Skip to main content
Log in

Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Using of pulsed electric fields (PEF) for killing of microorganisms in liquid foods is a promising new non-thermal food processing and preservation technology. However, to implement and optimize this technology, a good understanding of the actual mechanisms that govern microbial inactivation by this technique is required. Here, fundamentals of cell electroporation, which is considered as underlying phenomenon of food processing technology, are discussed. The whole process of the cell electroporation (food processing) by PEF is divided into the following four main stages: (1) building the transmembrane potential up by the applied external electric field, (2) creation of small metastable hydrophilic pores, when the transmembrane potential has been built up; (3) evolution of the pore population—the change in the number and/or sizes of pores—during an electric treatment; and (4) post-treatment stage consisting of the processes that take place after the electric treatment (leakage of intracellular compounds, pore shrinkage and disappearance, etc.). The current knowledge of the processes taking place during each of the above stages as well as the factors influencing them is discussed. Theoretical considerations are illustrated with the experimental data available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Prochownick L, Spaeth F (1890) Über die keimtötende Wirkung des galvanishen Stroms. Deutsche Medizinische Wochenschrift 26:564–565

    Google Scholar 

  2. Flaumenbaum BL (1949) Electrical treatment of fruits and vegetables before juice extraction. Trudy OTIKP 3:15–20

    Google Scholar 

  3. Doevenspeck H (1960) Verfahren und Vorrichtung zur Gewinnung der einzelnen Phasen aus dispersen Systemen. Germany Patent No. DE 2907887 A1

  4. Doevenspeck H (1961) Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft 13:968–987

    Google Scholar 

  5. Sale AJH, Hamilton WA (1967) Effects of high electric fields on microorganisms. I. Killing of bacteria and yeasts. Biochim Biophys Acta 148:781–788

    Google Scholar 

  6. Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    CAS  Google Scholar 

  7. Toepfl S, Heinz V, Knorr D (2007) History of pulsed electric field treatment. In: Lelieveld HLM, Notermans S, De Haan SWH (eds) Food preservation by pulsed electric fields: from research to application. Woodhead Publishing Limited, Cambridge, pp 9–39

    Google Scholar 

  8. Knorr D, Ade-Omowaye BIO, Heinz V (2002) Nutritional improvement of plant foods by non-thermal processing. P Nutr Soc 61:311–318

    CAS  Google Scholar 

  9. Qin BL, Pothakamury UR, Barbosa-Canovas GV, Swanson BG (1996) Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Crit Rev Food Sci Nutr 36:603–627

    CAS  Google Scholar 

  10. Barbosa-Canovas GV, Pothakamury UR, Swanson BG (1995) State of the art technologies for the sterilization of foods by non-thermal processes: physical methods. In: Barbosa-Canovas GV, Welti-Chanes J (eds) Food preservation by moisture control: fundamentals and applications. Technomic Publishing Co, Lancaster, pp 493–532

    Google Scholar 

  11. Zhang Q, Monsalve-Gonzalez A, Qin BL, Barbosa-Canovas GV, Swanson BG (1994) Inactivation of Saccharomyces cerevisiae in apple juice by square-wave and exponential-decay pulsed electric fields. J Food Process Eng 17:469–478

    Google Scholar 

  12. Evrendilek GA, Zhang QH, Richter ER (1999) Inactivation of Escherichia coli O157:H7 and Escherichia coli 8739 in apple juice by pulsed electric fields. J Food Prot 62:793–796

    CAS  Google Scholar 

  13. Qin B-L, Barbosa-Canovas GV, Swanson BG, Pedrow PD, Olsen RG (1998) Inactivating microorganisms using a pulsed electric field continuous treatment system. IEEE Trans Ind Appl 34:43–50

    Google Scholar 

  14. Evrendilek GA, Jin ZT, Ruhlman KT, Qiu X, Zhang QH, Richter ER (2000) Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems. Innov Food Sci Emerg Technol 1:77–86

    Google Scholar 

  15. Qin BL, Pothakamury UR, Vega-Mercado H, Martin-Belosso OM, Barbosa-Canovas GV, Swanson BG (1995) Food pasteurization using high-intensity pulsed electric fields. Food Technol 12:55–60

    Google Scholar 

  16. Reina LD, Jin T, Zhang QH, Yousef AE (1998) Inactivation of Listeria monocytogenes in milk by pulsed electric field. J Food Protect 61:1203–1206

    CAS  Google Scholar 

  17. Mok C, Lee S (2000) Sterilization of yakju (rice wine) on a serial multiple electrode pulsed electric field treatment system. Korean J Food Sci Technol 32:356–362

    Google Scholar 

  18. Calderon-Miranda ML, Barbosa-Canovas GV, Swanson BG (1999) Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. Int J Food Microbiol 51:7–17

    CAS  Google Scholar 

  19. Vega-Mercado H, Martin-Belloso O, Chang F-J, Barbosa-Canovas GV, Swanson BG (1996) Inactivation of Escherichia coli and Bacillus subtilis suspended in pea soup using pulsed electric fields. J Food Process Preserv 20:501–510

