Skip to main content

Biomarkers in Systemic Sclerosis

  • Chapter
  • First Online:
Scleroderma

Abstract

Over the past 10 years, biomarkers have gone from a rarely considered subject of scientific inquiry to center stage in both clinical and translational science. The impetus for this is clear. They provide valuable information for more efficient performance of clinical trials while simultaneously creating a bridge to understanding disease pathogenesis. Strong correlations between biomarkers and disease activity suggest direct roles in pathogenesis for the biomarker; the stronger the correlation, the more likely a biomarker is implicated in pathogenesis. Thus, biomarkers provide unique opportunities to understand disease mechanisms. Biomarkers are also particularly valuable in clinical setting where the disease is hard to measure using clinical outcomes, as is the case for virtually all of SSc manifestations. However, the most exciting aspect of biomarkers is at the interface between clinical and translational medicine. The effect of drug treatment on biomarkers can lead to exciting insights into the roles of drug-targeted pathways in pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qualification Process for Drug Development Tools. www.fdagov/downloads/Drugs//Guidances/UCM230597pdf. Food and drug administration-draft document. 2010.

  2. Stopeck AT, Brown-Glaberman U, Wong HY, Park BH, Barnato SE, Gradishar WJ, et al. The role of targeted therapy and biomarkers in breast cancer treatment. Clin Exp Metastasis. 2012;29(7):807–19.

    Article  CAS  PubMed  Google Scholar 

  3. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–98.

    Article  CAS  PubMed  Google Scholar 

  4. Etheridge A, Gomes CP, Pereira RW, Galas D, Wang K. The complexity, function and applications of RNA in circulation. Front Genet. 2013;4:115. Pubmed Central PMCID: 3684799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res. 2011;717(1–2):85–90. Pubmed Central PMCID: 3199035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  7. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  8. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59. Pubmed Central PMCID: 3376845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel JP. MicroRNAs: molecular features and role in cancer. Front Biosci. 2012;17:2508–40. Pubmed Central PMCID: 3815439.

    Article  CAS  Google Scholar 

  10. Babalola O, Mamalis A, Lev-Tov H, Jagdeo J. The role of microRNAs in skin fibrosis. Arch Dermatol Res. 2013;305(9):763–76. Pubmed Central PMCID: 3979452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol. 2013;229(2):274–85.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang X, Tsitsiou E, Herrick SE, Lindsay MA. MicroRNAs and the regulation of fibrosis. FEBS J. 2010;277(9):2015–21. Pubmed Central PMCID: 2963651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patel V, Noureddine L. MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens. 2012;21(4):410–6. Pubmed Central PMCID: 3399722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vettori S, Gay S, Distler O. Role of MicroRNAs in fibrosis. Open Rheumatol J. 2012;6:130–9. Pubmed Central PMCID: 3396185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62(6):1733–43.

    Article  CAS  PubMed  Google Scholar 

  16. Peng WJ, Tao JH, Mei B, Chen B, Li BZ, Yang GJ, et al. MicroRNA-29: a potential therapeutic target for systemic sclerosis. Expert Opin Ther Targets. 2012;16(9):875–9.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, et al. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 2012;32(3):514–22.

    Article  CAS  PubMed  Google Scholar 

  18. Honda N, Jinnin M, Kajihara I, Makino T, Makino K, Masuguchi S, et al. TGF-beta-mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts. J Immunol. 2012;188(7):3323–31.

    Article  CAS  PubMed  Google Scholar 

  19. Honda N, Jinnin M, Kira-Etoh T, Makino K, Kajihara I, Makino T, et al. miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin beta3. Am J Pathol. 2013;182(1):206–16.

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Yang R, Fan X, Gu T, Zhao Z, Chang D, et al. MicroRNA array analysis of microRNAs related to systemic scleroderma. Rheumatol Int. 2012;32(2):307–13.

    Article  CAS  PubMed  Google Scholar 

  21. Makino K, Jinnin M, Hirano A, Yamane K, Eto M, Kusano T, et al. The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J Immunol. 2013;190(8):3905–15.

    Article  CAS  PubMed  Google Scholar 

  22. Witwer KW. Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem. 2015;61(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  23. Mitchell P. Proteomics retrenches. Nat Biotechnol. 2010;28(7):665–70.

    Article  CAS  PubMed  Google Scholar 

  24. Kelleher NL, Thomas PM, Ntai I, Compton PD, LeDuc RD. Deep and quantitative top-down proteomics in clinical and translational research. Expert Rev Proteomics. 2014;11(6):649–51. Pubmed Central PMCID: 4295490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weiss F, van den Berg BH, Planatscher H, Pynn CJ, Joos TO, Poetz O. Catch and measure-mass spectrometry-based immunoassays in biomarker research. Biochim Biophys Acta. 2014;1844(5):927–32.

    Article  CAS  PubMed  Google Scholar 

  26. Slinker BK, Glantz SA. Multiple linear regression: accounting for multiple simultaneous determinants of a continuous dependent variable. Circulation. 2008;117(13):1732–7.

    Article  PubMed  Google Scholar 

  27. Froud R, Abel G. Using ROC curves to choose minimally important change thresholds when sensitivity and specificity are valued equally: the forgotten lesson of pythagoras. Theoretical considerations and an example application of change in health status. PLoS One. 2014;9(12):e114468. Pubmed Central PMCID: 4256421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Farina G, Lafyatis D, Lemaire R, Lafyatis R. A four-gene biomarker predicts skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 2010;62(2):580–8. Pubmed Central PMCID: 3018285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rice LM, Ziemek J, Stratton EA, McLaughlin S, Padilla CM, Mathes AL, et al. A Longitudinal biomarker for the extent of skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 2015 (In press).

    Google Scholar 

  30. Rice LM, Padilla CM, McLaughlin SR, Mathes A, Ziemek J, Goummih S, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015;125(7):2795–807.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hesselstrand R, Kassner A, Heinegard D, Saxne T. COMP: a candidate molecule in the pathogenesis of systemic sclerosis with a potential as a disease marker. Ann Rheum Dis. 2008;67(9):1242–8. eng.

    Article  CAS  PubMed  Google Scholar 

  32. Horslev-Petersen K, Ammitzboll T, Engstrom-Laurent A, Bentsen K, Junker P, Asboe-Hansen G, et al. Serum and urinary aminoterminal type III procollagen peptide in progressive systemic sclerosis: relationship to sclerodermal involvement, serum hyaluronan and urinary collagen metabolites. J Rheumatol. 1988;15(3):460–7. eng.

    CAS  PubMed  Google Scholar 

  33. Macko RF, Gelber AC, Young BA, Lowitt MH, White B, Wigley FM, et al. Increased circulating concentrations of the counter adhesive proteins SPARC and thrombospondin-1 in systemic sclerosis (scleroderma). Relationship to platelet and endothelial cell activation. J Rheumatol. 2002;29(12):2565–70. eng.

    CAS  PubMed  Google Scholar 

  34. Kim WU, Min SY, Cho ML, Hong KH, Shin YJ, Park SH, et al. Elevated matrix metalloproteinase-9 in patients with systemic sclerosis. Arthritis Res Ther. 2005;7(1):R71–9. eng.

    Article  CAS  PubMed  Google Scholar 

  35. Kikuchi K, Ihn H, Sato S, Igarashi A, Soma Y, Ishibashi Y, et al. Serum concentration of procollagen type I carboxyterminal propeptide in systemic sclerosis. Arch Dermatol Res. 1994;286(2):77–80. eng.

    Article  CAS  PubMed  Google Scholar 

  36. Hunzelmann N, Risteli J, Risteli L, Sacher C, Vancheeswaran R, Black C, et al. Circulating type I collagen degradation products: a new serum marker for clinical severity in patients with scleroderma? Br J Dermatol. 1998;139(6):1020–5. eng.

    Article  CAS  PubMed  Google Scholar 

  37. Nagy Z, Czirjak L. Increased levels of amino terminal propeptide of type III procollagen are an unfavourable predictor of survival in systemic sclerosis. Clin Exp Rheumatol. 2005;23(2):165–72. eng.

    CAS  PubMed  Google Scholar 

  38. Denton CP, Merkel PA, Furst DE, Khanna D, Emery P, Hsu VM, et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007;56(1):323–33. eng.

    Article  CAS  PubMed  Google Scholar 

  39. Kikuchi K, Kubo M, Sato S, Fujimoto M, Tamaki K. Serum tissue inhibitor of metalloproteinases in patients with systemic sclerosis. J Am Acad Dermatol. 1995;33(6):973–8. eng.

    Article  CAS  PubMed  Google Scholar 

  40. Yamaguchi Y, Ono J, Masuoka M, Ohta S, Izuhara K, Ikezawa Z, et al. Serum periostin levels are correlated with progressive skin sclerosis in patients with systemic sclerosis. Br J Dermatol. 2013;168(4):717–25.

    Article  CAS  PubMed  Google Scholar 

  41. Sato S, Hasegawa M, Takehara K. Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J Dermatol Sci. 2001;27(2):140–6. eng.

