodes (Ling and Gerard, 1949) afforded intracellular electrical access to most cellular somata, two independent electrodes for current passing and voltage recording, respectively, were initially necessary, until time-sharing systems made single-microelectrode voltage clamping possible (Wilson and Goldner, 1975). Even then, however, two severe problems remained: (1) spatially nonuniform voltage control (the so-called space-clamp problem), and (2) the lack of control over intracellular ionic composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1

    In fact, in Hamill et al., 1981, the reader is introduced to the whole-cell configuration of the patch-clamp technique: “The technique to be described can be viewed as a microversion of the internal dialysis techniques originally developed for molluscan giant neurons.”

  2. 2.

    2

    This situation at the end of the 1990s also produced technologies to automate pipette-based patch clamping such as the Apatchi by Sophion SA (a spin-off from Denmark’s Neurosearch) and the Interface patch clamp invented by the late David Owen of CeNeS in England, a great pioneer in the field (see review by Mathes, 2006).

References

  • Bezanilla, F. (2005) Voltage-gated ion channels. IEEE Trans. NanoBioSci. 4, 34–48.

    Article  Google Scholar 

  • Borisenko, S., Lougheed, T., Hesse, J., et al. (2003) Simultaneous optical and electrical recording of single gramicidin channels. Biophys. J. 84, 612–622.

    Article  PubMed  CAS  Google Scholar 

  • Eckert, R. and Lux, H. D. (1976) A voltage-sensitive persistent calcium conductance in neuronal somata of Helix. J. Physiol. 254, 129–151.

    PubMed  CAS  Google Scholar 

  • Fertig, N., Blick, R. H., and Behrends, J. C. (2002) Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 82, 3056–3062.

    Article  PubMed  CAS  Google Scholar 

  • Fertig, N., Klau, M., George, M., Blick, R. H., and Behrends, J. C. (2002) Probing single ion channel proteins on a planar microstructure. Appl. Phys. Lett. 81, 4865–4867.

    Article  CAS  Google Scholar 

  • Fertig, N., Meyer, C., Blick, R. H., Trautmann, C., and Behrends, J. C. (2001) Microstructured glass chip for ion channel electrophysiology. Phys. Rev. E 64, 040901 (Rap. Comm.).

    Article  CAS  Google Scholar 

  • Fertig, N., Tilke, A., Blick, R. H., Behrends, J. C., ten Bruggencate, G., and Kotthaus, J. P. (2000) Stable integration of isolated cell membrane patches in nanomachined aperture. Appl. Phys. Lett. 77, 1218–1220.

    Article  CAS  Google Scholar 

  • Finkel A., Wittel A., Yang N., Handran S., Hughes J., and Costantin J. (2006) Population patch clamp improves data consistency and success rates in the measurement of ionic currents. J. Biomol. Screen. 11(5), 488–496.

    Article  PubMed  CAS  Google Scholar 

  • Frank, K. and Tauc, L. (1963) Voltage clamp studies on molluscan neuron membrane properties, in The Cellular Functions of Membrane Transport (Hoffmann, J. F., ed.), Prentice Hall, Englewood Cliffs, NJ, pp. 113–135.

    Google Scholar 

  • Gullo, M. R., Akiyama, T., Frederix, P. L. T. M., et al. (2005) Towards a planar sample support for in situ experiments in structural biology. Microelectron. Eng. 78–79, 571–574.

    Article  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Harms, G. S., Orr, G., Montal, M., Thrall, B. D., Colson, S. D., and Lu, H. P. (2003) Probing conformational changes of gramicidin ion channels by singlemolecule patch-clamp fluorescence microscopy. Biophys. J. 85, 1826–1838.

    Article  PubMed  CAS  Google Scholar 

  • Heyer C. B. and Lux, H. D. (1976) Properties of a facilitating calcium current in pace-maker neurones of the snail, Helix pomatia. J. Physiol. 262, 319–348.