    Google Scholar 

  20. Pol IE, Mastwijk HC, Bartels PV, Smid EJ (2000) Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl Environ Microbiol 66:428–430

    CAS  Google Scholar 

  21. Dutreux N, Notermans S, Gongora-Nieto MM, Barbosa-Canovas GV, Swanson BG (2000) Effects of combined exposure of Micrococcus luteus to nisin and pulsed electric fields. Int J Food Microbiol 60:147–152

    CAS  Google Scholar 

  22. Yousef A, Chism G, Liu X (1997) Inactivation of Escherichia coli O157: H7 by the combination of organic acid and pulsed electric fields. J Food Safety 16:287–299

    Google Scholar 

  23. Wouters PC, Dutreux N, Smelt JP, Lelieveld HL (1999) Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl Environ Microbiol 65:5364–5371

    CAS  Google Scholar 

  24. Hermawan N, Evrendilek GA, Dantzer WR, Zhang QH, Richter ER (2004) Pulsed electric field treatment of liquid whole egg inoculated with Salmonella enteritidis. J Food Safety 24:71–85

    Google Scholar 

  25. El Zakhem H, Lanoiselle JL, Lebovka NI, Nonus M, Vorobiev E (2007) Influence of temperature and surfactant on Escherichia coli inactivation in aqueous suspensions treated by moderate pulsed electric fields. Int J Food Microbiol 120:259–265

    CAS  Google Scholar 

  26. Heinz V, Knorr D (2000) Effect of pH, ethanol addition and high hydrostatic pressure on the inactivation of Bacillus subtilis by pulsed electric fields. Innov Food Sci Emerg Technol 1:151–159

    CAS  Google Scholar 

  27. Hojo S, Shimizu K, Yositake H, Muraji M (2003) The relationship between electropermeabilization and cell cycle and cell size of Saccharomyces cerevisiae. IEEE Trans Nanobioscience 2:35–39

    Google Scholar 

  28. Gaskova D, Sigler K, Janderova B, Plasek J (1996) Effect of high-voltage electric pulses on yeast cells: factors influencing the killing efficiency. Bioelectrochem Bioenerg 39:195–202

    CAS  Google Scholar 

  29. Alvarez I, Pagan R, Condon S, Raso J (2003) The influence of process parameters for the inactivation of Listeria monocytogenesi by pulsed electric fields. Int J Food Microbiol 87:87–95

    CAS  Google Scholar 

  30. Gomez N, Garsia D, Alvarez I, Raso J, Condon S (2005) A model describing the kinetics of inactivation of Lactobacillus plantarum in a buffer system of different pH and in orange and apple juice. J Food Eng 70:7–14

    Google Scholar 

  31. Wouters PC, Alvarez I, Raso J (2001) Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci Tech 12:112–121

    CAS  Google Scholar 

  32. Vega-Mercado H, Pothakamury UR, Chang F-J, Barbosa-Canovas GV, Swanson BG (1996) Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles. Food Res Int 29:117–121

    CAS  Google Scholar 

  33. Lado BH, Yousef AE (2003) Selection and identification of a Listeria monocytogenes target strain for pulsed electric field process optimization. Appl Environ Microbiol 69:2223–2229

    CAS  Google Scholar 

  34. Donsi G, Ferrari G, Pataro G (2007) Inactivation kinetics of Saccharomyces cerevisiae by pulsed electric fields in a batch treatment chamber: the effect of electric field unevenness and initial cell concentration. J Food Eng 78:784–792

    Google Scholar 

  35. Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food preservation. Chem Eng Process 46:537–546

    CAS  Google Scholar 

  36. MacGregor SJ, Farish O, Fouracre R, Rowan NJ, Anderson JG (2000) Inactivation of pathogenic and spoilage microorganisms in a test liquid using pulsed electric fields. IEEE Trans Plasma Sci 28:144–149

    Google Scholar 

  37. Selma MV, Fernandez PS, Valero M, Salmeron MC (2003) Control of Enterobacter aerogenes by high-intensity, pulsed electric fields in horchata, a Spanish low-acid vegetable beverage. Food Microbiol 20:105–110

    Google Scholar 

  38. Saulis G, Wouters PC (2007) Probable mechanism of microorganism inactivation by pulsed electric fields. In: Lelieveld HLM, Notermans S, De Haan SWH (eds) Food preservation by pulsed electric fields: from research to application. Woodhead Publishing Limited, Cambridge, pp 138–155

    Google Scholar 

  39. Hülsheger H, Niemann EG (1980) Lethal effect of high-voltage pulses on E. coli K12. Radiat Environ Biophys 18:281–288

    Google Scholar 

  40. Hülsheger H, Potel J, Niemann EG (1981) Killing of bacteria with electric pulses of high field strength. Radiat Environ Biophys 20:53–65

    Google Scholar 

  41. Qin B, Zhang Q, Barbosa-Canovas GV, Swanson BG, Pedrow PD (1995) Pulsed electric field treatment chamber design for liquid food pasteurization using a finite element method. Trans ASAE 38:557–565

    Google Scholar 

  42. Alvarez I, Virto R, Raso J, Condon S (2003) Comparing predicting models for the Escherichia coli inactivation by pulsed electric fields. Innov Food Sci Emerg Technol 4:195–202

