Skip to main content
Log in

A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

By a differential cDNA screening technique, we have isolated a dehydration-inducible gene (designated OSRK1) that encodes a 41.8 kD protein kinase of SnRK2 family from Oryza sativa. The OSRK1 transcript level was undetectable in vegetative tissues, but significantly increased by hyperosmotic stress and Abscisic acid (ABA). To determine its biochemical properties, we expressed and isolated OSRK1 and its mutants as glutathione S-transferase fusion proteins in Escherichia coli. In vitro kinase assay showed that OSRK1 can phosphorylate itself and generic substrates as well. Interestingly, OSRK1 showed strong substrate preference for rice bZIP transcription factors and uncommon cofactor requirement for Mn2+ over Mg2+. By deletion of C-terminus 73 amino acids or mutations of Ser-158 and Thr-159 to aspartic acids (Asp) in the activation loop, the activity of OSRK1 was dramatically decreased. OSRK1 can transphosphorylate the inactive deletion protein. A rice family of abscisic acid-responsive element (ABRE) binding factor, OREB1 was phosphorylated in vitro by OSRK1 at multiple sites of different functional domains. MALDI-TOF analysis identified a phosphorylation site at Ser44 of OREB1 and mutation of the residue greatly decreased the substrate specificity for OSRK1. The recognition motif for OSRK1, RQSS is highly similar to the consensus substrate sequence of AMPK/SNF1 kinase family. We further showed that OSRK1 interacts with OREB1 in a yeast two-hybrid system and co-localized to nuclei by transient expression analysis of GFP-fused protein in onion epidermis. Finally, ectopic expression of OSRK1 in transgenic tobacco resulted in a reduced sensitivity to ABA in seed germination and root elongation. These findings suggest that OSRK1 is associated with ABA signaling, possibly through the phosphorylation of ABF family in vivo. The interaction between SnRK2 family kinases and ABF transcription factors may constitute an important part of cross-talk mechanism in the stress signaling networks in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

SNF1:

Sucrose nonfermenting1

SnRK:

SNF1-related protein kinase

AMPK:

AMP-activated protein kinase

ABF/AREB/ABI5:

ABRE binding factor

GST:

Glutathione S-transferase

TBS:

Tris-based saline buffer

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry

References

  • Aguan K, Sugawara K, Suzuki N, Kusano T (1993) Low-temperature-dependent expression of a rice gene encoding a protein with a leucine-zipper motif. Mol Gen Genet 240:1–8

    Article  PubMed  CAS  Google Scholar 

  • Annan RS, Carr SA (1996) Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry. Anal Chem 68:3413–3421

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (2003) Open stomata1 opens the door to ABA signaling in Arabidopsis guard cells Trends Plant Sci 8:151–153

    Article  PubMed  CAS  Google Scholar 

  • Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141:1316–1327

    Article  PubMed  CAS  Google Scholar 

  • Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang IH, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCIK32 interacts with ABF4, a Transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    Article  PubMed  CAS  Google Scholar 

  • Dale S, Wilson WA, Edelman AM, Hardie DG (1995) Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant MG-CoA reductase kinase-A, yeast SNF1 and mammalian calmodulin-dependent protein kinase I. FEBS Lett 361:191–195

    Article  PubMed  CAS  Google Scholar 

  • Farras R, Ferrando A, Jasik J, Kleinow T, Okresz L, Tiburcio A, Salchert K, del Pozo C, Schell J, Koncz C (2001) SKP1-SNRK protein kinase interactions mediated proteasomal binding of a plant SCF ubiquitin ligase. EMBO J 20:2742–2756

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15–S45

    PubMed  CAS  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  PubMed  CAS  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol 4:387–391

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Cadenas A, Verhey SD, Holapp LD, Shen Q, Walker-Simmons MK (1999) An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc Natl Acad Sci USA 96:1767–1772

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Cadenas A, Zentella R, Walker-Simmons MK, Ho TH (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13:667–679

    Article  PubMed  CAS  Google Scholar 

  • Gong D, Gong Z, Guo Y, Zhu JK (2002a) Expression, activation, and biochemical properties of a novel Arabidopsis protein kinase. Plant Physiol 129:225–234

    Article  PubMed  CAS  Google Scholar 

  • Gong D, Zhang C, Chen X, Gong Z, Zhu JK (2002b) Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase. J Biol Chem 277:42088–42096

    Article  PubMed  CAS  Google Scholar 

  • Graves P, Winkfield K, Haystead T (2005) Regulation of zipper-interacting protein kinase activity in vitro and in vivo by multisite phosphorylation. J Biol Chem 280:9363–9374

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Himmelbach A (1998) ABA signal transduction. Curr Opin Plant Biol 1:412–418

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Hardie DG (1998) SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol 37:735–748

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479

    Article  PubMed  CAS  Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA 96:15348–15353

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann R, Metzger S, Spengler B, Otvos L Jr (1999) Sequencing of peptides phosphorylated on serines and threonines by post-source decay in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 34:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Holappa LD, Walker-Simmons MK, Ho THD, Riechers DE, Beckles DM, Russell J (2005) A Triticum tauschii protein kinase related to wheat PKABA1 is associated with ABA signaling and is distributed between the nucleus and cytosol. J Cereal Sci 41:333–346

    Article  CAS  Google Scholar 

  • Holmberg C, Tran S, Eriksson J, Sistonen L (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27:619–627

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers S, Fraley R (1988) Leaf disc transformation. In Gelvin S, Schilperoort R (eds) Plant molecular biology mannual. Kluwer Academic Publishers, Dordrecht, 1–9 pp

    Google Scholar 

  • Hotta H, Aoki N, Matsuda T, Adachi T (1998) Molecular analysis of a novel protein kinase in maturing rice seed. Gene 213:47–54

    Article  PubMed  CAS  Google Scholar 

  • Hoyos E, Zang S (2000) Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol 122:1355–1364

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmon HG, Sussman MR (2003) The Arabidopsis CDPK-SnRK super family of protein kinases. Plant Physiol 132:666–680

    Article  PubMed  CAS  Google Scholar 

  • Johnson L, Noble M, Owen D (1996) Active and inactive protein kinases: Structural basis of regulation. Cell 85:149–158

    Article  PubMed  CAS  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    Article  PubMed  Google Scholar 

  • Kagaya Y, Hobo T, Murata M, Ban A, Hattori T (2002) Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 14:3177–3189

    Article  PubMed  CAS  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Matsumoto M, Takeda K, Sanjo H, Akira S (1998) ZIP kinase, a novel serine/threonine kinase which mediates apotosis. Mol Cell Biol 18:1642–1651

    PubMed  CAS  Google Scholar 

  • Kelner A, Pekala I, Kaczanowski S, Muszynska G, Hardie DG, Dobrowolska G (2004) Biochemical characterization of the tobacco 42-kD protein kinase activated by osmotic stress. Plant Physiol 136:3255–3265

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Chung HJ, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11:1237–1251

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Ma J, Perret P, Li Z, Thomas TL (2002) Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities. Plant Physiol 130:688–697

    Article  PubMed  CAS  Google Scholar 

  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003a) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423

    Article  PubMed  CAS  Google Scholar 

  • Kim KN, Lee JS, Han H, Choi SA, Goo SJ, Yoon IS (2003b) Isolation and characterization of a novel Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts. Plant Mol Biol 52:1191–1202

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Kang JY, Kim SY (2004a) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459–466

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004b) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  PubMed  CAS  Google Scholar 

  • Knetsch M, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S (1996) Abscisic Acid Induces Mitogen-Activated Protein Kinase Activation in Barley Aleurone Protoplasts. Plant Cell 18:1061–1067

    Article  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kakaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder JI (2002) Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14:2849–2861

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzeger D, Meins F Jr (2000) Sense transformation reveals a novel role for class I beta-1, 3-glucanase in tobacco seed germination. Plant J 23:215–221

    Article  Google Scholar 

  • Leung J, Bouvier-Durand M, Morris P-C, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264:1448–1452

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    Article  PubMed  CAS  Google Scholar 

  • Li J, Assmann SM (1996) An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell 8:2359–2368

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wang XQ, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    Article  PubMed  CAS  Google Scholar 

  • Li J, Kinoshita T, Pandey S, Ng CK, Gygi SP, Shimazaki K, Assmann SM (2002) Modulation of a RNA-binding protein by abscisic acid-activated protein kinase. Nature 418:793–797

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Chua NH (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol 41:541–547

    PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    Article  PubMed  CAS  Google Scholar 

  • Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  PubMed  CAS  Google Scholar 

  • McCartney R, Schmidt C (2001) Regulation of Snf1 kinase. J Biol Chem 276:36460–36466

    Article  PubMed  CAS  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. Plant J 25:295–303

    Article  PubMed  CAS  Google Scholar 

  • Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homologue of protein kinase ASK1 in tobacco cells. Plant Cell 12:165–178

    Article  PubMed  CAS  Google Scholar 

  • Monks DE, Aghoram K, Courtney PD, DeWald DB, Dewey RE (2001) Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell 13:1205–1219

    Article  PubMed  CAS  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed  CAS  Google Scholar 

  • Neville DC, Rozanas CR, Price EM, Gruis DB, Verkman AS, Townsend RR (1997) Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci 6:2436–2445

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Guo Y, Halfter U, Zhu JK (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA 100:11771–11776

    Article  PubMed  CAS  Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single standard nucleic acids as a carrier. Curr Genet 16:339–346

    Article  PubMed  CAS  Google Scholar 

  • Schinkmannn K, Blenis J (1997) Cloning and characterization of a human STE20-like protein kinase with unusual cofactor requirements. J Biol Chem 272:28695–28703

    Article  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1998) Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci USA 95:975–980

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J (1999) Novel protein kinases associated with calcineurin B–like calcium sensors in Arabidopsis. Plant Cell 11:2393–2406

    Article  PubMed  CAS  Google Scholar 

  • Su J-Y, Erikson E, Maller JL (1996) Cloning and characterization of a novel ser/thr protein kinase expressed in early xenopus embryos. J Biol Chem 271:14430–14437

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:17306–17311

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    Article  PubMed  CAS  Google Scholar 

  • Vincent O, Townley R, Kuchin S, Carlson M (2001) Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Gene Dev 15:1104–1114

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi D, Zentella R, Ho TH (2002) Molecular analysis of the barley (Hordeum vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers. Planta 215:319–326

    Article  PubMed  CAS  Google Scholar 

  • Yoon HW, Kim MC, Shin PG, Kim JS, Kim CY, Lee SY, Hwang I, Bahk JD, Hong JC, Han C, Cho MJ (1997) Differential expression of two functional serine/threonine protein kinases from soybean that have an unusual acidic domain at the carboxy terminus. Mol Gen Genet 255:359–371

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Hobo T Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledegments

We thank Drs. T. Hattori and H. Mori (Nagoya University, Nagoya, Japan) for critical comments and valuable discussions on the manuscript. We thank Hee Han for technical assistance of purification of GST-proteins; Jin Hee Lee and Jong Bok Seo for assistance of MALDI-PSD analysis; Dr. S. H. Cho (Korea University, Seoul, Republic of Korea) for providing pCAM1300smGFP vector. This work was supported by the National Institute of Agricultural Biotechnology, and by the Technology Development Program for Agriculture and Forestry funded by Ministry of Agriculture and Forestry (to I. S. Yoon). It was also supported, in part, by the Crop Functional Genomics Center (grant no. CG2211 to S.C.S.) of the 21C Frontier Program funded by Ministry of Science and Technology of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Sun Yoon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chae, MJ., Lee, JS., Nam, MH. et al. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol Biol 63, 151–169 (2007). https://doi.org/10.1007/s11103-006-9079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9079-x

Keywords

Navigation