Skip to main content

The Role of Abscisic Acid in Drought Stress: How ABA Helps Plants to Cope with Drought Stress

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 2

Abstract

The exploration of plant response to drought stress is a key to understanding the mechanisms of the drought signaling network and further implementing the knowledge in breeding programs of crops. Plant hormones are crucial factors in transducing the stress signal and the main player among them is abscisic acid (ABA). ABA controls plants’ stress response at many layers of regulation. These include (1) transcriptional response including interactions of core transcription factors that are regulated by ABA and other plant hormones, and (2) regulation of ABA metabolism and transport itself, with posttranscriptional and posttranslational regulation which still seems to be a hidden and not fully recognized part of stress signaling. The efficient integration and coordination of ABA metabolism, transport, and regulation of core signaling elements are pivotal for maintaining tissue and cell-type-specific hormone concentration and thus signaling efficiency, to achieve the proper growth and developmental responses. Among lifecycle processes controlled by ABA are: inhibition of germination, restriction of shoot and root growth, and stomatal closure. Here, we describe recent advances in decoding the ABA signaling message transmitted through plant cells under drought stress that builds drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

7′HO ABA:

7′-hydroxy ABA

8′HO ABA:

8′-hydroxy ABA

9′HO ABA:

9′-hydroxy ABA

AAO:

Aldehyde oxidase

ABA:

Abscisic acid

ABA2:

Short-chain dehydrogenase/reductase

ABA-GE:

ABA glucosyl ester

ABCG:

ATP-binding cassette (ABC) protein G subfamily

ABI5:

ABA-insensitive 5

ABRE:

ABA responsive element

ADP:

Adenosine diphosphate

AIP2:

ABI3-interacting protein 2

AIRP1:

Arabidopsis ABA-insensitive RING protein 1

AIT:

ABA-IMPORTING TRANSPORTER 1

At:

Arabidopsis thaliana

ATP:

Adenosine triphosphate

AtrbohF:

NADPH oxidase

BAK1:

BRI1-associated receptor kinase 1

BG:

Glucosyltransferase

BIN2:

BRASSINOSTEROID INSENSITIVE 2

BR:

Brassinosteroids

CE:

Coupling element

CUL4:

Cullin4

CYP707A:

Cytochrome p450

DIS1:

Drought-induced SINA protein 1

DOR:

Drought tolerance repressor

DPA:

Dihydrophaseic acid

DSG1:

Dwarf and small grain1

DTX50:

The detoxification efflux carriers/multidrug and toxic compound extrusion 50

DWA1/2:

DDB1-BINDING WD40 PROTEIN1/2

FRET:

Förster resonance energy transfer

HvSNAC1:

STRESS-RESPONSIVE NAC 1

KAT1:

POTASSIUM CHANNEL IN ARABIDOPSIS THALIANA 1

KEG:

Keep on going

NCED:

9-cis epoxycarotenoid dioxygenase

neoPA:

Neophaseic acid

OE:

Overexpression

Os:

Oryza sativa

OsABF1:

ABI-like factor

OsDRO1:

Deeper rooting 1

OsLEA4:

Late emrbryogenesis protein

OsRK1/SAPK6:

STRESS ASSOCIATED PROTEIN 5

OST1:

Open Stomata 1

P:

Phosphorylation

PA:

Phaseic acid

PIP21:

PLASMA MEMBRANE INTRINSIC PROTEIN 2;1

PKS5:

PROTEIN KINASE SOS2-LIKE 5

PP2C:

PROTEIN PHOSPHATASE 2C

PUB19:

U-box domain-containing protein 19

PYR/PYL/RCAR:

PYRABACTIN-RESISTANCE 1/ PYRABACTIN RESISTANCE LIKE/ REGULATORY COMPONENT OF ABA RECEPTOR

QUAC1/ALMT12:

QUICK ANION CHANNEL 1/ALUMINUM-ACTIVATED ANION CHANNEL 12

RING-1:

Really interesting protein finger 1

RHA2a:

RING finger E3 ligase

Rma1:

RING finger motif

ROS:

Reactive oxygen species

S:

Sumoylation

SAP5:

STRESS ASSOCIATED PROTEIN 5

SDIR1:

Salt- and drought-induced RING finger 1

SIZ1:

Small ubiquitin-related modifier 1/2 (AtSUMO1/2)

SLAC1:

SLOW ANION CHANNEL ASSOCIATED 1

SnRK:

Sucrose nonfermenting related kinase 2

TaERA1:

Enhanced response to ABA1

U:

Ubiquitination

VIGS:

Virus induces gene silencing

WUE:

Water use efficiency

ZEP:

Zeaxanthin epoxidase

ZF1:

RING Zinc finger 1

Zm:

Zea mays

ZmCPK11:

Calcium-dependent protein kinase 11

References

  1. Abdallat AA, Ayad JY, Elenein JMA, Al Ajlouni Z, Harwood WA (2014) Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Mol Breed 33(2):401–414

    Google Scholar 

  2. Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MR, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett 486:93–98

    Article  CAS  PubMed  Google Scholar 

  3. Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sánchez-Vicente I, Nambara E, Lorenzo O (2015) S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6:8669. doi:10.1038/ncomms9669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amir Hossain M, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H, Lee CH, An G, Park PB (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  CAS  PubMed  Google Scholar 

  5. Audran C, Liotenberg S, Gonneau M, North H, Frey A, Tap-Waksman K, Vartanian N, Marion-Poll A (2001) Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Aust J Plant Physiol 28:1161–1173

    CAS  Google Scholar 

  6. Bahrun A, Jesen CR, Asch F, Mogenson VO (2002) Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). J Exp Bot 5:251–263

    Article  Google Scholar 

  7. Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid Khaled AS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N et al (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 1:53–57

    Article  CAS  Google Scholar 

  8. Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D, Li C (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol 150:463–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao M, Liu X, Zhang Y et al (2013) An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res 23:1043–1054

    Google Scholar 

  10. Casaretto J, Ho TH (2003) The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15(1):271–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Casaretto JA, Ho TH (2005) Transcriptional regulation by abscisic acid in barley (Hordeum vulgare L.) seeds involves autoregulation of the transcription factor HvABI5. Plant Mol Biol 57(1):21–34

    Article  CAS  PubMed  Google Scholar 

  12. Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147(2):446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM et al (2008) Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res 105:1–14

    Google Scholar 

  14. Chae MJ, Lee JS, Nam MH, Cho K, Hong JY, Yi SA, Suh SC, Yoon IS (2007) A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element- binding factor and associates with ABA signaling. Plant Mol Biol 63:151–169

    Article  CAS  PubMed  Google Scholar 

  15. Chen H, Chen W, Zhou J, He H, Chen L, Deng XW (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 193–194:817

    Google Scholar 

  16. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 5:2723–2743

    Article  CAS  Google Scholar 

  17. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell. 14(11):2723–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cho SK, Ryu MY, Song C, Kwak JM, Kim WT (2008) Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20:1899–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho D, Shin D, Wook B, Kwak JM (2009) ROS-Mediated ABA Signaling. J Plant Biol 52:102–113

    Google Scholar 

  20. Daszkowska-Golec A, Szarejko I (2013) Open or close the gate—stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    Article  PubMed  PubMed Central  Google Scholar 

  21. Daszkowska-Golec A, Szarejko I (2013b) The molecular basis of ABA-mediated plant responses to drought. In: Vahdati K, Leslie C (eds) Abiotic stress. InTech, Rijeka. ISBN 980-953-307-673-2

    Google Scholar 

  22. Ding Y, Cao J, Ni L, Zhu Y, Zhang A, Tan M, Jiang M (2013) ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. J Exp Bot 64:871–884

    Article  CAS  PubMed  Google Scholar 

  23. Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147(4):1984–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166

    Google Scholar 

  25. Finn JT, Grunwald ME, Yau K (1996) Cyclic nucleotide-gated ion channels: a next ended family with diverse functions. Annu Rev Physiol 58:395–426