    Google Scholar 

  43. Giner J, Gimeno V, Barbosa-Canovas GV, Martin O (2001) Effects of pulsed electric field processing on apple and pear polyphenoloxidases. Food Sci Tech Int 7:339–345

    CAS  Google Scholar 

  44. Abram F, Smelt JPPM, Bos R, Wouters PC (2003) Modelling and optimization of inactivation of Lactobacillus plantarum by pulsed electric field treatment. J Appl Microbiol 94:571–579

    CAS  Google Scholar 

  45. Rodrigo D, Martinez TA, Harte F, Barbosa-Canovas GV, Rodrigo M (2001) Study of inactivation of Lactobacillus plantarum in orange-carrot juice by means of pulsed electric fields: comparison of inactivation kinetics models. J Food Prot 64:259–263

    CAS  Google Scholar 

  46. Rodrigo D, Barbosa-Canovas GV, Martinez A, Rodrigo M (2003) Weibull distribution function based on an empirical mathematical model for inactivation of Escherichia coli by pulsed electric fields. J Food Prot 66:1007–1012

    CAS  Google Scholar 

  47. Wouters PC, Bos AP, Ueckert J (2001) Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Appl Environ Microbiol 67:3092–3101

    CAS  Google Scholar 

  48. Russell NJ, Colley M, Simpson RK, Trivett AJ, Evans RI (2000) Mechanism of action of pulsed high electric field (PHEF) on the membranes of food-poisoning bacteria is an ‘all-or-nothing’ effect. Int J Food Microbiol 55:133–136

    CAS  Google Scholar 

  49. Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    CAS  Google Scholar 

  50. Kekez MM, Savic P, Johnson BF (1996) Contribution to the biophysics of the lethal effects of electric field on microorganisms. Biochim Biophys Acta 1278:79–88

    Google Scholar 

  51. Saulis G, Venslauskas MS (1993) Cell electroporation. Part 1. Theoretical simulation of the process of pore formation in the cell. Bioelectrochem Bioenerg 32:221–235

    Google Scholar 

  52. Saulis G, Venslauskas MS (1993) Cell electroporation. Part 2. Experimental measurements of the kinetics of pore formation in human erythrocytes. Bioelectrochem Bioenerg 32:237–248

    Google Scholar 

  53. Kinosita K, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–441

    Google Scholar 

  54. Saulis G, Venslauskas MS, Naktinis J (1991) Kinetics of pore resealing in cell membrane after electroporation. Bioelectrochem Bioenerg 26:1–13

    Google Scholar 

  55. Rols MP, Teissie J (1990) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58:1089–1098

    CAS  Google Scholar 

  56. Vernhes MC, Cabanes PA, Teissie J (1999) Chinese hamster ovary cells sensitivity to localized electrical stresses. Bioelectrochem Bioenerg 48:17–25

    CAS  Google Scholar 

  57. Saulis G, Praneviciute R (2005) Determination of cell electroporation in small volume samples by using a mini potassium-selective electrode. Anal Biochem 345:340–342

    CAS  Google Scholar 

  58. Pakhomov AG, Shevin R, White JA, Kolb JF, Pakhomova ON, Joshi RP, Schoenbach KH (2007) Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch Biochem Biophys 465:109–118

    CAS  Google Scholar 

  59. Deuticke B, Schwister K (1989) Leaks induced by electric breakdown in the erythrocyte membrane. In: Neumann E, Sowers AE, Jordan CA (eds) Electroporation and electrofusion in cell biology. Plenum Press, New York, pp 127–148

    Google Scholar 

  60. El-Mashak EM, Tsong TY (1985) Ion selectivity of temperature-induced and electric field induced pores in dipalmitoylphosphatidylcholine vesicles. Biochemistry 24:2884–2888

    CAS  Google Scholar 

  61. Hille B (1975) Ionic selectivity of Na and K channels of nerve membranes. In: Eisenman G (ed) Membranes: a series of advances. Marcel Dekker, Inc, New York, pp 255–323

    Google Scholar 

  62. Correa NM, Schelly ZA (1998) Dynamics of electroporation of synthetic liposomes studied using a pore-mediated reaction, Ag ++Br– > AgBr. J Phys Chem B 103:9319–9322

    Google Scholar 

  63. Aronsson K, Rönner U, Borch E (2005) Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. Int J Food Microbiol 99:19–32

    CAS  Google Scholar 

  64. Saulis G (1999) Cell electroporation: estimation of the number of pores and their sizes. Biomed Sci Instrum 35:291–296

    CAS  Google Scholar 

  65. Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC (2006) Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys Rev E 74:021904 1-12

    Google Scholar 

  66. Gowrishankar TR, Weaver JC (2006) Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. Biochem Biophys Res Commun 349:643–653

    CAS  Google Scholar 

  67. Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663

    CAS  Google Scholar 

  68. Kinosita K, Tsong TY (1977) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 471:227–242

    CAS  Google Scholar 

  69. Saule R, Saulis G (2009) Pulses of millisecond-duration create larger pores than pulses of microsecond-duration. In: Vorobiev E, Lebovka N, Van Hecke E, Lanoiselle J-L (eds) International conference bio & food electrotechnologies (BFE2009), October 22–23, 2009, Compiégne, France. Université de Technologie de Compiégne, Compiegne, pp 158–160