    PubMed  CAS  Google Scholar 

  • Horn, R. and Marty, A. (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92, 145–159.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F. and Taylor, R. E. (1958) Local activation of striated muscle fibres. J. Physiol. 144, 426–441.

    PubMed  CAS  Google Scholar 

  • Ionescu-Zanetti, C., Shaw, R. M., Seo, J., Jan, Y. N., Jan, L. Y., and Lee, L. P. (2005) Mammalian electrophysiology on a microfluidic platform. Proc. Natl. Acad. Sci. USA 102(26), 9112–9117.

    Article  PubMed  CAS  Google Scholar 

  • Kiss, L., Bennett, P., Uebele, V. N., et al. (2003) High throughput ion-channel pharmacology: planar-array-based voltage clamp. Assay Drug Dev. Technol. 1, 127–135.

    PubMed  CAS  Google Scholar 

  • Klemic, K. G., Klemic, J. F., Reed, M. A., and Sigworth, F. J. (2002) Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. Biosens. Bioelectron. 17(6–7), 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Klemic, K. G., Klemic, J. F., and Sigworth, F. J. (2005) An air-molding technique for fabricating PDMS planar patch-clamp electrodes. Pflugers Arch. 449(6), 564–572.

    Article  PubMed  CAS  Google Scholar 

  • Klemic, K. G. T. and Sigworth, F. J. (2005) Microchip technology in ion-channel research. IEEE Trans. NanoBioSci. 4, 121–127.

    Article  Google Scholar 

  • Kostyuk, P. G., Krishtal, O. A., and Pidoplichko, V. I. (1984) Perfusion of isolated neurons fixed in plastic film, in Intracellular Perfusion of Excitable Cells (Kostyuk, P. G. and Krishtal, O. A. ed.), Wiley, New York, pp. 35–51.

    Google Scholar 

  • Kostyuk, P. G., Krishtal, O. A., and Pidoplichko, V. I. (1975) Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature 257, 691–693.

    Article  PubMed  CAS  Google Scholar 

  • Krishtal, O. A., and Pidoplichko, V. I. Intracellular perfusion of giant snail neurons [Russian]. Neirofisziologija 7, 327–329.

    Google Scholar 

  • Kutchinsky, J., Friis, S., Asmild, M., et al. (2003) Characterization of potassium channel modulators with QPatch automated patch-clamp technology: system characteristics and performance. Assay Drug Dev. Technol. 1, 685–693.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. S., Akaike N., and Brown, A. M. (1980) The suction pipette method for internal perfusion and voltage clamp of small excitable cells. J. Neurosci. Methods 2, 51–78.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Klemic, K. G., Reed, M. A., and Sigworth, F. J. (2006) Microfluidic system for planar patch clamp electrode arrays. Nano. Lett. 6, 815–819.

    Article  PubMed  CAS  Google Scholar 

  • Ling, G. and Gerard, R. W. (1949) The normal membrane potential of frog sartorius fibres. J. Cell. Comp. Physiol. 34, 383–396.

    Article  CAS  Google Scholar 

  • Mathes, C. (2006) Qpatch: the past, present, and future of automated patch clamping. Expert Opin. Ther. Targets 10, 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, B. and Judy, J. W. (2006) Design and fabrication of a micromachined planar patch-clamp substrate with integrated microfluidics for single-cell measurements. J. Microelectromechanical Syst. 15, 214–222.

    Article  Google Scholar 

  • Neher, E. and Lux, H. D. (1969) Voltage clamp on Helix pomatia neuronal membrane; current measurement over a limited area of the soma surface. Pflügers Arch. 336, 87–100.

    Article  Google Scholar 

  • Neher, E., and Sakmann, B. (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 29, 799–802.

    Article  Google Scholar 

  • Osipchuk, Y., Dromaretcky, A., Savtchenko, A., et al. (2001) Whole cell recordings from new planar patch clamp electrodes. Soc. Neurosci. Abstr. 27, 606.