    Article  CAS  PubMed  Google Scholar 

  26. Franks PJ, Farquhar GD (2001) The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiology

    Google Scholar 

  27. Fujii H, Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. PNAS 106(20):8380–8385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50(12):2123–2132

    Article  CAS  PubMed  Google Scholar 

  30. Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. PNAS 106(50):21425–21430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. González-Guzmán M, Rodríguez L, Lorenzo-Orts L, Pons C, Sarrión-Perdigones A, Fernández MA, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodríguez PL (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65(15):4451–4464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14(8):1833–1846

    Google Scholar 

  33. Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, Bassel GW, Fernández MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodriguez PL (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24(6):2483–2496

    Google Scholar 

  34. Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C (2015) Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27(7):1945–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F et al (2003) The Arabidopsis outward KC channel GORK is involved in regulation of stomatal movements and plant transpiration. PNAS 100:5549–5554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu R, Zhu Y, Shen G, Zhang H (2014) TAP46 plays a positive role in the ABSCISIC ACID INSENSITIVE5-regulated gene expression in Arabidopsis. Plant Physiol 164:721–734

    Article  CAS  PubMed  Google Scholar 

  37. Hua T, Zhua S, Tana L, Qib W, Hea S, Wanga G (2016) Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ Exp Bot 123:68–77

    Article  CAS  Google Scholar 

  38. Huai J, Zheng J, Wang G (2009) Overexpression of a new Cys2/ His2 zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenic Arabidopsis. Plant Cell Tissue Organ Cult 99:117–124

    Article  CAS  Google Scholar 

  39. Imes D, Mumm P, Bohm J, Al-Rasheid KA, Marten I, Geiger D, Hedrich R (2013) Open Stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J 74:372–382

    Article  CAS  PubMed  Google Scholar 

  40. Irigoyen ML, Iniesto E, Rodriguez L, Puga MI, Yanagawa Y, Pick E, Strickland E, Paz-Ares J, Wei N, De Jaeger G, Rodriguez PL, Deng XW, Rubio V (2014) Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell 26:712–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, bZIP Research Group (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Google Scholar 

  42. Jarzyniak KM, Jasiński M (2014) Membrane transporters and drought resistance—a complex issue. Front Plant Sci 5:687

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jeanguenin L, Lebaudy A, Xicluna J, Alcon C, Hosy E, Duby G et al (2008) Heteromerization of Arabidopsis Kv channel α-subunits. Plant Signal Behav 3:622–625

    Google Scholar 

  44. Jones AM, Danielson J, ManojKumar SN, Lanquar V, Grossmann G, Frommer WB (2014) Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife 3:e01741

    PubMed  PubMed Central  Google Scholar 

  45. Jones AM (2015) A new look at stress: abscisic acid patterns and dynamics at high-resolution. New Phytol. doi:10.1111/nph.13552

    PubMed Central  Google Scholar 

  46. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 107:2355–2360. doi:10.1073/pnas.0909222107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kang M, Abdelmageed H, Lee S, Reichert A, Mysore KS, Allen RD (2013) AtMBP-1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5. Plant J 76(3):481–493

    Article  CAS  PubMed  Google Scholar 

  48. Kang M, Fokar M, Abdelmageed H, Allen RD (2011) Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol Biol 75:451–466

    Article  CAS  PubMed  Google Scholar 

  49. Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. PNAS 109:9653–9658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim H, Hwang H, Hong JW, Lee YN, Ahn IP, Yoon IS, Yoo SD, Lee S, Lee SC, Kim BG (2012) A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63:1013–1024

    Article  CAS  PubMed  Google Scholar 

  51. Kim H, Lee K, Hwang H, Bhatnagar N, Kim DY, Yoon IS, Byun MO, Kim ST, Jung KH, Kim BG (2014) Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J Exp Bot 65(2):453–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355

    Article  CAS  PubMed  Google Scholar 

  53. Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. PNAS 107(5):2361–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuromori T, Sugimoto E, Shinozaki K (2011) Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J 67(5):885–894

    Article  CAS  PubMed  Google Scholar 

  55. Kuromori T, Sugimoto E, Shinozaki K (2014) Intertissue signal transfer of abscisic acid from vascular cells to guard cells. Plant Physiol 164(4):1587–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23(7):1647–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kusumi K, Hirotsuka S, Kumamaru T, Iba K (2012) Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J Exp Bot 63:5635–5644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dang JL (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM et al (2001) The identity of plant glutamate receptors. Science 292:1486–1487

    Article  CAS  PubMed  Google Scholar 

  60. Lee HK, Cho SK, Son O, Xu Z, Hwang I, Kim WT (2009) Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21:622–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, Li J, Byun MO, Deng XW (2010) DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22:1716–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, Li J, Byun MO, Deng XW (2010) DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22:1716–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increased active pools of abscisic acid. Cell 5:1109–1120

    Article  CAS  Google Scholar 

  64. Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. PNAS 106:21419–21424

    Google Scholar 

  65. Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16(3):596–615

    Google Scholar 

  66. Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:1936

    Article  CAS  Google Scholar 

  67. Liu H, Stone SL (2010) Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22:2630–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu H, Zhang H, Yang Y, Li G, Yang Y, Wang X, Basnayake BM, Li D, Song F (2008) Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol 68:17–30

    Article  CAS  PubMed  Google Scholar 

  69. Liu HX, Stone SL (2013) Cytoplasmic degradation of the Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 5 is mediated by the RING-type E3 ligase KEEP ON GOING. J Biol Chem 288:20267–20279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu L, Hu X, Song J, Zong X, Li D (2009) Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. J Plant Physiol 166:531

    Google Scholar 

  71. Liu YC, Wu YR, Huang XH, Sun J, Xie Q (2011) AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol Plant 4(6):938–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615

    Article  CAS  PubMed  Google Scholar 

  73. Lopez-Molina L, Mongrand S, Kinoshita N, Chua N.-H (2003) AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17(3):410–418

    Google Scholar 

  74. Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL (2013) Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. J Exp Bot 64:2779–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  76. MacRobbie EAC (2006) Control of volume and turgor in stomatal guard cells. J Membr Biol 210:131–142

    Article  CAS  PubMed  Google Scholar 

  77. Manmathan H, Shaner D, Snelling J, Tisserat N, Lapitan N (2013) Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. J Exp Bot 64:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mao X, Zhang H, Tian S, Chang X, Jing R (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696

    Article  CAS  PubMed  Google Scholar 

  79. Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Meng XB, Zhao WS, Lin RM, Wang M, Peng YL (2006) Molecular cloning and characterization of a rice blast-inducible RING-H2 type zinc finger gene. DNA Seq 17:41–48

    Article  CAS  PubMed  Google Scholar 

  81. Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KAS et al (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062

    Article  CAS  PubMed  Google Scholar 

  82. Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. PNAS 109:5418–5423

    Article  Google Scholar 

  83. Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    Article  CAS  PubMed  Google Scholar 

  85. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630

    Article  CAS  PubMed  Google Scholar 

  86. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  87. Ning Y, Xie Q, Wang GL (2011) OsDIS1-mediated stress response pathway in rice. Plant Signal Behav 6(11):1684–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI (2010) PYR/PYL/RACR family members are major in vivo ABI1 protein phosphatase 2C interacting proteins in Arabidopsis. Plant J 61:290–299

    Article  CAS  PubMed  Google Scholar 

  89. Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170

    Article  CAS  PubMed  Google Scholar 

  90. Okamoto M, Peterson FC, Defries A, Park SY, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. PNAS 110(29):12132–12137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Okumoto S, Jones A, Frommer WB (2012) Quantitative imaging with fluorescent biosensors: advanced tools for spatiotemporal analysis of biodynamics in cells. Annu Rev Plant Biol 63:663–706

    Google Scholar 

  92. Pandey S, Wang RS, Wilson L, Li S, Zhao Z, Gookin TE, Assmann SM, Albert R (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol Syst Biol 6:372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Pandey S, Zhang W, Assmann SM (2007) Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 581:2325–2336