    Google Scholar 

  70. Tekle E, Astumian RD, Chock PB (1990) Electro-permeabilization of cell membranes: effect of the resting membrane potential. Biochem Biophys Res Commun 172:282–287

    CAS  Google Scholar 

  71. Aouida M, Tounekti O, Belhadj O, Mir LM (2003) Comparative roles of the cell wall and cell membrane in limiting uptake of xenobiotic molecules by Saccharomyces cerevisiae. Antimicrob Agents Chemother 47:2012–2014

    CAS  Google Scholar 

  72. Kotnik T, Macek L, Miklavcic D, Mir LM (2000) Evaluation of cell membrane electropermeabilization by means of a nonpermeant cytotoxic agent. Biotechniques 28:921–926

    CAS  Google Scholar 

  73. Saulis G, Satkauskas S, Praneviciute R (2007) Determination of cell electroporation from the release of intracellular potassium ions. Anal Biochem 360:273–281

    CAS  Google Scholar 

  74. Saulis G (2005) The loading of human erythrocytes with small molecules by electroporation. Cell Mol Biol Lett 10:23–35

    CAS  Google Scholar 

  75. Saulis G (1993) Cell electroporation. Part 3. Theoretical investigation of the appearance of asymmetric distribution of pores in the cell and their further evolution. Bioelectrochem Bioenerg 32:249–265

    Google Scholar 

  76. Tekle E, Astumian RD, Chock PB (1994) Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci USA 91:11512–11516

    CAS  Google Scholar 

  77. Simpson RK, Whittington R, Earnshaw RG, Russell NJ (1999) Pulsed high electric field causes ‘all or nothing’ membrane damage in Listeria monocytogenes and Salmonella typhimurium, but membrane H+-ATPase is not the primary target. Int J Food Microbiol 48:1–10

    CAS  Google Scholar 

  78. Wang HY, Lu C (2006) Electroporation of mammalian cells in a microfluidic channel with geometric variation. Anal Chem 78:5158–5164

    CAS  Google Scholar 

  79. Stacey KJ, Ross IL, Hume DA (1993) Electroporation and DNA-dependent cell death in murine macrophages. Immunol Cell Biol 71(Pt 2):75–85

    CAS  Google Scholar 

  80. Cemazar M, Jarm T, Miklavcic D, Lebar AM, Ihan A, Kopitar NA, Sersa G (1998) Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electro Magnetobiol 17:263–272

    Google Scholar 

  81. Saule R, Saulis G, Batiuskaite D (2009) High-voltage pulses potentiate bleomycin cytotoxicity towards mouse hepatoma MH-22A and rat glioma C6 cells in vitro. Acta Phys Pol A 115:1098–1100

    CAS  Google Scholar 

  82. Lado BH, Yousef AE (2002) Alternative food-preservation technologies: efficacy and mechanisms. Microbes Infect 4:433–440

    Google Scholar 

  83. Tounekti O, Pron G, Belehradek J Jr, Mir LM (1993) Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res 53:5462–5469

    CAS  Google Scholar 

  84. Freshney IR (2000) Culture of animal cells: a manual of basic techniques. Wiley, New York

    Google Scholar 

  85. Garcia D, Gómez D, Condón S, Raso J, Pagan R (2003) Pulsed electric fields cause sublethal injury in Escherichia coli. Lett Appl Microbiol 36:140–144

    CAS  Google Scholar 

  86. Raso J, Alvarez I, Condon S, Sala Trepat FJ (2000) Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innov Food Sci Emerg Technol 1:21–29

    Google Scholar 

  87. Cook JA, Mitchell JB (1989) Viability measurements in mammalian cell systems. Anal Biochem 179:1–7

    CAS  Google Scholar 

  88. Saulis G, Praneviciute R (2007) Determination of cell electroporation in small-volume samples. Biomed Sci Instrum 43:306–311

    Google Scholar 

  89. Riemann F, Zimmermann U, Pilwat G (1975) Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown. Biochim Biophys Acta 394:449–462

    CAS  Google Scholar 

  90. Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43:285–291

    CAS  Google Scholar 

  91. Smith GK, Cleary SF (1983) Effects of pulsed electric fields on mouse spleen lymphocytes in vitro. Biochim Biophys Acta 763:325–331

    CAS  Google Scholar 

  92. Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    CAS  Google Scholar 

  93. Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295

    CAS  Google Scholar 

  94. Kinosita K Jr, Ashikawa I, Saita N, Yoshimura H, Itoh H, Nagayama K, Ikegami A (1988) Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53:1015–1019

    Google Scholar 

  95. Lojewska Z, Farkas DL, Ehrenberg B, Loew LM (1989) Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys J 56:121–128

    CAS  Google Scholar 

  96. Hibino M, Itoh H, Kinosita K Jr (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J 64:1789–1800

    CAS  Google Scholar 

  97. Kotnik T, Miklavcic D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79:670–679

    CAS  Google Scholar 

  98. Valic B, Golzio M, Pavlin M, Schatz A, Faurie C, Gabriel B, Teissie J, Rols MP, Miklavcic D (2003) Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur Biophys J 32:519–528

    Google Scholar 

  99. Gimsa J, Wachner D (2001) Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys J 81:1888–1896

    CAS  Google Scholar 

  100. Munoz S, Sebastian JL, Sancho M, Miranda JM (2004) Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields. Bioelectromagnetics 25:631–633

    CAS  Google Scholar 

  101. Pucihar G, Kotnik T, Valic B, Miklavcic D (2006) Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann Biomed Eng 34:642–652

    CAS  Google Scholar 

  102. Lee DC, Grill WM (2005) Polarization of a spherical cell in a nonuniform extracellular electric field. Ann Biomed Eng 33:603–615

    Google Scholar 

  103. Heida T, Wagenaar JB, Rutten WL, Marani E (2002) Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments. IEEE Trans Biomed Eng 49:1195–1203

    Google Scholar 

  104. Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun 341:1266–1276

    CAS  Google Scholar 

  105. Jeltsch E, Zimmermann U (1979) Particles in a homogeneous electrical field: a model for the electrical breakdown of living cells in a coulter counter. Bioelectrochem Bioenerg 6:349–384

    Google Scholar 

  106. Qin Y, Lai S, Jiang Y, Yang T, Wang J (2005) Transmembrane voltage induced on a cell membrane in suspensions exposed to an alternating field: a theoretical analysis. Bioelectrochemistry 67:57–65

    CAS  Google Scholar 

  107. Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric fields—a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45:3–16

    CAS  Google Scholar 

  108. Suprynowicz FA, Mazia D (1985) Fluctuation of the Ca-sequestering activity of permeabilized sea urchin embryos during the cell cycle. Proc Natl Acad Sci USA 82:2389–2393

    CAS  Google Scholar 

  109. Eppich HM, Foxall R, Gaynor K, Dombkowski D, Miura N, Cheng T, SilvaArrieta S, Evans RH, Mangano JA, Preffer FI, Scadden DT (2000) Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants. Nat Biotechnol 18:882–887

    CAS  Google Scholar 

  110. Talele S, Gaynor P (2007) Non-linear time domain model of electropermeabilization: response of a single cell to an arbitrary applied electric field. J Electrostat 65:775–784

    CAS  Google Scholar 

  111. Pavlin M, Pavselj N, Miklavcic D (2002) Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans Biomed Eng 49:605–612

    Google Scholar 

  112. Pucihar G, Kotnik T, Kanduser M, Miklavcic D (2001) The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54:107–115

    CAS  Google Scholar 

  113. Itoh H, Hibino M, Shigemori M, Koishi M, Takahashi A, Hayakawa T, KJr Kinosita (1990) Multi-shot pulsed laser fluorescence microscope system. Proc SPIE 1204:49–53

    CAS  Google Scholar 

  114. Teixeira-Pinto AA, Nejelski LL Jr, Cutler JL, Heller JL (1960) The behavior of unicellular organisms in an electromagnetic field. Exp Cell Res 20:548–564

    Google Scholar 

  115. Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22:869–871

    CAS  Google Scholar 

  116. Crowley JM (1973) Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys J 13:711–724

    CAS  Google Scholar 

  117. Needham D, Hochmuth RM (1989) Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J 55:1001–1009

    CAS  Google Scholar 

  118. Movileanu L, Popescu D, Ion S, Popescu AI (2006) Transbilayer pores induced by thickness fluctuations. Bull Math Biol 68:1231–1255

    CAS  Google Scholar 

  119. Pawlowski P, Fikus M (1989) Bioelectrorheological model of the cell. 1. Analysis of stresses and deformations. J Theor Biol 137:321–337

    CAS  Google Scholar 

  120. Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14:881–899

    CAS  Google Scholar 

  121. Dimitrov DS (1984) Electric field induced breakdown of lipid bilayers and cell membranes: a thin viscoelastic model. J Membr Biol 78:53–60

    CAS  Google Scholar 

  122. Abidor IG, Arakelyan LV, Chernomordik LV, Chizmadzhev Y, Pastushenko VF, Tarasevich MR (1979) Electric breakdown of bilayer lipid membranes. I. The main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37–52

    CAS  Google Scholar 

  123. Powell KT, Weaver JC (1986) Transient aqueous pores in bilayer membranes: a statistical theory. Bioelectrochem Bioenerg 15:211–227

    Google Scholar 

  124. Joshi RP, Hu Q, Schoenbach KH, Hjalmarson HP (2002) Improved energy model for membrane electroporation in biological cells subjected to electrical pulses. Phys Rev E Stat Nonlin Soft Matter Phys 65:041920

    CAS  Google Scholar 

  125. Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    CAS  Google Scholar 

  126. Joersbo M, Brunstedt J, Floto F (1990) Quantitative relationship between parameters of electroporation. J Plant Physiol 137:169–174

    Google Scholar 

  127. Arakelyan VB, Hachatryan GR, Matinyan NS (1983) Dependence of BLM stability in electrical field on the bilayer area. Stud Biophys 93:69–77

    CAS  Google Scholar 

  128. Winterhalter M, Klotz K-H, Benz R, Arnold WM (1996) On the dynamics of the electric field induced breakdown in lipid membranes. IEEE Trans Ind Appl 32:125–130

    CAS  Google Scholar 

  129. Taupin C, Dvolaitzky M, Sauterey C (1975) Osmotic pressure induced pores in lipid vesicles. Biochemistry 14:4771–4775

    CAS  Google Scholar 

  130. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    CAS  Google Scholar 

  131. Joshi RP, Schoenbach KH (2000) Electroporation dynamics in biological cells subjected to ultrafast electrical pulses: a numerical simulation study. Phys Rev E 62:1025–1033

    CAS  Google Scholar 

  132. Barnett A, Weaver JC (1991) A unified, quantitative theory of reversible electrical breakdown and rupture. Bioelectrochem Bioenerg 25:163–182

    CAS  Google Scholar 

  133. Serpersu EH, Kinosita K, Tsong TY (1985) Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim Biophys Acta 812:770–785

    Google Scholar 

  134. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Google Scholar 

  135. Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP (2006) Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers-in cells and in silico. Phys Biol 3:233–247

    CAS  Google Scholar 

  136. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    CAS  Google Scholar 

  137. VPh Pastushenko, Kuzmin PI (1988) Theoretical analysis of cell electrofusion. Stud Biophys 127:139–146

    Google Scholar 

  138. Saulis G, Venslauskas MS (1988) Asymmetrical electrical breakdown of the cells. Theory of phenomenon. Stud Biophys 128:155–161

    Google Scholar 

  139. Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    CAS  Google Scholar 

  140. Leikin SL, Glaser RW, Chernomordik LV (1986) Mechanism of pore formation under electrical breakdown of membranes. Biologicheskie Membrany 3:944–951

    CAS  Google Scholar 

  141. Saulis G, Venslauskas MS (1991) The electrical breakdown of erythrocytes. The estimation of the energy barrier of pore formation. Biologicheskie Membrany 8:320–330

    Google Scholar 

  142. Turcu I, Neamtu S (1995) Dimensional distribution of human erythrocytes obtained from electropermeabilization experiments. Biochim Biophys Acta 1238:81–85

    CAS  Google Scholar 

  143. Puc M, Kotnik T, Mir LM, Miklavcic D (2003) Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry 60:1–10

    CAS  Google Scholar 

  144. Marszalek P, Liu D-S, Tsong TY (1990) Schwan equation and transmembrane potential induced by alternating electric field. Biophys J 58:1053–1058

    CAS  Google Scholar 

  145. Leontiadou H, Mark AE, Marrink SJ (2004) Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophys J 86:2156–2164

    CAS  Google Scholar 

  146. Saulis G, Saule R (2009) Comparison of electroporation of different cell lines in vitro. Acta Phys Pol A 115:1056–1058

    CAS  Google Scholar 

  147. Kanduser M, Sentjurc M, Miklavcic D (2006) Cell membrane fluidity related to electroporation and resealing. Eur Biophys J 35:196–204

    Google Scholar 

  148. Rols MP, Dahhou F, Mishra KP, Teissie J (1990) Control of electric field induced cell membrane permeabilization by membrane order. Biochemistry 29:2960–2966

    CAS  Google Scholar 

  149. Koronkiewicz S, Kalinowski S (2004) Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies. Biochim Biophys Acta 1661:196–203

    CAS  Google Scholar 

  150. Benz R, Beckers F, Zimmermann U (1979) Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J Membr Biol 48:181–204

    CAS  Google Scholar 

  151. Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417

    CAS  Google Scholar 

  152. Smith KC, Neu JC, Krassowska W (2004) Model of creation and evolution of stable electropores for DNA delivery. Biophys J 86:2813–2826

    CAS  Google Scholar 

  153. Neu JC, Smith KC, Krassowska W (2003) Electrical energy required to form large conducting pores. Bioelectrochemistry 60:107–114

    CAS  Google Scholar 

  154. He H, Chang DC, Lee Y-K (2007) Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells. Bioelectrochemistry 70:363–368

    CAS  Google Scholar 

  155. Shirakashi R, Kostner CM, Muller KJ, Kurschner M, Zimmermann U, Sukhorukov VL (2002) Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J Membr Biol 189:45–54

    CAS  Google Scholar 

  156. Sowers AE, Lieber MR (1986) Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts. FEBS Lett 205:179–184

    CAS  Google Scholar 

  157. Kennedy SM, Ji Z, Hedstrom JC, Booske JH, Hagness SC (2008) Quantification of electroporative uptake kinetics and electric field heterogeneity effects in cells. Biophys J 94:5018–5027

    CAS  Google Scholar 

  158. Pastushenko VF, YuA Chizmadzhev, Arakelyan VB (1979) Electric breakdown of bilayer lipid membranes. II. Calculation of the membrane lifetime in the steady-state approximation. Bioelectrochem Bioenerg 6:53–62