    Article  CAS  PubMed  Google Scholar 

  42. Codullo V, Baldwin HM, Singh MD, Fraser AR, Wilson C, Gilmour A, et al. An investigation of the inflammatory cytokine and chemokine network in systemic sclerosis. Ann Rheum Dis. 2011;70(6):1115–21. eng.

    Article  CAS  PubMed  Google Scholar 

  43. Bandinelli F, Del Rosso A, Gabrielli A, Giacomelli R, Bartoli F, Guiducci S, et al. CCL2, CCL3 and CCL5 chemokines in systemic sclerosis: the correlation with SSc clinical features and the effect of prostaglandin E1 treatment. Clin Exp Rheumatol. 2012;30(2 Suppl 71):S44–9.

    PubMed  Google Scholar 

  44. Iwata Y, Yoshizaki A, Ogawa F, Komura K, Hara T, Muroi E, et al. Increased serum pentraxin 3 in patients with systemic sclerosis. J Rheumatol. 2009;36(5):976–83. eng.

    Article  CAS  PubMed  Google Scholar 

  45. Giacomelli R, Cipriani P, Lattanzio R, Di Franco M, Locanto M, Parzanese I, et al. Circulating levels of soluble CD30 are increased in patients with systemic sclerosis (SSc) and correlate with serological and clinical features of the disease. Clin Exp Immunol. 1997;108(1):42–6. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scala E, Pallotta S, Frezzolini A, Abeni D, Barbieri C, Sampogna F, et al. Cytokine and chemokine levels in systemic sclerosis: relationship with cutaneous and internal organ involvement. Clin Exp Immunol. 2004;138(3):540–6. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 2006;54(1):192–201. eng.

    Article  CAS  PubMed  Google Scholar 

  48. Sato S, Fujimoto M, Hasegawa M, Komura K, Yanaba K, Hayakawa I, et al. Serum soluble CTLA-4 levels are increased in diffuse cutaneous systemic sclerosis. Rheumatology (Oxford). 2004;43(10):1261–6. eng.

    Article  CAS  Google Scholar 

  49. Dunne JV, van Eeden SF, Keen KJ. L-selectin and skin damage in systemic sclerosis. PLoS One. 2012;7(9):e44814. Pubmed Central PMCID: 3441480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hebbar M, Peyrat JP, Hornez L, Hatron PY, Hachulla E, Devulder B. Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis. Arthritis Rheum. 2000;43(4):889–93.

    Article  CAS  PubMed  Google Scholar 

  51. Farouk HM, Hamza SH, El Bakry SA, Youssef SS, Aly IM, Moustafa AA, et al. Dysregulation of angiogenic homeostasis in systemic sclerosis. Int J Rheum Dis. 2013;16(4):448–54.

    Article  CAS  PubMed  Google Scholar 

  52. Vancheeswaran R, Magoulas T, Efrat G, Wheeler-Jones C, Olsen I, Penny R, et al. Circulating endothelin-1 levels in systemic sclerosis subsets – a marker of fibrosis or vascular dysfunction? J Rheumatol. 1994;21(10):1838–44. eng.

    CAS  PubMed  Google Scholar 

  53. Lakota K, Wei J, Carns M, Hinchcliff M, Lee J, Whitfield ML, et al. Levels of adiponectin, a marker for PPAR-gamma activity, correlate with skin fibrosis in systemic sclerosis: potential utility as biomarker? Arthritis Res Ther. 2012;14(3):R102. Pubmed Central PMCID: 3446479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Makino K, Jinnin M, Kajihara I, Honda N, Sakai K, Masuguchi S, et al. Circulating miR-142-3p levels in patients with systemic sclerosis. Clin Exp Dermatol. 2012;37(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  55. Sing T, Jinnin M, Yamane K, Honda N, Makino K, Kajihara I, et al. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology. 2012;51(9):1550–6.

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka S, Suto A, Ikeda K, Sanayama Y, Nakagomi D, Iwamoto T, et al. Alteration of circulating miRNAs in SSc: miR-30b regulates the expression of PDGF receptor beta. Rheumatology. 2013;52(11):1963–72.

    Article  CAS  PubMed  Google Scholar 

  57. Wuttge DM, Carlsen AL, Teku G, Steen SO, Wildt M, Vihinen M, et al. Specific autoantibody profiles and disease subgroups correlate with circulating micro-RNA in systemic sclerosis. Rheumatology. 2015;54(11):2100–7.

    Google Scholar 

  58. Stifano G, Affandi AJ, Mathes AL, Rice LM, Nakerakanti S, Nazari B, et al. Chronic toll-like receptor 4 stimulation in skin induces inflammation, macrophage activation, transforming growth factor beta signature gene expression, and fibrosis. Arthritis Res Ther. 2014;16(4):R136. Pubmed Central PMCID: 4227089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rimar D, Rosner I, Nov Y, Slobodin G, Rozenbaum M, Halasz K, et al. Brief report: lysyl oxidase is a potential biomarker of fibrosis in systemic sclerosis. Arthritis Rheumatol. 2014;66(3):726–30.

    Article  PubMed  Google Scholar 

  60. Asano Y, Ihn H, Yamane K, Yazawa N, Kubo M, Fujimoto M, et al. Clinical significance of surfactant protein D as a serum marker for evaluating pulmonary fibrosis in patients with systemic sclerosis. Arthritis Rheum. 2001;44(6):1363–9. eng.

    Article  CAS  PubMed  Google Scholar 

  61. Hant FN, Ludwicka-Bradley A, Wang HJ, Li N, Elashoff R, Tashkin DP, et al. Surfactant protein D and KL-6 as serum biomarkers of interstitial lung disease in patients with scleroderma. J Rheumatol. 2009;36(4):773–80. eng.

    Article  CAS  PubMed  Google Scholar 

  62. Elhaj M, Charles J, Pedroza C, Liu X, Zhou X, Estrada YMRM, et al. Can serum surfactant protein D or CC-chemokine ligand 18 predict outcome of interstitial lung disease in patients with early systemic sclerosis? J Rheumatol. 2013;40(7):1114–20. Pubmed Central PMCID: 3728890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yanaba K, Hasegawa M, Takehara K, Sato S. Comparative study of serum surfactant protein-D and KL-6 concentrations in patients with systemic sclerosis as markers for monitoring the activity of pulmonary fibrosis. J Rheumatol. 2004;31(6):1112–20. eng.

    CAS  PubMed  Google Scholar 

  64. Kumanovics G, Gorbe E, Minier T, Simon D, Berki T, Czirjak L. Follow-up of serum KL-6 lung fibrosis biomarker levels in 173 patients with systemic sclerosis. Clin Exp Rheumatol. 2014;32(6 Suppl 86):S-138–44.

    Google Scholar 

  65. Song JW, Do KH, Jang SJ, Colby TV, Han S, Kim DS. Blood biomarkers MMP-7 and SP-A: predictors of outcome in idiopathic pulmonary fibrosis. Chest. 2013;143(5):1422–9.

    Article  CAS  PubMed  Google Scholar 

  66. Moinzadeh P, Krieg T, Hellmich M, Brinckmann J, Neumann E, Muller-Ladner U, et al. Elevated MMP-7 levels in patients with systemic sclerosis: correlation with pulmonary involvement. Exp Dermatol. 2011;20(9):770–3.

    Article  CAS  PubMed  Google Scholar 

  67. Manetti M, Guiducci S, Romano E, Bellando-Randone S, Conforti ML, Ibba-Manneschi L, et al. Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: correlation with severity of skin and pulmonary fibrosis and vascular damage. Ann Rheum Dis. 2012;71(6):1064–72.

    Article  CAS  PubMed  Google Scholar 

  68. Jenkins RG, Simpson JK, Saini G, Bentley JH, Russell AM, Braybrooke R, et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir Med. 2015;3(6):462–72.

    Article  CAS  PubMed  Google Scholar 

  69. Doyle TJ, Patel AS, Hatabu H, Nishino M, Wu G, Osorio JC, et al. Detection of rheumatoid arthritis-interstitial lung disease is enhanced by serum biomarkers. Am J Respir Crit Care Med. 2015;191(12):1403–12. Pubmed Central PMCID: 4476561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lota HK, Renzoni EA. Circulating biomarkers of interstitial lung disease in systemic sclerosis. Int J Rheumatol. 2012;2012:121439. Pubmed Central PMCID: 3439977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Prasse A, Pechkovsky DV, Toews GB, Schafer M, Eggeling S, Ludwig C, et al. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheum. 2007;56(5):1685–93. eng.

    Article  CAS  PubMed  Google Scholar 

  72. Kodera M, Hasegawa M, Komura K, Yanaba K, Takehara K, Sato S. Serum pulmonary and activation-regulated chemokine/CCL18 levels in patients with systemic sclerosis: a sensitive indicator of active pulmonary fibrosis. Arthritis Rheum. 2005;52(9):2889–96. eng.

    Article  CAS  PubMed  Google Scholar 

  73. De Lauretis A, Sestini P, Pantelidis P, Hoyles R, Hansell DM, Goh NS, et al. Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. J Rheumatol. 2013;40(4):435–46.

    Article  PubMed  CAS  Google Scholar 

  74. Wuttge DM, Wildt M, Geborek P, Wollheim FA, Scheja A, Akesson A. Serum IL-15 in patients with early systemic sclerosis: a potential novel marker of lung disease. Arthritis Res Ther. 2007;9(5):R85. eng.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lambrecht S, Smith V, De Wilde K, Coudenys J, Decuman S, Deforce D, et al. Growth differentiation factor 15, a marker of lung involvement in systemic sclerosis, is involved in fibrosis development but is not indispensable for fibrosis development. Arthritis Rheumatol. 2014;66(2):418–27.

    Article  CAS  PubMed  Google Scholar 

  76. Lee CG, Hartl D, Lee GR, Koller B, Matsuura H, Da Silva CA, et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Exp Med. 2009;206(5):1149–66. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nordenbaek C, Johansen JS, Halberg P, Wiik A, Garbarsch C, Ullman S, et al. High serum levels of YKL-40 in patients with systemic sclerosis are associated with pulmonary involvement. Scand J Rheumatol. 2005;34(4):293–7. eng.

    Article  CAS  PubMed  Google Scholar 

  78. Lee CG, Herzog EL, Ahangari F, Zhou Y, Gulati M, Lee CM, et al. Chitinase 1 is a biomarker for and therapeutic target in scleroderma-associated interstitial lung disease that augments TGF-beta1 signaling. J Immunol. 2012;189(5):2635–44. Pubmed Central PMCID: 4336775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hasegawa M, Asano Y, Endo H, Fujimoto M, Goto D, Ihn H, et al. Serum adhesion molecule levels as prognostic markers in patients with early systemic sclerosis: a multicentre, prospective, observational study. PLoS One. 2014;9(2):e88150. Pubmed Central PMCID: 3916412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ogawa F, Shimizu K, Muroi E, Hara T, Hasegawa M, Takehara K, et al. Serum levels of 8-isoprostane, a marker of oxidative stress, are elevated in patients with systemic sclerosis. Rheumatology (Oxford). 2006;45(7):815–8. eng.

    Article  CAS  Google Scholar 

  81. Volpe A, Biasi D, Caramaschi P, Mantovani W, Bambara LM, Canestrini S, et al. Levels of F2-isoprostanes in systemic sclerosis: correlation with clinical features. Rheumatology (Oxford). 2006;45(3):314–20. eng.

    Article  CAS  Google Scholar 

  82. Stuart BD, Lee JS, Kozlitina J, Noth I, Devine MS, Glazer CS, et al. Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. Lancet Respir Med. 2014;2(7):557–65. Pubmed Central PMCID: 4136521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schmidt K, Martinez-Gamboa L, Meier S, Witt C, Meisel C, Hanitsch LG, et al. Bronchoalveoloar lavage fluid cytokines and chemokines as markers and predictors for the outcome of interstitial lung disease in systemic sclerosis patients. Arthritis Res Ther. 2009;11(4):R111. eng.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kim HJ, Brown MS, Elashoff R, Li G, Gjertson DW, Lynch DA, et al. Quantitative texture-based assessment of one-year changes in fibrotic reticular patterns on HRCT in scleroderma lung disease treated with oral cyclophosphamide. Eur Radiol. 2011;21(12):2455–65.

    Article  PubMed  Google Scholar 

  85. Stewart NJ, Leung G, Norquay G, Marshall H, Parra-Robles J, Murphy PS, et al. Experimental validation of the hyperpolarized Xe chemical shift saturation recovery technique in healthy volunteers and subjects with interstitial lung disease. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med. 2014.

    Google Scholar 

  86. Hashefi M, Curiel R. Future and upcoming non-neoplastic applications of PET/CT imaging. Ann N Y Acad Sci. 2011;1228:167–74.

    Article  CAS  PubMed  Google Scholar 

  87. Morita Y, Kuwagata S, Kato N, Tsujimura Y, Mizutani H, Suehiro M, et al. 18F-FDG PET/CT useful for the early detection of rapidly progressive fatal interstitial lung disease in dermatomyositis. Intern Med. 2012;51(12):1613–8.

    Article  PubMed  Google Scholar 

  88. Owada T, Maezawa R, Kurasawa K, Okada H, Arai S, Fukuda T. Detection of inflammatory lesions by f-18 fluorodeoxyglucose positron emission tomography in patients with polymyositis and dermatomyositis. J Rheumatol. 2012;39(8):1659–65.

    Article  CAS  PubMed  Google Scholar 

  89. Foris V, Kovacs G, Tscherner M, Olschewski A, Olschewski H. Biomarkers in pulmonary hypertension: what do we know? Chest. 2013;144(1):274–83.

    Article  CAS  PubMed  Google Scholar 

  90. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D42–50.

    Article  PubMed  Google Scholar 

  91. Humbert M, Yaici A, de Groote P, Montani D, Sitbon O, Launay D, et al. Screening for pulmonary arterial hypertension in patients with systemic sclerosis: clinical characteristics at diagnosis and long-term survival. Arthritis Rheum. 2011;63(11):3522–30.

    Article  PubMed  Google Scholar 

  92. Denton CP, Cailes JB, Phillips GD, Wells AU, Black CM, Bois RM. Comparison of Doppler echocardiography and right heart catheterization to assess pulmonary hypertension in systemic sclerosis. Br J Rheumatol. 1997;36(2):239–43.

    Article  CAS  PubMed  Google Scholar 

  93. McGoon M, Gutterman D, Steen V, Barst R, McCrory DC, Fortin TA, et al. Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004;126(1 Suppl):14S–34.

    Article  PubMed  Google Scholar 

  94. Allanore Y, Borderie D, Avouac J, Zerkak D, Meune C, Hachulla E, et al. High N-terminal pro-brain natriuretic peptide levels and low diffusing capacity for carbon monoxide as independent predictors of the occurrence of precapillary pulmonary arterial hypertension in patients with systemic sclerosis. Arthritis Rheum. 2008;58(1):284–91.

    Article  CAS  PubMed  Google Scholar 

  95. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537.

    Article  PubMed  Google Scholar 

  96. Coghlan JG, Denton CP, Grunig E, Bonderman D, Distler O, Khanna D, et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis. 2014;73(7):1340–9. Pubmed Central PMCID: 4078756.

    Article  PubMed  Google Scholar 

  97. Mathai SC, Sibley CT, Forfia PR, Mudd JO, Fisher MR, Tedford RJ, et al. Tricuspid annular plane systolic excursion is a robust outcome measure in systemic sclerosis-associated pulmonary arterial hypertension. J Rheumatol. 2011;38(11):2410–8.

    Article  PubMed  Google Scholar 

  98. Chung L, Liu J, Parsons L, Hassoun PM, McGoon M, Badesch DB, et al. Characterization of connective tissue disease-associated pulmonary arterial hypertension from REVEAL: identifying systemic sclerosis as a unique phenotype. Chest. 2010;138(6):1383–94. Pubmed Central PMCID: 3621419.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cavagna L, Caporali R, Klersy C, Ghio S, Albertini R, Scelsi L, et al. Comparison of brain natriuretic peptide (BNP) and NT-proBNP in screening for pulmonary arterial hypertension in patients with systemic sclerosis. J Rheumatol. 2010;37(10):2064–70.

    Article  CAS  PubMed  Google Scholar 

  100. Williams MH, Handler CE, Akram R, Smith CJ, Das C, Smee J, et al. Role of N-terminal brain natriuretic peptide (N-TproBNP) in scleroderma-associated pulmonary arterial hypertension. Eur Heart J. 2006;27(12):1485–94.

    Article  CAS  PubMed  Google Scholar 

  101. Quarck R, Nawrot T, Meyns B, Delcroix M. C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension. J Am Coll Cardiol. 2009;53(14):1211–8.

    Article  CAS  PubMed  Google Scholar 

  102. Tamura Y, Ono T, Kuwana M, Inoue K, Takei M, Yamamoto T, et al. Human pentraxin 3 (PTX3) as a novel biomarker for the diagnosis of pulmonary arterial hypertension. PLoS One. 2012;7(9):e45834. Pubmed Central PMCID: 3448700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pendergrass SA, Hayes E, Farina G, Lemaire R, Farber HW, Whitfield ML, et al. Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLoS One. 2010;5(8):e12106. Pubmed Central PMCID: 2923145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Dromparis P, Michelakis ED. F2-isoprostanes: an emerging pulmonary arterial hypertension biomarker and potential link to the metabolic theory of pulmonary arterial hypertension? Chest. 2012;142(4):816–20.

    Article  PubMed  Google Scholar 

  105. Morelli S, Ferri C, Polettini E, Bellini C, Gualdi GF, Pittoni V, et al. Plasma endothelin-1 levels, pulmonary hypertension, and lung fibrosis in patients with systemic sclerosis. Am J Med. 1995;99(3):255–60. eng.