    Google Scholar 

  • Pantoja, R., Nagarah, J. M., Starace, D. M., et al. (2004) Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics. Biosens. Bioelectron. 15, 509–517.

    Article  Google Scholar 

  • Pantoja, R., Sigg, D., Blunck, R., Bezanilla, F., and Heath, J. R. (2001) Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip. Biophys. J. 81(4), 2389–2394.

    Article  PubMed  CAS  Google Scholar 

  • Picollet-D’hahan, N., Sordel, Y., Garnier-Ravéaud, S., et al. (2004) A silicon-based multi-patch device for ion channel current sensing. Sensor. Lett. 2, 2.

    Article  Google Scholar 

  • Pratt, F. H. and Eisenberger, J. P. (1919) The quantal phenomena in muscle: methods, with further evidence of the all-or-none principle for the skeletal fibre. Am. J. Physiol. 499, 1–54.

    Google Scholar 

  • Schmidt, C., Mayer, M., and Vogel, J. (2000) A chip-based biosensor for the functional analysis of single ion channels. Angew. Chem. Int. Ed. 39, 3137–3140.

    CAS  Google Scholar 

  • Schroeder, K., Neagle, B. Trezise, D. J., and Worley, J. (2003) IonWorksTMHT: a new high-throughput electrophysiology measurement platform. J. Biomol. Screen. 8, 50–64.

    Article  PubMed  CAS  Google Scholar 

  • Selvin, P. R. (2002) Lighting up single ion channels. Biophys. J. 84, 1–2.

    Article  Google Scholar 

  • Seo, J., Ionesco-Zanetti, C., Diamond, J., Lal, R., and Lee, L. P. (2004) Integrated multiple patch-clamp array chip via lateral cell trapping junctions. Appl. Phys. Lett. 84, 1973–1975.

    Article  CAS  Google Scholar 

  • Sondermann, M., George, M., Fertig, N., and Behrends, J. C. (2006) High resolution electrophysiology on a chip: transient dynamics of alamethicin channel formation. Biochim. Biophys. Acta. 1758, 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Sordel, T., Garnier-Raveaud, S., Sauter, F., et al. (2006) Hourglass SiO(2) coating increases the performance of planar patch-clamp. J. Biotechnol. 125(1), 142–154.

    Article  PubMed  CAS  Google Scholar 

  • Stett, A., Bucher, V., Burkhardt, C., Weber, U., and Nisch, W. (2003) Patch-clamping of primary cardiac cells with micro-openings in polyimide films. Med. Biol. Eng. Comput. 41(2), 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Strickholm, A. (1962) Excitation currents and impedance of a small electrically isolated area of the muscle cell surface. J. Cell Comp. Physiol. 60, 149–167.

    Article  PubMed  CAS  Google Scholar 

  • Van Stiphout, P., Knott, T., Danker, T., and Stett, A. (2005) 3D microfluidic chip for automated patch clamping, in Mikrosystemtechnik Kongress (G, M. M., V, D. E., V, D. I., eds., Berlin, pp. 435–438). http://www.cytocentrics.com/images/microfluidic-chip.pdf.

    Google Scholar 

  • Whitesides, G. M., Xia, Y. N. (1998) Soft lithography Ann. Rev. Sci. 28, 153–184.

    Article  Google Scholar 

  • Wilson, W. A. and Goldner, M. M. (1975) Voltage clamping with a single microelectrode. J. Neurobiol. 6, 411–432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Behrends, J.C., Fertig, N. (2007). Planar Patch Clamping. In: Walz, W. (eds) Patch-Clamp Analysis. Neuromethods, vol 38. Humana Press. https://doi.org/10.1007/978-1-59745-492-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-492-6_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-705-1

  • Online ISBN: 978-1-59745-492-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics