Skip to main content

Iron Oxides and Their Silica Nanocomposites as Biocompatible Systems for Biomedical Applications

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

Abstract

This chapter is dedicated to iron oxides as well as their composites, in nanometer scale. Such systems are representatives of magnetic nanoparticles. In this chapter, most popular synthesis routes, properties, and applications, mainly in biomedical fields, will be presented. Magnetic nanoparticles (MNPs) have made a special contribution in the development of many fields of science and industry, e.g., electronic, medicine, biotechnology, and so on. Iron oxides, especially γ-Fe2O3 (maghemite) and Fe3O4 (magnetite), are one of the most primary known examples of MNPs. What is more, they are of still interest to many technologists and are particularly interesting subjects of many researches. A big challenge is to develop optimal conditions for synthesis of the magnetic composites to achieve systems with specific properties, as well as their further study allowing the best usage of the obtained nanocomposites.

The first part of this chapter is devoted to description of magnetic nanoparticles, with the special emphasis to those of iron, such as maghemite and magnetite. The most popular chemical synthesis routes will be referred, as well as their occurrence in natural environment. Moreover, their properties in conjunction with their most popular applications will be shortly described. In the next section of this chapter, the most popular applications of hybrid nanomaterials, based on magnetic iron oxide nanoparticles covered by outer silica layers (mainly in medicine), will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolewski A (1979) Żelazo – Fe. Wyd. Geologiczne, Warszawa, p 9

    Google Scholar 

  2. Ślawska-Waniewska A (2004) Wybrane zagadnienia współczesnego biomagnetyzmu. Postęp fizyki 55(4):157–161

    Google Scholar 

  3. Zboril R, Mashlan M, Petridis D (2002) Iron(III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem Mater 14(3):969–982

    Article  Google Scholar 

  4. Horak D, Babic M, Mackova H et al (2007) Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci 30(11):1751–1772

    Article  Google Scholar 

  5. Matijevic E (1986) Science of ceramic chemical processing. In: Hench LL, Ulrich DR (eds). Wiley, New York, p 463–481

    Google Scholar 

  6. Tronc E, Chaneac C, Jolivet JP (1998) Structural and magnetic characterization of ε-Fe2O3. J Solid State Chem 139(1):93–104

    Article  ADS  Google Scholar 

  7. Morales MP, Veintemillas-Verdaguer S, Montero MI et al (1999) Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater 11(11):3058–3064

    Article  Google Scholar 

  8. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248

    Article  ADS  Google Scholar 

  9. Sugimoto T, Matijevic E (1980) Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J Colloid Interface Sci 74(1):227–243

    Article  Google Scholar 

  10. Liz L, Lopez-Quintela MA, Mira J et al (1994) Preparation of colloidal Fe3O4 ultrafine particles in microemulsions. J Mater Sci 29:3797–3801

    Article  ADS  Google Scholar 

  11. Tartaj P, Morales MP, Veintemillas-Verdaguer S et al (2006) Synthesis, properties and biomedical applications of magnetic nanoparticles. In: Buschow KHJ (ed) Handbook of magnetic materials. Elsevier, p 403–482 (in press)

    Google Scholar 

  12. Xu J, Yang H, Fu W et al (2007) Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J Magn Magn Mater 309(2):307–311

    Article  ADS  Google Scholar 

  13. Pascal C, Pascal JL, Favier F et al (1999) Electrochemical synthesis for the control of I³-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11(1):141–147

    Article  Google Scholar 

  14. Abu Mukh-Qasem R, Gedanken A (2005) Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J Colloid Interface Sci 284(2):489–494

    Article  Google Scholar 

  15. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  Google Scholar 

  16. Lowenstam HA (1962) Magnetite in denticle capping in recent chitons (Polyplacophora). Geol Soc Am Bull 73(4):435–438

    Article  Google Scholar 

  17. Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379

    Article  ADS  Google Scholar 

  18. Guerrero-Martinez A, Perez-Juste J, Liz-Marzan LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22:1182–1195

    Article  Google Scholar 

  19. Kumar CSSR (ed) (2009) Magnetic nanomaterials. Nanomaterials for the life sciences, vol 4. Wiley-VCH, Weinheim

    Google Scholar 

  20. Yi DK, Selvan ST, Lee SS et al (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127:4990–4991

    Article  Google Scholar 

  21. Guo J, Yang W, Deng Y et al (2005) Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsules. Small 7:737–743

    Article  Google Scholar 

  22. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  23. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  Google Scholar 