    Article  CAS  PubMed  Google Scholar 

  106. Ciurzynski M, Bienias P, Irzyk K, Kostrubiec M, Bartoszewicz Z, Siwicka M, et al. Serum endothelin-1 and NT-proBNP, but not ADMA, endoglin and TIMP-1 levels, reflect impaired right ventricular function in patients with systemic sclerosis. Clin Rheumatol. 2014;33(1):83–9. Pubmed Central PMCID: 3890053.

    Article  PubMed  Google Scholar 

  107. Rubens C, Ewert R, Halank M, Wensel R, Orzechowski HD, Schultheiss HP, et al. Big endothelin-1 and endothelin-1 plasma levels are correlated with the severity of primary pulmonary hypertension. Chest. 2001;120(5):1562–9.

    Article  CAS  PubMed  Google Scholar 

  108. Cracowski JL, Degano B, Chabot F, Labarere J, Schwedhelm E, Monneret D, et al. Independent association of urinary F2-isoprostanes with survival in pulmonary arterial hypertension. Chest. 2012;142(4):869–76.

    Article  CAS  PubMed  Google Scholar 

  109. Malhotra R, Paskin-Flerlage S, Zamanian RT, Zimmerman P, Schmidt JW, Deng DY, et al. Circulating angiogenic modulatory factors predict survival and functional class in pulmonary arterial hypertension. Pulm Circ. 2013;3(2):369–80. Pubmed Central PMCID: 3757832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lorenzen JM, Nickel N, Kramer R, Golpon H, Westerkamp V, Olsson KM, et al. Osteopontin in patients with idiopathic pulmonary hypertension. Chest. 2011;139(5):1010–7.

    Article  CAS  PubMed  Google Scholar 

  111. Lorenzen JM, Kramer R, Meier M, Werfel T, Wichmann K, Hoeper MM, et al. Osteopontin in the development of systemic sclerosis – relation to disease activity and organ manifestation. Rheumatology (Oxford). 2010;49(10):1989–91. eng.

    Article  CAS  Google Scholar 

  112. Renard S, Paulin R, Breuils-Bonnet S, Simard S, Pibarot P, Bonnet S, et al. Pim-1: a new biomarker in pulmonary arterial hypertension. Pulm Circ. 2013;3(1):74–81. Pubmed Central PMCID: 3641743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Santos M, Reis A, Goncalves F, Ferreira-Pinto MJ, Cabral S, Torres S, et al. Adiponectin levels are elevated in patients with pulmonary arterial hypertension. Clin Cardiol. 2013.

    Google Scholar 

  114. Chora I, Guiducci S, Manetti M, Romano E, Mazzotta C, Bellando-Randone S, et al. Vascular biomarkers and correlation with peripheral vasculopathy in systemic sclerosis. Autoimmun Rev. 2015;14(4):314–22.

    Article  CAS  PubMed  Google Scholar 

  115. Sfikakis PP, Tesar J, Baraf H, Lipnick R, Klipple G, Tsokos GC. Circulating intercellular adhesion molecule-1 in patients with systemic sclerosis. Clin Immunol Immunopathol. 1993;68(1):88–92. eng.

    Article  CAS  PubMed  Google Scholar 

  116. Wipff J, Avouac J, Borderie D, Zerkak D, Lemarechal H, Kahan A, et al. Disturbed angiogenesis in systemic sclerosis: high levels of soluble endoglin. Rheumatology (Oxford). 2008;47(7):972–5.

    Article  CAS  Google Scholar 

  117. Sulli A, Soldano S, Pizzorni C, Montagna P, Secchi ME, Villaggio B, et al. Raynaud’s phenomenon and plasma endothelin: correlations with capillaroscopic patterns in systemic sclerosis. J Rheumatol. 2009;36(6):1235–9.

    Article  CAS  PubMed  Google Scholar 

  118. Kim HS, Park MK, Kim HY, Park SH. Capillary dimension measured by computer-based digitalized image correlated with plasma endothelin-1 levels in patients with systemic sclerosis. Clin Rheumatol. 2010;29(3):247–54.

    Article  PubMed  Google Scholar 

  119. Bassyouni IH, Gheita TA, Talaat RM. Clinical significance of serum levels of sCD36 in patients with systemic sclerosis: preliminary data. Rheumatology (Oxford). 2011;50(11):2108–12.

    Article  CAS  Google Scholar 

  120. Riccieri V, Stefanantoni K, Vasile M, Macri V, Sciarra I, Iannace N, et al. Abnormal plasma levels of different angiogenic molecules are associated with different clinical manifestations in patients with systemic sclerosis. Clin Exp Rheumatol. 2011;29(2 Suppl 65):S46–52.

