Skip to main content

Adipose-Derived Stem Cell-Based Therapies in Regenerative Medicine

  • Chapter
  • First Online:
Advances in Stem Cell Therapy

Abstract

Stem cell therapy is emerging as a viable and effective approach to the treatment of chronic and intractable diseases. Both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been differentiated in the lab with high reproducibility into many tissue and organ cells. However, their routine application in clinical settings still requires substantial fine-tuning. Issues with mutations, tumorigenicity, differentiation efficiency, and ethical considerations hamper much anticipated clinical applications. Adult stem cells offer promising alternatives and do not suffer the same ethical and safety issues of embryonic cells. Adipose mesenchymal stem cells (ASCs) have been recently obtained from fat tissue, routinely collected from liposuction patients. ASCs appear to have many advantages that substantiate their use in clinical applications. They can be effectively harvested from fat tissue in large numbers and are genetically stable in long-term, in vitro culture. They have favorable immune-modulating functions in transplantation medicine, such as preventing severe graft-versus-host disease. Recent data from our laboratories shows that ASCs are more resilient, compared to bone marrow stem cells. This is evident in their resistance to hypoxic stress and alleviation of ischemia in vivo. Because of the recent history of ASCs, their use in the clinic was rushed without enough data on their quality, safety, or the reproducibility of the results obtained in the laboratory. Extensive preclinical studies are also lacking, especially when they are compared to other stromal cells, such as bone marrow MSCs. In this chapter, we will provide an overview of some of the aspects of isolation, characterization, and immunomodulatory properties of ASCs. We will also review some preclinical and clinical studies in which ASCs were applied, and showed some promise in regenerative therapy, and highlight challenges and future directions in using this promising form of cell-based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  2. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5(5):362–9.

    Article  PubMed  Google Scholar 

  3. Bongso A, et al. Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod. 1994;9(11):2110–7.

    CAS  PubMed  Google Scholar 

  4. Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  5. Yamanaka S. Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci. 2008;363(1500):2079–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med. 2009;15(2):59–68.

    Article  CAS  PubMed  Google Scholar 

  7. Cyranoski D. Stem cells: 5 things to know before jumping on the iPS bandwagon. Nature. 2008;452(7186):406–8.

    Article  CAS  PubMed  Google Scholar 

  8. Friedenstein AJ, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230–47.

    Article  CAS  PubMed  Google Scholar 

  9. Jaiswal RK, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem. 2000;275(13):9645–52.

    Article  CAS  PubMed  Google Scholar 

  10. Johnstone B, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238(1):265–72.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Y, et al. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26(6):664–75.

    Article  CAS  PubMed  Google Scholar 

  12. Oedayrajsingh-Varma MJ, et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8(2):166–77.

    Article  CAS  PubMed  Google Scholar 

  13. Aust L, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  14. Zuk PA, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  15. Zuk PA, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.

    Article  CAS  PubMed  Google Scholar 

  17. Safford KM, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 2002;294(2):371–9.

    Article  CAS  PubMed  Google Scholar 

  18. Planat-Benard V, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63.

    Article  PubMed  Google Scholar 

  19. Seo MJ, et al. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. 2005;328(1):258–64.

    Article  CAS  PubMed  Google Scholar 

  20. Timper K, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341(4):1135–40.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu X, et al. The comparison of biological characteristics and multilineage differentiation of bone marrow and adipose derived Mesenchymal stem cells. Cell Tissue Res. 2012;350(2):277–87.

    Article  CAS  PubMed  Google Scholar 

  22. Kuo YR, et al. Modulation of immune response and T-cell regulation by donor adipose-derived stem cells in a rodent hind-limb allotransplant model. Plast Reconstr Surg. 2011;128(6):661e–72e.

    Article  PubMed  CAS  Google Scholar 

  23. Bassi EJ, et al. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes. 2012;61(10):2534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meza-Zepeda LA, et al. High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J Cell Mol Med. 2008;12(2):553–63.

    Article  CAS  PubMed  Google Scholar 

  25. Dahl JA, et al. Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. Int J Dev Biol. 2008;52(8):1033–42.

    Article  CAS  PubMed  Google Scholar 

  26. Rodbell M. Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem. 1966;241(1):130–9.

    CAS  PubMed  Google Scholar 

  27. Rodbell M. The metabolism of isolated fat cells. IV. Regulation of release of protein by lipolytic hormones and insulin. J Biol Chem. 1966;241(17):3909–17.

    CAS  PubMed  Google Scholar 

  28. Rodbell M, Jones AB. Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem. 1966;241(1):140–2.

    CAS  PubMed  Google Scholar 

  29. Tremolada C, Palmieri G, Ricordi C. Adipocyte transplantation and stem cells: plastic surgery meets regenerative medicine. Cell Transplant. 2010;19(10):1217–23.

    Article  PubMed  Google Scholar 

  30. Rada T, Reis RL, Gomes ME. Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Eng Part B Rev. 2009;15(2):113–25.

    Article  CAS  PubMed  Google Scholar 

  31. Fraser J, et al. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy. 2007;9(5):459–67.

    Article  CAS  PubMed  Google Scholar 

  32. Katz AJ, et al. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 2005;23(3):412–23.

    Article  CAS  PubMed  Google Scholar 

  33. Katz AJ, et al. A novel device for the simple and efficient refinement of liposuctioned tissue. Plast Reconstr Surg. 2001;107(2):595–7.

    Article  CAS  PubMed  Google Scholar 

  34. Gronthos S, et al. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189(1):54–63.

    Article  CAS  PubMed  Google Scholar 

  35. Boquest AC, et al. Isolation of stromal stem cells from human adipose tissue. Methods Mol Biol. 2006;325:35–46.

    PubMed  Google Scholar 

  36. Quirici N, et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol. 2002;30(7):783–91.

    Article  CAS  PubMed  Google Scholar 

  37. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78(1):55–62.

    CAS  PubMed  Google Scholar 

  38. Gronthos S, et al. A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells. Stem Cells Dev. 2007;16(6):953–63.

    Article  CAS  PubMed  Google Scholar 

  39. Battula VL, et al. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica. 2009;94(2):173–84.

    Article  CAS  PubMed  Google Scholar 

  40. De Ugarte DA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett. 2003;89(2-3):267–70.

    Article  PubMed  CAS  Google Scholar 

  41. Mitchell JB, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2):376–85.

    Article  PubMed  Google Scholar 

  42. Strem BM, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54(3):132–41.

    Article  CAS  PubMed  Google Scholar 

  43. Simmons PJ, et al. Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood. 1992;80(2):388–95.

    CAS  PubMed  Google Scholar 

  44. Sudhoff T, Sohngen D. Circulating endothelial adhesion molecules (sE-selectin, sVCAM-1 and sICAM-1) during rHuG-CSF-stimulated stem cell mobilization. J Hematother Stem Cell Res. 2002;11(1):147–51.

    Article  CAS  PubMed  Google Scholar 

  45. Tse WT, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez-Rey E, et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis. 2010;69(1):241–8.

    Article  CAS  PubMed  Google Scholar 

  47. Yanez R, et al. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24(11):2582–91.

    Article  CAS  PubMed  Google Scholar 

  48. Niemeyer P, et al. Survival of human mesenchymal stromal cells from bone marrow and adipose tissue after xenogenic transplantation in immunocompetent mice. Cytotherapy. 2008;10(8):784–95.

    Article  CAS  PubMed  Google Scholar 

  49. Cui L, et al. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng. 2007;13(6):1185–95.

    Article  CAS  PubMed  Google Scholar 

  50. Puissant B, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129(1):118–29.

    Article  PubMed  Google Scholar 

  51. Melief SM, et al. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013;2(6):455–63.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Muehlberg FL, et al. Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis. 2009;30(4):589–97.

    Article  CAS  PubMed  Google Scholar 

  53. Yu JM, et al. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev. 2008;17(3):463–73.

    Article  CAS  PubMed  Google Scholar 

  54. Kucerova L, et al. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res. 2007;67(13):6304–13.

    Article  CAS  PubMed  Google Scholar 

  55. Grisendi G, et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res. 2010;70(9):3718–29.

    Article  CAS  PubMed  Google Scholar 

  56. Cousin B, et al. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One. 2009;4(7):e6278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther. 2010;1(2):19.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bai X, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J. 2009;31(4):489–501.

    Article  PubMed  CAS  Google Scholar 

  59. Cai L, et al. IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells. 2009;27(1):230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Choi YS, et al. Engineering cardiac tissue in vivo from human adipose-derived stem cells. Biomaterials. 2010;31(8):2236–42.

    Article  CAS  PubMed  Google Scholar 

  61. Cowan CM, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol. 2004;22(5):560–7.

    Article  CAS  PubMed  Google Scholar 

  62. Lopez MJ, et al. Acceleration of spinal fusion using syngeneic and allogeneic adult adipose derived stem cells in a rat model. J Orthop Res. 2009;27(3):366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  63. McIntosh KR, et al. Immunogenicity of allogeneic adipose-derived stem cells in a rat spinal fusion model. Tissue Eng Part A. 2009;15(9):2677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dave SD, Vanikar AV, Trivedi HL. Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue. Indian J Endocrinol Metab. 2012;16 Suppl 1:S65–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chandra V, et al. Generation of pancreatic hormone-expressing islet-like cell aggregates from murine adipose tissue-derived stem cells. Stem Cells. 2009;27(8):1941–53.

    Article  CAS  PubMed  Google Scholar 

  66. Kajiyama H, et al. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int J Dev Biol. 2010;54(4):699–705.

    Article  CAS  PubMed  Google Scholar 

  67. Li YY, et al. Adipose-derived mesenchymal stem cells ameliorate STZ-induced pancreas damage in type 1 diabetes. Biomed Mater Eng. 2012;22(1-3):97–103.

    PubMed  Google Scholar 

  68. Si Y, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes. 2012;61(6):1616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ohmura Y, et al. Combined transplantation of pancreatic islets and adipose tissue-derived stem cells enhances the survival and insulin function of islet grafts in diabetic mice. Transplantation. 2010;90(12):1366–73.

    Article  CAS  PubMed  Google Scholar 

  70. Cavallari G, et al. Mesenchymal stem cells and islet cotransplantation in diabetic rats: improved islet graft revascularization and function by human adipose tissue-derived stem cells preconditioned with natural molecules. Cell Transplant. 2012;21(12):2771–81.

    Article  PubMed  Google Scholar 

  71. Anghileri E, et al. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 2008;17(5):909–16.

    Article  CAS  PubMed  Google Scholar 

  72. Gao S, et al. Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds. Tissue Eng Part A. 2014;20(7-8):1271–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Franco Lambert AP, et al. Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation. 2009;77(3):221–8.

    Article  PubMed  CAS  Google Scholar 

  74. Kim JM, et al. Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res. 2007;1183:43–50.

    Article  CAS  PubMed  Google Scholar 

  75. Kang SK, et al. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol. 2003;183(2):355–66.

    Article  CAS  PubMed  Google Scholar 

  76. Kang SK, et al. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev. 2006;15(4):583–94.

    Article  CAS  PubMed  Google Scholar 

  77. Constantin G, et al. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 2009;27(10):2624–35.

    Article  CAS  PubMed  Google Scholar 

  78. Lee CS, et al. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration. Stem Cell Res Ther. 2012;3(4):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim JH, et al. Suppression of in vitro murine T cell proliferation by human adipose tissue-derived mesenchymal stem cells is dependent mainly on cyclooxygenase-2 expression. Anat Cell Biol. 2013;46(4):262–71.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gonzalez MA, et al. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136(3):978–89.

    Article  CAS  PubMed  Google Scholar 

  81. Aurich H, et al. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut. 2009;58(4):570–81.

    Article  CAS  PubMed  Google Scholar 

  82. Banas A, et al. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J Gastroenterol Hepatol. 2009;24(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  83. Banas A, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007;46(1):219–28.

    Article  CAS  PubMed  Google Scholar 

  84. Ishikawa T, et al. Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal stem cells. Curr Stem Cell Res Ther. 2010;5(2):182–9.

    Article  CAS  PubMed  Google Scholar 

  85. Ruiz JC, et al. Differentiated human adipose-derived stem cells exhibit hepatogenic capability in vitro and in vivo. J Cell Physiol. 2010;225(2):429–36.

    Article  CAS  PubMed  Google Scholar 

  86. Talens-Visconti R, et al. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol. 2006;12(36):5834–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen G, et al. Adipose-derived stem cell-based treatment for acute liver failure. Stem Cell Res Ther. 2015;6:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Katsuda T, et al. The in vivo evaluation of the therapeutic potential of human adipose tissue-derived mesenchymal stem cells for acute liver disease. Methods Mol Biol. 2014;1213:57–67.

    Article  CAS  PubMed  Google Scholar 

  89. Banas A, et al. IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells. 2008;26(10):2705–12.

    Article  CAS  PubMed  Google Scholar 

  90. Kang Y, et al. Unsorted human adipose tissue-derived stem cells promote angiogenesis and myogenesis in murine ischemic hindlimb model. Microvasc Res. 2010;80(3):310–6.

    Article  CAS  PubMed  Google Scholar 

  91. Kim Y, et al. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem. 2007;20(6):867–76.

    Article  CAS  PubMed  Google Scholar 

  92. Fang B, et al. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc. 2007;39(10):3358–62.

    Article  CAS  PubMed  Google Scholar 

  93. Fang B, et al. Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children. Pediatr Transplant. 2007;11(7):814–7.

    Article  CAS  PubMed  Google Scholar 

  94. Fang B, et al. Using human adipose tissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis. Transplant Proc. 2007;39(5):1710–3.

    Article  CAS  PubMed  Google Scholar 

  95. Fang B, et al. Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplant. 2006;38(5):389–90.

    Article  CAS  PubMed  Google Scholar 

  96. Riordan NH, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009;7:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Trivedi HL, et al. Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplant Proc. 2008;40(4):1135–9.

    Article  CAS  PubMed  Google Scholar 

  98. Garcia-Olmo D, et al. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. Int J Colorectal Dis. 2003;18(5):451–4.

    Article  PubMed  Google Scholar 

  99. Garcia-Olmo D, et al. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48(7):1416–23.

    Article  PubMed  Google Scholar 

  100. Garcia-Olmo D, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52(1):79–86.

    Article  PubMed  Google Scholar 

  101. Herreros MD, et al. Autologous expanded adipose-derived stem cells for the treatment of complex cryptoglandular perianal fistulas: a phase III randomized clinical trial (FATT 1: fistula Advanced Therapy Trial 1) and long-term evaluation. Dis Colon Rectum. 2012;55(7):762–72.

    Article  CAS  PubMed  Google Scholar 

  102. Lee WY, et al. Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn’s fistula. Stem Cells. 2013;31(11):2575–81.

    Article  CAS  PubMed  Google Scholar 

  103. Lendeckel S, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32(6):370–3.

    Article  PubMed  Google Scholar 

  104. Mesimaki K, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38(3):201–9.

    Article  CAS  PubMed  Google Scholar 

  105. Jo CH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–66.

    Article  CAS  PubMed  Google Scholar 

  106. Ra JC, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011;20(8):1297–308.

    Article  CAS  PubMed  Google Scholar 

  107. Lee HC, et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J. 2012;76(7):1750–60.

    Article  CAS  PubMed  Google Scholar 

  108. Koh KS, et al. Clinical application of human adipose tissue-derived mesenchymal stem cells in progressive hemifacial atrophy (Parry-Romberg disease) with microfat grafting techniques using 3-dimensional computed tomography and 3-dimensional camera. Ann Plast Surg. 2012;69(3):331–7.

    Article  CAS  PubMed  Google Scholar 

  109. Yoshimura K, et al. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg. 2008;34(9):1178–85.

    CAS  PubMed  Google Scholar 

  110. Yoshimura K, et al. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008;32(1):48–55. discussion 56–7.

    Article  PubMed  Google Scholar 

  111. Perin EC, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J. 2014;168(1):88–95.e2.

    Article  CAS  PubMed  Google Scholar 

  112. Matsumoto T, et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol. 2008;215(1):210–22.

    Article  CAS  PubMed  Google Scholar 

  113. Ono H, et al. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes. Biochem Biophys Res Commun. 2011;407(3):562–7.

    Article  CAS  PubMed  Google Scholar 

  114. Jumabay M, et al. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J Mol Cell Cardiol. 2009;47(5):565–75.

    Article  CAS  PubMed  Google Scholar 

  115. Kazama T, et al. Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro. Biochem Biophys Res Commun. 2008;377(3):780–5.

    Article  CAS  PubMed  Google Scholar 

  116. Sugihara H, et al. Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation. 1986;31(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  117. Hildner F, et al. Human adipose-derived stem cells contribute to chondrogenesis in coculture with human articular chondrocytes. Tissue Eng Part A. 2009;15(12):3961–9.

    Article  CAS  PubMed  Google Scholar 

  118. Gao Q, et al. Expression pattern of embryonic stem cell markers in DFAT cells and ADSCs. Mol Biol Rep. 2012;39(5):5791–804.

    Article  CAS  PubMed  Google Scholar 

  119. Poloni A, et al. Human dedifferentiated adipocytes show similar properties to bone marrow-derived mesenchymal stem cells. Stem Cells. 2012;30(5):965–74.

    Article  CAS  PubMed  Google Scholar 

  120. Nobusue H, Endo T, Kano K. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res. 2008;332(3):435–46.

    Article  CAS  PubMed  Google Scholar 

  121. Kishimoto N, et al. Dedifferentiated fat cells differentiate into osteoblasts in titanium fiber mesh. Cytotechnology. 2013;65(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  122. Yagi K, et al. A novel preadipocyte cell line established from mouse adult mature adipocytes. Biochem Biophys Res Commun. 2004;321(4):967–74.

    Article  CAS  PubMed  Google Scholar 

  123. Sakuma T, et al. Mature, adipocyte derived, dedifferentiated fat cells can differentiate into smooth muscle-like cells and contribute to bladder tissue regeneration. J Urol. 2009;182(1):355–65.

    Article  PubMed  Google Scholar 

  124. Obinata D, et al. Transplantation of mature adipocyte-derived dedifferentiated fat (DFAT) cells improves urethral sphincter contractility in a rat model. Int J Urol. 2011;18(12):827–34.

    Article  CAS  PubMed  Google Scholar 

  125. Ohta Y, et al. Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT), promoted functional recovery from spinal cord injury-induced motor dysfunction in rats. Cell Transplant. 2008;17(8):877–86.

    Article  PubMed  Google Scholar 

  126. Rehman J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.

    Article  PubMed  Google Scholar 

  127. Moon MH, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem. 2006;17(5-6):279–90.

    Article  CAS  PubMed  Google Scholar 

  128. Kilroy GE, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212(3):702–9.

    Article  CAS  PubMed  Google Scholar 

  129. Bailey AM, Kapur S, Katz AJ. Characterization of adipose-derived stem cells: an update. Curr Stem Cell Res Ther. 2010;5(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  130. Gimble JM, et al. Concise review: adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation. Stem Cells. 2011;29(5):749–54.

    Article  PubMed  Google Scholar 

  131. Wei S, et al. Dedifferentiated adipocyte-derived progeny cells (DFAT cells): potential stem cells of adipose tissue. Adipocyte. 2013;2(3):122–7.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lindroos B, et al. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng Part A. 2010;16(7):2281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zannettino AC, et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol. 2008;214(2):413–21.

    Article  CAS  PubMed  Google Scholar 

  134. Lindroos B, et al. Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy. 2009;11(7):958–72.

    Article  CAS  PubMed  Google Scholar 

  135. Parker A, et al. Low serum and serum-free culture of multipotential human adipose stem cells. Cytotherapy. 2007;9(7):637–46.

    Article  CAS  PubMed  Google Scholar 

  136. Mirabet V, et al. Human platelet lysate enhances the proliferative activity of cultured human fibroblast-like cells from different tissues. Cell Tissue Bank. 2008;9(1):1–10.

    Article  PubMed  Google Scholar 

  137. Kern S, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported by a grant (ID 5300) funded by the Science and Technology Development Fund (STDF), Egypt.

Disclosure The authors report no conflicts of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagwa El-Badri M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El-Badawy, A., Ahmed, S.M., El-Badri, N. (2017). Adipose-Derived Stem Cell-Based Therapies in Regenerative Medicine. In: El-Badri, N. (eds) Advances in Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29149-9_7

Download citation

Publish with us

Policies and ethics