Skip to main content
Log in

Contrast agents for MRI

  • REVIEW
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Molecular imaging is a rapidly growing field with the potential to revolutionize cardiovascular medicine by shifting diagnostic focus from functional abnormalities which occur late in a disease process to the biochemical events which precipitate the earliest stages of disease. MRI is a modality well suited to this task as it allows a variety of contrast mechanisms for detection of epitopes of interest, as well as high-resolution anatomical localization and functional information. In this review, we discuss the widerange of available molecular MRI contrast agents and their application to diseases such as atherosclerosis, thrombus imaging, and stem cell tracking, along with opportunities for molecularly targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R (2007) Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115:377–386

    Article  PubMed  CAS  Google Scholar 

  2. Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JGS, Weinreb DB, Vucic E, Frias JC, Hyafil F, Mani V, Fisher EA, Fayad ZA (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci USA 104:961–966

    Article  PubMed  CAS  Google Scholar 

  3. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JWM, Frank JA (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonnance imaging after cell transplantation: methods and techniques. Transplantation 76:1123–1130

    Article  PubMed  CAS  Google Scholar 

  4. Botnar RM, Perez AS, Witte S, Wiethoff AJ, Laredo J, Hamilton J, Quist W, Parsons EC, Vaidya A, Kolodziej A, Barrett JA, Graham PB, Weisskoff RM, Manning WJ, Johnstone MT (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029

    Article  PubMed  CAS  Google Scholar 

  5. Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, Boppart SA, Strano MS (2007) Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett 7:861–867

    Article  PubMed  CAS  Google Scholar 

  6. Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM (2001) Novel MRI contrast agent for molecular imaging of fibrin implications for detecting vulnerable plaques. Circulation 104:1280–1285

    Article  PubMed  CAS  Google Scholar 

  7. Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH, Bulte JWM (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487

    Article  PubMed  Google Scholar 

  8. Ho C, Hitchens TK (2004) A non-invasive approach to detecting organ rejection by MRI: Monitoring the accumulation of immune cells at the transplanted organ. Curr Pharm Biotechnol 5:551–566

    Article  PubMed  CAS  Google Scholar 

  9. Jaffer FA, Kim DE, Quinti L, Tung CH, Aikawa E, Pande AN, Kohler RH, Shi GP, Libby P, Weissleder R (2007) Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115:2292–2298

    Article  PubMed  Google Scholar 

  10. Kolodgie FD, John M, Khurana C, Farb A, Wilson PS, Acampado E, Desai N, Soon-Shiong P, Virmani R (2002) Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation 106:1195–1198

    Article  PubMed  CAS  Google Scholar 

  11. Kooi ME, Cappendijk VC, Cleutjens KBJM, Kessels AGH, Kitslaar PJEH, Borgers M, Frederik PM, Daemen MJAP, van Engelshoven JMA (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458

    Article  PubMed  CAS  Google Scholar 

  12. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, Bulte JWM (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  PubMed  Google Scholar 

  13. Lanza GM, Wallace KD, Scott MJ, Cacheris WP, Abendschein DR, Christy DH, Sharkey AM, Miller JG, Gaffney PJ, Wickline SA (1996) A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94:3334–3340

    PubMed  CAS  Google Scholar 

  14. Lanza GM, Yu X, Winter PM, Abendschein DR, Karukstis KK, Scott MJ, Chinen LK, Fuhrhop RW, Scherrer DE, Wickline SA (2002) Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent implications for rational therapy of restenosis. Circulation 106:2842–2847

    Article  PubMed  CAS  Google Scholar 

  15. Mani V, Briley-Saebo KC, Itskovich VV, Samber DD, Fayad ZA (2006) GRadient echo Acquisition for Superparamagnetic particles with positive contrast (GRASP): Sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med 55:126–135

    Article  PubMed  CAS  Google Scholar 

  16. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed  CAS  Google Scholar 

  17. Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F, Robertson JD, Gaffney PJ, Lanza GM, Wickline SA (2004) Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted F-19 nanoparticles. Magn Reson Med 52:1255–1262

    Article  PubMed  CAS  Google Scholar 

  18. Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J (1999) Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 99:1726–1732

    PubMed  CAS  Google Scholar 

  19. Mulder WJM, Koole R, Brandwijk RJ, Storm G, Chin PTK, Strijkers GJ, Donega CD, Nicolay K, Griffioen AW (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1–6

    Article  PubMed  CAS  Google Scholar 

  20. Mulder WJM, Strijkers GJ, Griffioen AW, van Bloois L, Molema G, Storm G, Koning GA, Nicolay K (2004) A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug Chem 15:799–806

    Article  PubMed  CAS  Google Scholar 

  21. Partlow KC, Chen JJ, Brant JA, Neubauer AM, Meyerrose TE, Creer MH, Nolta JA, Caruthers SD, Lanza GM, Wickline SA (2007) F-19 magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. Faseb J 21:1647–1654

    Article  PubMed  CAS  Google Scholar 

  22. Penno E, Johnsson C, Johansson L, Ahlstrom H (2005) Comparison of ultrasmall superparamagnetic iron oxide particles and low molecular weight contrast agents to detect rejecting transplanted hearts with magnetic resonance imaging. Invest Radiol 40:648–654

    Article  PubMed  CAS  Google Scholar 

  23. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422

    PubMed  CAS  Google Scholar 

  24. Schellenberger EA, Hogemann D, Josephson L, Weissleder R (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Acad Radiol 9:S310–S311

    Article  PubMed  Google Scholar 

  25. Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Toth E, Helm L, Merbach AE, Wilson LJ (2005) Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun 3915–3917

  26. Sosnovik DE, Nahrendorf M, Deliolanis N, Novikov M, Aikawa E, Josephson L, Rosenzweig A, Weissleder R, Ntziachristos V (2007) Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115:1384–1391

    Article  PubMed  Google Scholar 

  27. Spuentrup E, Fausten B, Kinzel S, Wiethoff AJ, Botnar RM, Graham PB, Haller S, Katoh M, Parsons EC, Manning WJ, Busch T, Gunther RW, Buecker A (2005) Molecular magnetic resonance imaging of atrial clots in a swine model. Circulation 112:396–399

    Article  PubMed  Google Scholar 

  28. Spuentrup E, Katoh M, Wiethoff AJ, Parsons EC, Botnar RM, Mahnken AH, Gunther RW, Buecker A (2005) Molecular magnetic resonance imaging of pulmonary emboli with a fibrin-specific contrast agent. Am J Respir Crit Care Med 172:494–500

    Article  PubMed  Google Scholar 

  29. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture - Angiogenesis as a source of intraplaque hemorrhage. Arterioscle Thromb Vasc Biol 25:2054–2061

    Article  CAS  Google Scholar 

  30. Winter PM, Cai KJ, Chen J, Adair CR, Kiefer GE, Athey PS, Gaffney PJ, Buff CE, Robertson JD, Caruthers SD, Wickline SA, Lanza GM (2006) Targeted PARACEST nanoparticle contrast agent for the detection of fibrin. Magn Reson Med 56:1384–1388

    Article  PubMed  CAS  Google Scholar 

  31. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang HY, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta(3)-integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  PubMed  CAS  Google Scholar 

  32. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, Schmieder AH, Hu G, Allen JS, Lacy EK, Zhang HY, Wickline SA, Lanza GM (2006) Endothelial alpha(v)beta(3) integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscle Thromb Vasc Biol 26:2103–2109

    Article  CAS  Google Scholar 

  33. Wu J, Lee A, Lu YH, Lee RJ (2007) Vascular targeting of doxorubicin using cationic liposomes. Int J Pharm 337:329–335

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

E.A. Waters has no conflict of interest to declare. S.A. Wickline has a research agreement with Philips Medical Systems, he holds equity and is consultant of Kereos, Inc., and co-founder of PixelEXX System, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Wickline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waters, E.A., Wickline, S.A. Contrast agents for MRI. Basic Res Cardiol 103, 114–121 (2008). https://doi.org/10.1007/s00395-008-0711-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0711-6

Key words

Navigation