    Article  CAS  PubMed  Google Scholar 

  94. Park GG, Park JJ, Yoon J, Yu SN, An G (2010) A RING finger E3 ligase gene, Oryza sativa delayed seed germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74:467–478

    Article  CAS  PubMed  Google Scholar 

  95. Park HY, Seok HY, Park BK, Kim SH, Goh CH, Lee BH, Lee CH, Moon YH (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375(1):80–85

    Article  CAS  PubMed  Google Scholar 

  96. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J, Hetherington AM et al (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    Article  CAS  PubMed  Google Scholar 

  98. Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud JB, Sentenac H (2001) Guard cell inward KC channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem 276:3215–3221

    Article  CAS  PubMed  Google Scholar 

  99. Pizzio GA, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo E, Kollist H, Albert A, Rodriguez PL (2013) The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance. Plant Physiol 163(1):441–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qin X, Zeevaart JA (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roelfsema MR, Hedrich R (2005) In the light of stomatal opening: new insights into ‘theWatergate’. New Phytol 167:665–691

    Article  CAS  PubMed  Google Scholar 

  102. Roelfsema MR, Hedrich R, Geiger D (2012) Anion channels: master switches of stress responses. Trends Plant Sci 17:221–229

    Article  CAS  PubMed  Google Scholar 

  103. Roelfsema MR, Levchenko V, Hedrich R (2004) ABA depolarizes the guard cells in intact plants, through a transient activation of R-and S-type anion channels. Plant J 37:578–588

    Article  CAS  PubMed  Google Scholar 

  104. Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM (2013) Protein S-nitrosylation in plants under abiotic stress: an overview. Front Plant Sci 4:373

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ryu MY, Cho SK, Kim WT (2010) The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol 154:1983–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Google Scholar 

  107. Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR (2008) Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol 147:2084–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Márquez JA (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668

    Article  CAS  PubMed  Google Scholar 

  109. Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto DB et al (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424:439–448

    Article  CAS  PubMed  Google Scholar 

  110. Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF (1992) Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258:1654–1658

    Article  CAS  PubMed  Google Scholar 

  111. Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62(8):2615–2632

    Article  CAS  PubMed  Google Scholar 

  112. Seiler C, Harshavardhan VT, Reddy PS, Hensel G, Kumlehn J, Eschen-Lippold L, Rajesh K, Korzun V, Wobus U, Lee J, Selvaraj G, Sreenivasulu N (2014) Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant Physiol 164(4):1677–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T (2004) Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol 45(11):1694–1703

    Article  CAS  PubMed  Google Scholar 

  114. Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48

    Article  CAS  PubMed  Google Scholar 

  115. Shang Y, Dai C, Lee MM, Kwak JM, Nam KH (2015) BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by Open Stomata 1 in Arabidopsis. Mol Plant. doi:10.1016/j.molp.2015.12.014

    PubMed  Google Scholar 

  116. Sirichandra C, Gu D, Hu H, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S et al (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583:2982–2986

    Article  CAS  PubMed  Google Scholar 

  117. Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J (2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18:3415–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Szyroki A, Ivashikina N, Dietrich P, Roelfsema M, Ache P, Reintanz B et al (2001) KAT1 is not essential for stomatal opening. PNAS 98:2917–2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Szyroki A, Ivashikina N, Dietrich P, Roelfsema MR, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R et al (2001) KAT1 is not essential for stomatal opening. Proc Nat Acad Sci USA 98:2917–2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183

    Article  CAS  PubMed  Google Scholar 

  121. Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    Article  CAS  PubMed  Google Scholar 

  122. Tan BC, Schwartz SH, Zeevaart JA, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Nat Acad Sci USA 94:12235–12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:1755–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tang Y, Liu M, Gao S, Zhang Z, Zhao X, Zhao C, Zhang F, Chen X (2012) Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant 144:210–224

    Article  CAS  PubMed  Google Scholar 

  125. Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62:4863–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62:2485–2494

