Skip to main content

Technological Platforms to Study Plant Lipidomics

  • Chapter
  • First Online:
Plant Omics: Trends and Applications

Abstract

The emergence and rapid growth of “omics” has led to a radical change in the viewpoint of life sciences research. Plant metabolomics is a progressing field of study in plant biology where lipidomics is one of the subunits of metabolomics, covering the entire lipidome of the plant body. Previously, mass spectrometry has been used to study plant lipidome and is presently coupled with various chromatographic techniques to produce more accurate results. Different environmental conditions and stresses contribute to the varying lipids profiling of plants. Numerous environmental stresses trigger lipid-facilitated signaling such as pathogen attack, temperature change, salinity, and drought. N-acylethanolamine, oxylipins, lysophospholipid, phosphatidic acid, inositol phosphate, fatty acid, sphingolipid, diacylglycerol, and N-acylethanolamine have all been suggested to have a signaling role. This chapter reviews various analytical techniques for studying plant lipids. Latest research carried out on lipids variations due to different environmental stresses have also been focused upon in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bausch JN (1993) Lipid analysis. Curr Opin Biotechnol 4:57–62

    Article  CAS  PubMed  Google Scholar 

  • Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem 3:433–465

    Article  CAS  Google Scholar 

  • Bruegger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low pico mole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94:2339–2344

    Article  CAS  Google Scholar 

  • Brügger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79–98

    Article  PubMed  Google Scholar 

  • Burke JJ, O'Mahony PJ, Oliver MJ (2000) Isolation ofArabidopsis mutants lacking components of acquired thermotolerance. Plant Physiol 123:575–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buseman CM, Tamura P, Sparks AA, Baughman EJ, Maatta S, Zhao J, Roth MR, Esch SW, Shah J, Williams TD, Welti R (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Burke JJ, Xin Z, Xu C, Velten J (2006) Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance. Plant Cell Enviorn 29:1437–1448

    Article  CAS  Google Scholar 

  • Chico J, Holthoon FV, Zuidema T (2012) Ion suppression study for tetracyclines in feed. Chromatogr Res Int 2012:Article ID 135854. doi:10.1155/2012/135854

    Article  Google Scholar 

  • Dethloff F, Erban A, Orf I, Alpers J, Fehrle I, Beine-Golovchuk O, Schmidt S, Schwachtje J (2014)

    Google Scholar 

  • Downard K (2004) Mass spectrometry: a foundation course. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106:2136–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AHJ, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, VanMeer G, Vannieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    Article  CAS  PubMed  Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, VanMeer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:9–14

    Article  Google Scholar 

  • Han XL, Gross RW (1994) Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A 91:10635–10639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Gross RW (2005a) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  CAS  PubMed  Google Scholar 

  • Han XL, Gross RW (2005b) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteomics 2:253–264

    Article  CAS  PubMed  Google Scholar 

  • Han X, Yang J, Cheng H, Yang K, Abendschein DR, Gross RW (2005) Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. Biochemistry 44(50):16684–16694

    Article  CAS  PubMed  Google Scholar 

  • Harkewicz R, Dennis EA (2011) Applications of mass spectrometry to lipids and membranes. Annu Rev Biochem 80:301–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herchi W, Trabelsi H, Salah HB, Zhao YY, Boukhchina S, Kallel H, Curtis JM (2012) Changes in the triacylglycerol content of flaxseeds during development using liquid chromatography-atmospheric pressure photoionization-mass spectrometry (LC-APPI-MS). Afr J Biotechnol 11(4):904–911

    CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Sekiguchi M, Hasegawa K, Shigemori H (2005) Oxylipins arabidopsides C and D from Arabidopsis thaliana. J Nat Prod 68:600–603

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Heijden RVD, Wang M, Greef JVD, Hankemeier T, Xu G (2009) Analytical strategies in lipidomics and applications in disease biomarker discovery. J Chromatogr B 877:2836–2846

    Article  CAS  Google Scholar 

  • Ivanova PT, Milne SB, Myers DS, Brown HA (2009) Lipidomics: a mass spectrometry based systems level analysis of cellular lipids. Curr Opin Chem Biol 13:526–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kebarle FP, Ho Y (1997) Electrospray ionization mass spectrometry. In: Cole RB (ed) Fundamentals instrumentation and applications. John Wiley & Sons, New York, NY

    Google Scholar 

  • Kern W, Mende R, Denefeld B, Sackewitz M, Chelius D (2014) Ion-pair reversed-phase high performance liquid chromatography method for the quantification of isoaspartic acid in a monoclonal antibody. J Chromatogr B 995(26-33)

    Google Scholar 

  • Knochenmuss R (2004) Photoionization pathways and free electrons in UV-MALDI. Anal Chem 76(11):3179–3184

    Article  CAS  PubMed  Google Scholar 

  • Knochenmuss R (2006) Ion formation mechanisms in UV-MALDI. Analyst 131(9):966–986

    Article  CAS  PubMed  Google Scholar 

  • Köfeler HC, Fauland A, Rechberger GN, Trötzmüller M (2012) Mass spectrometry based lipidomics: an overview of technological platforms. Metabolites 2:19–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Koulman A, Tapper BA, Fraser K, Cao M, Lane GA, Rasmussen S (2007) High-throughput direct-infusion ion trap mass spectrometry: a new method for metabolomics. Rapid Commun Mass Spectrom 21(3):421–428

    Article  CAS  PubMed  Google Scholar 

  • Kuksis A (2007) Lipidomics in triacylglycerol and cholesteryl ester oxidation. Front Biosci 12:3203–3246

    Article  CAS  PubMed  Google Scholar 

  • Kusano M, Yang Z, Okazaki Y, Nakabayashi R, Fukushima A, Saito K (2014) Using metabolomics approaches to explore chemical diversity in rice. Mol Plant pii:ssu125. doi:10.1093/mp/ssu125

    Google Scholar 

  • Lehmann WD, Stephan M, Fürstenberger G (1992) Profiling assay for lipoxygenase products of linoleic and arachidonic acid by gas chromatography-mass spectrometry. Anal Biochem 204(1):158–170

    Article  CAS  PubMed  Google Scholar 

  • Li M, Welti R, Wang X (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation: Roles of PLDzeta1 and PLDzeta2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol. doi:10.1104/pp.106.085647

    Google Scholar 

  • Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21(7):1304–1314

    Article  CAS  PubMed  Google Scholar 

  • Martin AJP, Synge RLM (1941) A new form of chromatogram employing two liquid phases. Biochem J 35:1358–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrill AH, Stokes J, Momin TH, Park A, Portz H, Kelly BJ, Wang S, Sullards EMC, WangM D (2009) Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J Lipid Res 50:97–102

    Article  Google Scholar 

  • Moore JD, Caufield WV, Shaw WA (2007) Quantitation and standardization of lipid internal standards for mass spectrometry. Methods Enzymol 432:351–367

    Article  CAS  PubMed  Google Scholar 

  • Nagel R, Berasategui A, Paetz C, Gershenzon J, Schmidt A (2014) Overexpression of an isoprenyl diphosphate synthase in spruce leads to unexpected terpene diversion products that function in plant defense. Plant Physiol 164(2):555–569

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Ogiso H, Taguchi R (2009) Qualitative and quantitative analyses of phospholipids by LC-MS for lipidomics. Methods Mol Biol 579:287–313

    Article  CAS  PubMed  Google Scholar 

  • Nygren H, Seppanen-Laakso T, Castillo S, Hyotylainen T, Oresic M (2011) Liquid chromatography mass spectrometry (LC-MS) based lipidomics for studies of body fluids and tissues. Methods Mol Biol 708:247–257

    Article  CAS  PubMed  Google Scholar 

  • Okazaki Y, Saito K (2014) Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J 79(4):584–596

    Article  CAS  PubMed  Google Scholar 

  • Okazaki Y, Kamide Y, Hirai MY, Saito K (2013) Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics 9:121–131

    Article  CAS  PubMed  Google Scholar 

  • Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511

    Article  CAS  PubMed  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  CAS  PubMed  Google Scholar 

  • Peters C, Li M, Narasimhan R, Roth M, Welti R, Wang X (2010) Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22(8):2642–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petkovic M, Schiller J, Müller M, Benard S, Reichl S, Arnold K, Arnhold J (2001) Detection of individual phospholipids in lipid mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: phosphatidylcholine prevents the detection of further species. Anal Biochem 289(2):202–216

    Article  CAS  PubMed  Google Scholar 

  • Picchioni GA, Watada AE, Whitaker BD (1996) Quantitative high performance liquid chromatography analysis of plant phospholipids and glycolipids using light scattering detection. Lipids 31:217–221

    Article  CAS  PubMed  Google Scholar 

  • Raterink RJ, Lindenburg PW, Vreeken RJ, Ramautar R, Hankemeier T (2014) Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics. Trends Anal Chem 61:157–167

    Article  CAS  Google Scholar 

  • Roberts LD, McCombie G, Titman CM, Griffin JL (2008) A matter of fat: An introduction to lipidomic profiling methods. J Chromatogr 871:174–181

    CAS  Google Scholar 

  • Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J (2010) Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22(2):364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller J, Suss R, Fuchs B, Muller M, Zschornig O, Arnold K (2007) MALDI-TOF MS in lipidomics. Front Biosci 1(12):256825–256879

    Google Scholar 

  • Schwudke D, Oegema J, Burton L, Entchev E, Hannich JT, Ejsing CS, Kurzchalia T, Shevchenko A (2006) Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal Chem 78(2):585–595

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Touchstone JC (1995a) Thin layer chromatographic procedures for lipid separation. J Chromatogr B Biomed Appl 671:169–195

    Article  CAS  PubMed  Google Scholar 

  • Touchstone JC (1995b) Thin-layer chromatographic procedures for lipid separation. J Chromatogr 671:169

    Article  CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Effect of cold acclimation on the lipid composition of the inner and outer membrane of the chloroplast envelope isolated from rye leaves. Plant Physiol 109:15–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vu HS, Shiva S, Hall AS, Welti R (2014) A lipidomic approach to identify cold-induced changes in Arabidopsis membrane lipid composition. Methods Mol Biol 1166:199–215

    Article  CAS  PubMed  Google Scholar 

  • Vuckovic D, Zhang X, Cudjoe E, Pawliszyn J (2010) Solid-phase micro extraction in bioanalysis: new devices and directions. J Chromatogr A 1217:4041–4060

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Su X, Luo Q, Xu J, Chen J, Yan X, Chen H (2014) Profiles of glycerolipids inPyropia haitanensis and their changes responding to agaro-oligosaccharides. J Appl Phycol 26(6):2397–2404

    Article  CAS  Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. Symp Soc Exp Biol 42:329–346

    CAS  PubMed  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D-alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  CAS  PubMed  Google Scholar 

  • Welti R, Shah J, Li W, Li M, Chen J, Burke JJ, Fauconnier ML, Chapman K, Chye ML, Wang X (2007) Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front Biosci 12:2494–2506

    Article  CAS  PubMed  Google Scholar 

  • Wenk MR (2010a) Lipidomics: new tools and applications. Cell 143:888–895

    Article  CAS  PubMed  Google Scholar 

  • Wenk MR (2010b) Lipidomics: new tools and applications. Cell 142(6):888–895

    Article  Google Scholar 

  • Wewer V, Dörmann P (2014) Determination of sterol lipids in plant tissues by gas chromatography and q-tof mass spectrometry. Methods Mol Biol 1153:115–133

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1995) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679

    Article  Google Scholar 

  • Wolf C, Qunin PJ (2008) Lipidomics: practical aspects and applications. Prog Lipid Res 47:15–36

    Article  CAS  PubMed  Google Scholar 

  • Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J (2010) Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22(5):1463–1482

    Article  CAS  PubMed  Google Scholar 

  • Zehethofer N, Pinto DM (2008) Recent developments in tandem mass spectrometry for lipidomic analysis. Anal Chim Acta 627:62–70

    Article  CAS  PubMed  Google Scholar 

  • Zhaoa YY, Wuc SP, Liub S, Zhang Y, Lind RC (2014) Ultra-performance liquid chromatography–mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chem Biol Interact 220:181–192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Afzal, F. et al. (2016). Technological Platforms to Study Plant Lipidomics. In: Hakeem, K., Tombuloğlu, H., Tombuloğlu, G. (eds) Plant Omics: Trends and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31703-8_20

Download citation

Publish with us

Policies and ethics