    CAS  Google Scholar 

  159. Freeman SA, Wang MA, Weaver JC (1994) Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys J 67:42–56

    CAS  Google Scholar 

  160. Weaver JC, Barnett A (1992) Progress toward a theoretical model for electroporation mechanism: membrane electrical behaviour and molecular transport. In: Chang DC, Chassy BM, Saunders JA, Sowers AE (eds) Guide to electroporation and electrofusion. Academic Press, Inc, New York, pp 91–117

    Google Scholar 

  161. Joshi RP, Hu Q, Schoenbach KH (2004) Modeling studies of cell response to ultrashort, high-intensity electric fields-Implications for intracellular manipulation. IEEE Trans Plasma Sci 32:1677–1686

    Google Scholar 

  162. Krassowska Neu W, Neu JC (2010) Mechanism of irreversible electroporation in cells: insight from the models. In: Rubinsky B (ed) Irreversible electroporation. Springer, Berlin Heidelberg, pp 85–122

    Google Scholar 

  163. Schwister K, Deuticke B (1985) Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biochim Biophys Acta 816:332–348

    CAS  Google Scholar 

  164. De Vito F, Ferrari G, Lebovka I, Shynkaryk V, Vorobiev E (2008) Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food Bioprocess Technol 1:307–313

    Google Scholar 

  165. Chernomordik LV, Sukharev SI, Popov SV, Pastushenko VF, Sokirko AV, Abidor IG, YuA Chizmadzhev (1987) The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim Biophys Acta 902:360–373

    CAS  Google Scholar 

  166. Pastushenko VF, YuA Chizmadzhev (1985) Breakdown of lipid vesicles by an external electric field: a theory. Biologicheskie Membrany 2:1116–1129

    CAS  Google Scholar 

  167. Pucihar G, Kotnik T, Miklavcic D, Teissie J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95:2837–2848

    CAS  Google Scholar 

  168. Saulis G (1997) Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments. Biophys J 73:1299–1309

    CAS  Google Scholar 

  169. Zimmermann U, Vienken J, Pilwat G (1980) Development of drug carrier systems: electric field induced effects in cell membranes. Bioelectrochem Bioenerg 7:553–574

    CAS  Google Scholar 

  170. Jayaram S, Castle GS, Margaritis A (1992) Kinetics of sterilization of Lactobacillus brevis cells by the application of high voltage pulses. Biotechnol Bioeng 40:1412–1420

    CAS  Google Scholar 

  171. Rowan NJ, MacGregor SJ, Anderson JG, Cameron D, Farish O (2001) Inactivation of Mycobacterium paratuberculosis by pulsed electric fields. Appl Environ Microbiol 67:2833–2836

    CAS  Google Scholar 

  172. Golberg A, Belkin M, Rubinsky B (2009) Irreversible electroporation for microbial control of drugs in solution. AAPS Pharm Sci Tech 10:881–886

    Google Scholar 

  173. Winterbourne DJ, Thomas S, Hermon-Taylor J, Hussain I, Johnstone AP (1988) Electric shock-mediated transfection of cells: characterization and optimization of electrical parameters. Biochem J 251:427–434

    CAS  Google Scholar 

  174. Lee RC, River LP, Pan FS, Ji L, Wollmann RL (1992) Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci USA 89:4524–4528

    CAS  Google Scholar 

  175. Dutreux N, Notermans S, Wijtzes T, Gongora-Nieto MM, Barbosa-Canovas GV, Swanson BG (2000) Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. Int J Food Microbiol 54:91–98

    CAS  Google Scholar 

  176. Elez-Martinez P, Escola-Hernandez J, Soliva-Fortuny RC, Martin-Belloso O (2005) Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiol 22:311–319

    CAS  Google Scholar 

  177. Pinero J, Lopez-Baena M, Ortiz T, Cortes F (1997) Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells. Apoptosis 2:330–336

    CAS  Google Scholar 

  178. Hofmann F, Ohnimus H, Scheller C, Strupp W, Zimmermann U, Jassoy C (1999) Electric field pulses can induce apoptosis. J Membr Biol 169:103–109

    CAS  Google Scholar 

  179. Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–1495

    CAS  Google Scholar 

  180. Wyllie AH, Golstein P (2001) More than one way to go. Proc Natl Acad Sci USA 98:11–13

    CAS  Google Scholar 

  181. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    CAS  Google Scholar 

  182. van den Hoff MJ, Moorman AF, Lamers WH (1992) Electroporation in ‘intracellular’ buffer increases cell survival. Nucleic Acids Res 20:2902

    Google Scholar 

  183. Rols MP, Teissie J (1989) Ionic-strength modulation of electrically induced permeabilization and associated fusion of mammalian cells. Eur J Biochem 179:109–115

    CAS  Google Scholar 

  184. Milazzo G (1963) Electrochemistry: theoretical principles and practical applications. Elsevier, Amsterdam

    Google Scholar 

  185. Pliquett U, Gift EA, Weaver JC (1996) Determination of the electric field and anomalous heating caused by exponential pulses with aluminum electrodes in electroporation experiments. Bioelectrochem Bioenerg 39:39–53

    CAS  Google Scholar 

  186. Prausnitz MR, Lau BS, Milano CD, Conner S, Langer R, Weaver JC (1993) A quantitative study of electroporation showing a plateau in net molecular transport. Biophys J 65:414–422