    Google Scholar 

  127. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102

    Article  CAS  PubMed  Google Scholar 

  128. Uga Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S et al (2013) A major QTL controlling deep rooting on rice chromosome 4. Sci Rep 3:3040

    Article  PubMed  PubMed Central  Google Scholar 

  129. Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. PNAS 106(41):17588–17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452(7186):487–491

    Google Scholar 

  131. Vahisalu T, Puzorjova I, Brosche M, Valk E, Lepiku M, Moldau H, Pechter P, Wang YS, Lindgren O, Salojarvi J et al (2010) Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J 62:442–453

    Article  CAS  PubMed  Google Scholar 

  132. Verrier P, Bird D, Burla B, Dassa E, Forestier C, Geisler M (2008) Plant ABC proteins: a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  CAS  PubMed  Google Scholar 

  133. Verslues PE, Zhu JK (2007) New developments in abscisic acid perception and metabolism. Curr Opin Plant Biol 5:447–452

    Article  CAS  Google Scholar 

  134. Vilela B, Moreno-Cortes A, Rabissi A, Leung J, Pages M, Lumbreras V (2013) The maize OST1 kinase homolog phosphorylates and regulates the maize SNAC1-type transcription factor. PLoS ONE 8:e58105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Laurière C, Merlot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 10:3170–3184

    Article  CAS  Google Scholar 

  136. Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, Getzoff ED, Schroeder JI (2014) FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife 3:e01739

    Google Scholar 

  137. Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y (2013) The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot 64:675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 5:198–217

    Article  CAS  Google Scholar 

  139. Wilkinson S, Davies WJ (1997) Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol 5:559–573

    Google Scholar 

  140. Willmer C, Fricker M (1996) Stomata, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  141. Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ye N, Zhu G, Liu Y, Li Y, Zhang J (2011) ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol 52(4):689–698

    Article  CAS  PubMed  Google Scholar 

  143. Ying S, Zhang DF, Fu J, Shi YS, Song YC, Wang TY, Li Y (2012) Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235:253–266

    Article  CAS  PubMed  Google Scholar 

  144. Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  145. Zhang H, Cui F, Wu Y, Lou L, Liu L, Tian M, Ning Y, Shu K, Tang S, Xie Q (2015) The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell 27(1):214–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang H, Mao X, Wang C, Jing R (2010) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 5:e16041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L (2014) A DTX/MATE-type transporter facilitates abscisic acid Efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant 7:1522–1532

    Article  CAS  PubMed  Google Scholar 

  148. Zhang J, Davies WJ (1990) Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants? J Exp Bot 41:1125–1132

    Article  CAS  Google Scholar 

  149. Zhang X, Garreton V, Chua N-H (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang Y, Xu W, Li Z, Deng XW, Wu W, Xue Y (2008) F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol 148:2121–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Wang P, Bressan RA, Zhu JK (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci 113(7):1949–1954

    Google Scholar 

  152. Zhou R, Cutler AJ, Ambrose SJ, Galka MM, Nelson KM, Squires TM, Loewen MK, Jadhav AS, Ross AR, Taylor DC, Abrams SR (2004) A new abscisic acid catabolic pathway. Plant Physiol 134(1):361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhou X et al (2015) PKS5/CIPK11, a SnRK3-type protein kinase, is important for ABA responses in Arabidopsis through phosphorylation of ABI5. Plant Physiol. doi:10.1104/pp.114.255455

    Google Scholar 

  154. Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66(6):675–683

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Regional Development Fund through the Innovative Economy for Poland 2007–2013, project WND-POIG.01.03.01-00-101/08 POLAPGEN-BD “Biotechnological tools for breeding cereals with increased resistance to drought,” task 22. The project is realized by POLAPGEN Consortium and is coordinated by the Institute of Plant Genetics, Polish Academy of Sciences in Poznan. Further information about the project can be found at www.polapgen.pl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Daszkowska-Golec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Daszkowska-Golec, A. (2016). The Role of Abscisic Acid in Drought Stress: How ABA Helps Plants to Cope with Drought Stress. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-32423-4_5

Download citation

Publish with us

Policies and ethics