  24. Rudzka K, Delgado AV, Viota JL (2012) Maghemite functionalization for antitumor drug vehiculization. Mol Pharm 9:2017–2028

    Article  Google Scholar 

  25. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  Google Scholar 

  26. Sieben S, Bergemann C, Lubbe A et al (2001) Comparison of different particles and methods for magnetic isolation of circulating tumor cells. J Magn Magn Mater 225:175–179

    Article  ADS  Google Scholar 

  27. Alam S, Anand C, Logudurai R (2009) Comparative study on the magnetic properties of iron oxide nanoparticles loaded on mesoporous silica and carbon materials with different structure. Microporous Mesoporous Mat 121(1–3):178–184

    Article  Google Scholar 

  28. Bourlinos AB, Simopoulos A, Boukos N et al (2002) Magnetic modification of the external surfaces in the MCM-41 porous silica: synthesis, characterization, and functionalization. J Phys Chem B 105:7432–7437

    Article  Google Scholar 

  29. Gubin SP, Koksharov YA, Khomutov GB et al (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74(6):489–520

    Article  ADS  Google Scholar 

  30. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    Article  Google Scholar 

  31. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  32. Smith PW (2002) Fluorescence emission-based detection and diagnosis of malignancy. J Cell Biochem Suppl 39:54–59

    Article  Google Scholar 

  33. Melnik IV, Zub YL, Alonso B et al (2012) Creation of a functional polysiloxane layer on the surface of magnetic nanoparticles using the sol-gel method. Glas Phys Chem 38:96–104

    Article  Google Scholar 

  34. Melnyk IV, Zub YL (2012) Preparation and characterization of magnetic nanoparticles with bifunctional surface layer ≡ Si(CH2)3NH2/≡SiCH3 (or ≡ SiC3H7-n). Microporous Mesoporous Mat 154:196–199

    Article  Google Scholar 

  35. Rudzka K, Viota JV, Muñoz-Gamez JA (2013) Nanoengineering of doxorubicin delivery systems with functionalized maghemite nanoparticles. Colloids Surf B Biointerfaces 111:88–96

    Article  Google Scholar 

  36. Salgueirino-Maceira V, Correa-Duarte MA, Farle M et al (2006) Bifunctional gold-coated magnetic silica spheres. Chem Mater 18(11):2701–2706

    Article  Google Scholar 

  37. Maier-Hauff K, Ulrich F, Nestler D et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103(2):317–324

    Article  Google Scholar 

  38. Dewey WC, Hopwood LE, Sapareto SA et al (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123:463–474

    Article  Google Scholar 

  39. Hernandez JF, Secrest JA, Hill L et al (2009) Scientific advances in the genetic understanding and diagnosis of malignant hyperthermia. J Perianesth Nurs 24:19–34

    Article  Google Scholar 

  40. Hildebrandt B, Wurst P, Ahlers O et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56

    Article  Google Scholar 

  41. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  Google Scholar 

  42. Maeda H, Wu J, Sawa T et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  Google Scholar 

  43. Gilchrist RK, Shorey WD, Hanselman RC et al (1957) Selective inductive heating of lymph. Ann Surg 146:596–606

    Article  Google Scholar 

  44. Laurent S, Dutz S, Hafeli UO et al (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23

    Article  Google Scholar 

  45. Mahmoudi M, Milani AS, Stroeve P (2010) Surface architecture of superparamagnetic iron oxide nanoparticles for application in drug delivery and their biological response: a review. Int J Biomed Nanosci Nanotechnol 1(2/3/4):164–201

    Article  Google Scholar 

  46. Mahmoudi M, Sant S, Wang B et al (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46

    Article  Google Scholar 

  47. The Official Web Site of the Nobel Prize (2015) http://www.nobelprize.org/nobel_prizes/physics/laureates/1901/. Accessed 10 Dec 2015

  48. FDA U.S. Food and Drug Administration (2015) http://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/MedicalImaging/ucm200086.htm. Accessed 14 Dec 2015

  49. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  ADS  Google Scholar 

  50. Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys 10:L55–L58

    Article  ADS  Google Scholar 

  51. Bloch F, Hansen WW, Packard M (1946) Nuclear induction. Phys Rev 69:127

    Article  ADS  Google Scholar 

  52. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  ADS  Google Scholar 

  53. Richard C, Qle MC, Scherman D (2008) Nanoparticles for imaging and tumor gene delivery. Tumori 94:264–270

    Google Scholar 

  54. Choi H, Choi SR, Zhou R et al (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 11(9):996–1004

    Article  Google Scholar 

  55. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  Google Scholar 

  56. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  Google Scholar 

  57. Waters EA, Wickline SA (2008) Contrast agents for MRI. Basic Res Cardiol 103:114–121

    Article  Google Scholar 

  58. Sharma P, Brown S, Walter G et al (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126:471–485

    Article  Google Scholar 

  59. Klug G, Kampf T, Bloemer S et al (2010) Intracellular and extracellular T1 and T2 relaxivities of magneto-optical nanoparticles at experimental high fields. Magn Reson Med 64:1607–1615

    Article  Google Scholar 

  60. Toboada E, Rodríguez E, Roig A et al (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23:4583–4588

    Article  Google Scholar 

  61. Lattuada M, Hatton TA (2007) Functionalization of monodisperse magnetic nanoparticles. Langmuir 23(4):2158–2168

    Article  Google Scholar 

  62. Zimmermann U, Pilwat G (1976) Organ specific application of drugs by means of cellular capsule systems. J Biosci 31:732

    Google Scholar 

  63. Hafeli UO, Sweeney SM, Beresford BA et al (1994) Magnetically directed poly(lactic acid) 90Y-microspheres: novel agents for targeted intracavitary radiotherapy. J Biomed Mater Res 28(8):901–908

    Article  Google Scholar 

  64. Widder KJ, Morris RM, Poore G et al (1981) Tumor remission in Yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc Natl Acad Sci USA 78(1):579–581

    Article  ADS  Google Scholar 

  65. Widder KJ, Senyel AE, Scarpelli GD (1978) Magnetic microspheres: a model system of site specific drug delivery in vivo. Proc Soc Exp Biol Med 158:141–146

    Article  Google Scholar 

  66. Lubbe AS, Bergemann C, Huhnt W et al (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56(20):4694–4701

    Google Scholar 

  67. Sajja HK, Eest MP, Mao H et al (2009) Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 6(1):43–51

    Article  Google Scholar 

  68. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9(2):E128–E147

    Article  Google Scholar 

  69. Arruebo M, Fernández-Pacheco R, Ibarra MR et al (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Article  Google Scholar 

  70. Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2:145–150

    Article  ADS  Google Scholar 

  71. Sun S, Zeng H, Robinson DB et al (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279

    Article  Google Scholar 

  72. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801

    Article  Google Scholar 

  73. Kim JE, Shin JY, Cho MH (2012) Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 86:685–700

    Article  Google Scholar 

  74. Hofmann-Amtenbrink M, Von Rechenberg B, Hofmann H (2009) Superparamagnetic nanoparticles for biomedical application. In: Tan MC (ed) Nanostructured materials for biomedical applications. Trans Research Network, Kerala, pp 119–149

    Google Scholar 

  75. Janusz W, Sedłak A (2011) Specific adsorption of carbonate ions at the hematite/aqueous electrolyte solution interface. Physicochem Probl Mi 46:65–72

    Google Scholar 

  76. Melnyk IV, Gdula K, Dąbrowski A, YL Zub (2016) Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups. Nanoscale Res Lett 11:61–67

    Google Scholar 

  77. K Gdula, A Dbrowski, E Skwarek (2016) Synthesis, surface characterization and electrokinetic properties of colloidal silica nanoparticles with magnetic core. Adsorption 22:681–688

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina Gdula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gdula, K., Skwarek, E., Dąbrowski, A. (2016). Iron Oxides and Their Silica Nanocomposites as Biocompatible Systems for Biomedical Applications. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_43

Download citation

Publish with us

Policies and ethics