    CAS  Google Scholar 

  187. Potter H (1988) Electroporation in biology: methods, applications, and instrumentation. Anal Biochem 174:361–373

    CAS  Google Scholar 

  188. Saulis G, Lape R, Praneviciute R, Mickevicius D (2005) Changes of the solution pH due to exposure by high-voltage electric pulses. Bioelectrochemistry 67:101–108

    CAS  Google Scholar 

  189. Morren J, Roodenburg B, de Haan SWH (2003) Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers. Innov Food Sci Emerg Technol 4:285–295

    CAS  Google Scholar 

  190. Loomis-Husselbee JW, Cullen PJ, Irvine RF, Dawson AP (1991) Electroporation can cause artefacts due to solubilization of cations from the electrode plates. Aluminum ions enhance conversion of inositol 1, 3, 4, 5-tetrakisphosphate into inositol 1, 4, 5-trisphosphate in electroporated L1210 cells. Biochem J 277:883–885

    CAS  Google Scholar 

  191. Kotnik T, Miklavcic D, Mir LM (2001) Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination. Bioelectrochemistry 54:91–95

    CAS  Google Scholar 

  192. Sensoy I, Zhang QH, Sastry SK (1997) Inactivation kinetics of Salmonella dublin by pulsed electric field. J Food Process Eng 20:367–381

    Google Scholar 

  193. Fox MB (2007) Microbial inactivation kinetics of pulsed electric field treatment. In: Lelieveld HLM, Notermans S, De Haan SWH (eds) Food preservation by pulsed electric fields: from research to application. Woodhead Publishing Limited, Cambridge, pp 127–137

    Google Scholar 

  194. Rodrigo D, Ruiz P, Barbosa-Canovas GV, Martinez A, Rodrigo M (2003) Kinetic model for the inactivation of Lactobacillus plantarum by pulsed electric fields. Int J Food Microbiol 81:223–229

    CAS  Google Scholar 

  195. San Martin MF, Sepulveda DR, Altunakar B, Gongora-Nieto MM, Swanson BG, Barbosa-Canovas GV (2007) Evaluation of selected mathematical models to predict the inactivation of Listeria innocua by pulsed electric fields. LWT 40:1271–1279

    CAS  Google Scholar 

  196. Zimmermann U, Beckers F, Coster HG (1977) The effect of pressure on the electrical breakdown in the membranes of Valonia utricularis. Biochim Biophys Acta 464:346–399

    Google Scholar 

  197. Schoenbach KH, Peterkin FE, Alden RW, Beebe SJ (1997) The effect of pulsed electric fields on biological cells: experiments and applications. IEEE Trans Plasma Sci 25:284–292

    Google Scholar 

  198. Sukhorukov VL, Reuss R, Endter JM, Fehrmann S, Katsen-Globa A, Gessner P, Steinbach A, Muller KJ, Karpas A, Zimmermann U, Zimmermann H (2006) A biophysical approach to the optimisation of dendritic-tumour cell electrofusion. Biochem Biophys Res Commun 346:829–839

    CAS  Google Scholar 

  199. Shirakashi R, Sukhorukov VL, Tanasawa I, Zimmermann U (2004) Measurement of the permeability and resealing time constant of the electroporated mammalian cell membranes. Int J Heat Mass Tran 47:4517–4524

    CAS  Google Scholar 

  200. Akuzawa-Tateyama M, Tateyama M, Ochi R (1998) Low K+ -induced hyperpolarizations trigger transient depolarizations and action potentials in rabbit ventricular myocytes. J Physiol 513(Pt 3):775–786

    CAS  Google Scholar 

  201. Perni S, Chalise PR, Shama G, Kong MG (2007) Bacterial cells exposed to nanosecond pulsed electric fields show lethal and sub-lethal effects. Int J Food Microbiol 120:311–314

    CAS  Google Scholar 

  202. Chalise PR, Perni S, Shama G, Novac BM, Smith IR, Kong MG (2006) Lethality mechanisms in Escherichia coli induced by intense sub-microsecond electrical pulses. Appl Phys Lett 89:153902

    Google Scholar 

  203. Garsia D, Gomez N, Raso J, Pagan R (2005) Bacterial resistance after pulsed electric fields depending on the treatment medium pH. Innov Food Sci Emerg Technol 6:388–395

    Google Scholar 

  204. Gneno R, Azzar G, Got R, Roux B (1986) Permeability of membrane of Babesia canis infected erythrocytes–influence of an external electric field. Int J Biochem 18:1151–1154

    CAS  Google Scholar 

  205. Zimmermann U, Pilwat G, Pequeux A, Gilles R (1980) Electro-mechanical properties of human erythrocyte membranes: the pressure-dependence of potassium permeability. J Membr Biol 54:103–113

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants T-69/07 and T-39/09 from the Lithuanian State Science and Studies Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gintautas Saulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saulis, G. Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. Food Eng. Rev. 2, 52–73 (2010). https://doi.org/10.1007/s12393-010-9023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-010-9023-3

Keywords

Navigation