    PubMed  Google Scholar 

  121. Avouac J, Meune C, Ruiz B, Couraud PO, Uzan G, Boileau C, et al. Angiogenic biomarkers predict the occurrence of digital ulcers in systemic sclerosis. Ann Rheum Dis. 2012;71(3):394–9.

    Article  CAS  PubMed  Google Scholar 

  122. Terras S, Opitz E, Moritz RK, Hoxtermann S, Gambichler T, Kreuter A. Increased serum IL-33 levels may indicate vascular involvement in systemic sclerosis. Ann Rheum Dis. 2013;72(1):144–5.

    Article  CAS  PubMed  Google Scholar 

  123. Manetti M, Guiducci S, Ceccarelli C, Romano E, Bellando-Randone S, Conforti ML, et al. Increased circulating levels of interleukin 33 in systemic sclerosis correlate with early disease stage and microvascular involvement. Ann Rheum Dis. 2011;70(10):1876–8.

    Article  CAS  PubMed  Google Scholar 

  124. Rankin AL, Mumm JB, Murphy E, Turner S, Yu N, McClanahan TK, et al. IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol. 2010;184(3):1526–35.

    Article  CAS  PubMed  Google Scholar 

  125. Valentini G, Bencivelli W, Bombardieri S, D’Angelo S, Della Rossa A, Silman AJ, et al. European Scleroderma Study Group to define disease activity criteria for systemic sclerosis. III. Assessment of the construct validity of the preliminary activity criteria. Ann Rheum Dis. 2003;62(9):901–3. Pubmed Central PMCID: 1754649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Valentini G, Della Rossa A, Bombardieri S, Bencivelli W, Silman AJ, D’Angelo S, et al. European multicentre study to define disease activity criteria for systemic sclerosis. II. Identification of disease activity variables and development of preliminary activity indexes. Ann Rheum Dis. 2001;60(6):592–8. Pubmed Central PMCID: 1753669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Khanna D, Distler O, Avouac J, Behrens F, Clements PJ, Denton C, et al. Measures of response in clinical trials of systemic sclerosis: the Combined Response Index for Systemic Sclerosis (CRISS) and Outcome Measures in Pulmonary Arterial Hypertension related to Systemic Sclerosis (EPOSS). J Rheumatol. 2009;36(10):2356–61.

    Article  PubMed  Google Scholar 

  128. Sambataro D, Sambataro G, Zaccara E, Maglione W, Polosa R, Afeltra AM, et al. Nailfold videocapillaroscopy micro-haemorrhage and giant capillary counting as an accurate approach for a steady state definition of disease activity in systemic sclerosis. Arthritis Res Ther. 2014;16(5):462. Pubmed Central PMCID: 4212098.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Michalska-Jakubus M, Kowal-Bielecka O, Chodorowska G, Bielecki M, Krasowska D. Angiopoietins-1 and -2 are differentially expressed in the sera of patients with systemic sclerosis: high angiopoietin-2 levels are associated with greater severity and higher activity of the disease. Rheumatology (Oxford). 2011;50(4):746–55. eng.

    Article  CAS  Google Scholar 

  130. Abignano G, Cuomo G, Buch MH, Rosenberg WM, Valentini G, Emery P, et al. The enhanced liver fibrosis test: a clinical grade, validated serum test, biomarker of overall fibrosis in systemic sclerosis. Ann Rheum Dis. 2014;73(2):420–7.

    Article  PubMed  Google Scholar 

  131. Budulgan M, Dilek B, Dag SB, Batmaz I, Yildiz I, Sariyildiz MA, et al. Relationship between serum leptin level and disease activity in patients with systemic sclerosis. Clin Rheumatol. 2014;33(3):335–9.

    Article  PubMed  Google Scholar 

  132. Muangchan C, Harding S, Khimdas S, Bonner A, Canadian Scleroderma Research g, Baron M, et al. Association of C-reactive protein with high disease activity in systemic sclerosis: results from the Canadian Scleroderma Research Group. Arthritis Care Res. 2012;64(9):1405–14.

    Article  CAS  Google Scholar 

  133. Hesselstrand R, Andreasson K, Wuttge DM, Bozovic G, Scheja A, Saxne T. Increased serum COMP predicts mortality in SSc: results from a longitudinal study of interstitial lung disease. Rheumatology (Oxford). 2012;51(5):915–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lafyatis MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lafyatis, R., Jimenez, S.A. (2017). Biomarkers in Systemic Sclerosis. In: Varga, J., Denton, C., Wigley, F., Allanore, Y., Kuwana, M. (eds) Scleroderma. Springer, Cham. https://doi.org/10.1007/978-3-319-31407-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31407-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31405-1

  • Online ISBN: 978-3-319-31407-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics