Skip to main content

Voltammetric Electronic Tongue for the Sensing of Explosives and Its Mixtures

  • Chapter
  • First Online:
Biosensors for Security and Bioterrorism Applications

Abstract

This chapter presents recent work with electronic tongues, that is sensor analytical systems formed by an array of chemical sensors featuring low selectivity plus a chemometric tool to process the complex multivariate data that is generated. As the generic application covered is related to security, the described systems are those devised to identify and detect explosive compounds. These are characterized from their voltammetric features, whereas a particular fingerprint is used to identify particular compounds alone, or, in a more advanced application, to resolve mixtures of compounds, that is to quantify their presence in mixtures. Two are the main approaches shown, a first from the use of a voltammetric screen printed electrode, and a second one from an array of metallic electrodes. Detected compounds are different nitro-based energetic compounds, and later, also the identification of organic peroxide type compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhavan J (2004) The chemistry of explosives, 2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Schulte-Ladbeck R, Vogel M, Karst U (2006) Recent methods for the determination of peroxide-based explosives. Anal Bioanal Chem 386(3):559–565

    Article  Google Scholar 

  3. Lu T, Yuan Y, He X, Li M, Pu X, Xu T, Wen Z (2015) Simultaneous determination of multiple components in explosives using ultraviolet spectrophotometry and a partial least square method. RSC Adv 5(17):13021–13027

    Google Scholar 

  4. Wang J (2007) Electrochemical Sensing of Explosives. Electroanalysis 19(4):415–423

    Article  Google Scholar 

  5. del Valle M (2010) Electronic tongues employing electrochemical sensors. Electroanalysis 22(14):1539–1555

    Google Scholar 

  6. Yinon J (2002) Field detection and monitoring of explosives. TrAC—Trends Anal Chem 21(4):292–301

    Article  Google Scholar 

  7. Wang J (2002) Portable electrochemical systems. TrAC Trends Anal Chem 21(4):226–232

    Article  Google Scholar 

  8. Galik M, O’Mahony AM, Wang J (2011) Cyclic and square-wave voltammetric signatures of nitro-containing explosives. Electroanalysis 23(5):1193–1204

    Article  Google Scholar 

  9. Alegret S, Alonso J, Bartroli J, Cespedes F, MartinezFabregas E, del Valle M (1996) Amperometric biosensors based on bulk-modified epoxy graphite biocomposites. Sens Mater 8(3):147–153

    Google Scholar 

  10. Caygill JS, Collyer SD, Holmes JL, Davis F, Higson SPJ (2013) Electrochemical detection of TNT at cobalt phthalocyanine mediated screen-printed electrodes and application to detection of airborne vapours. Electroanalysis 25(11):2445–2452

    Article  Google Scholar 

  11. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614(1):1–26

    Article  Google Scholar 

  12. Alizadeh T, Ganjali MR, Norouzi P, Zare M, Zeraatkar A (2009) A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer–carbon paste electrode. Talanta 79(5):1197–1203

    Article  Google Scholar 

  13. Riskin M, Ben-Amram Y, Tel-Vered R, Chegel V, Almog J, Willner I (2011) Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Anal Chem 83(8):3082–3088

    Article  Google Scholar 

  14. Pravdová V, Pravda M, Guilbault GG (2002) Role of chemometrics for electrochemical sensors. Anal Lett 35(15):2389–2419

    Article  Google Scholar 

  15. Ni Y, Kokot S (2008) Does chemometrics enhance the performance of electroanalysis? Anal Chim Acta 626(2):130–146

    Article  Google Scholar 

  16. Cetó X, Céspedes F, del Valle M (2013) Comparison of methods for the processing of voltammetric electronic tongues data. Microchim Acta 180(5–6):319–330

    Article  Google Scholar 

  17. Jolliffe I (2005) Principal component analysis. In: Encyclopedia of statistics in behavioral science, Wiley

    Google Scholar 

  18. Cetó X, Céspedes F, Pividori MI, Gutiérrez JM, del Valle M (2012) Resolution of phenolic antioxidant mixtures employing a voltammetric bio-electronic tongue. Analyst 137(2):349–356

    Article  ADS  Google Scholar 

  19. Gutierrez-Osuna R, Nagle HT (1999) A method for evaluating data-preprocessing techniques for odour classification with an array of gas sensors. Syst, Man, Cybern, Part B: Cybern, IEEE Trans 29(5):626–632

    Article  Google Scholar 

  20. Moreno-Barón L, Cartas R, Merkoçi A, Alegret S, del Valle M, Leija L, Hernandez PR, Muñoz R (2006) Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongue. Sens Actuators B: Chem 113(1):487–499

    Article  Google Scholar 

  21. Cetó X, Céspedes F, del Valle M (2012) BioElectronic Tongue for the quantification of total polyphenol content in wine. Talanta 99:544–551

    Article  Google Scholar 

  22. Riul A Jr, Dantas CAR, Miyazaki CM, Oliveira ON Jr (2010) Recent advances in electronic tongues. Analyst 135(10):2481–2495

    Article  ADS  Google Scholar 

  23. Richards E, Bessant C, Saini S (2002) Multivariate data analysis in electroanalytical chemistry. Electroanalysis 14:1533–1542

    Article  Google Scholar 

  24. Cetó X, O’Mahony AM, Wang J, del Valle M (2013) Simultaneous identification and quantification of nitro-containing explosives by advanced chemometric data treatment of cyclic voltammetry at screen-printed electrodes. Talanta 107:270–276

    Article  Google Scholar 

  25. Grossmann A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15(4):723–736

    Article  MathSciNet  MATH  Google Scholar 

  26. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. Pattern Anal Mach Intell IEEE Trans 11(7):674–693

    Article  ADS  MATH  Google Scholar 

  27. Despagne F, Massart DL (1998) Neural networks in multivariate calibration. Analyst 123(11):157R–178R

    Article  ADS  Google Scholar 

  28. Cetó X, Gutiérrez JM, Moreno-Barón L, Alegret S, del Valle M (2011) Voltammetric electronic tongue in the analysis of cava wines. Electroanalysis 23(1):72–78

    Article  Google Scholar 

  29. Moreno-Barón L, Cartas R, Merkoçi A, Alegret S, Gutiérrez JM, Leija L, Hernandez PR, Muñoz R, del Valle M (2005) Data compression for a voltammetric electronic tongue modelled with artificial neural networks. Anal Lett 38(13):2189–2206

    Article  Google Scholar 

  30. Gutés A, Calvo D, Céspedes F, del Valle M (2007) Automatic sequential injection analysis electronic tongue with integrated reference electrode for the determination of ascorbic acid, uric acid and paracetamol. Microchim Acta 157(1–2):1–6

    Article  Google Scholar 

  31. Boger Z (2003) Selection of quasi-optimal inputs in chemometrics modeling by artificial neural network analysis. Anal Chim Acta 490(1–2):31–40

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Spanish Ministry of Economy and Innovation, MINECO (Madrid) through project CTQ2013-41577-P is gratefully acknowledged. M. del Valle thanks the support from program ICREA Academia. A. González-Calabuig thanks the Universitat Autònoma de Barcelona (UAB) for the award of PIF studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel del Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González-Calabuig, A., del Valle, M. (2016). Voltammetric Electronic Tongue for the Sensing of Explosives and Its Mixtures. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_4

Download citation

Publish with us

Policies and ethics