Skip to main content

Metabolic Engineering for Improving Production of Taxol

  • Reference work entry
  • First Online:
Transgenesis and Secondary Metabolism

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Taxol (generic name paclitaxel), a complex diterpenoid, is an efficient antineoplastic drug extracted from the plant. It has been approved for the management of several cancers including lungs, breast, and ovary cancers. The bark of several Taxus species is the natural source of taxol, but its lower accumulation (0.01–0.04% dry weight) elevated the price of extraction. Its complex structure prohibits the complete chemical synthesis of the compounds in economical approach at the industrial level. Therefore, a plethora of approaches has been implemented by several researchers for alternative and economical production of taxol. The advent of recombinant DNA technologies has resulted in the commencement of metabolic engineering as an effective alternative for the production of pharmaceutically important plant natural products at industrial levels. Plants have emergence as a perfect system for metabolic engineering due to its relatively cheap price and easiness in growing. Plant cell factories provide an alternative source for the scale-up of the production of high added value secondary metabolites including the anticancer drug taxol that is biosynthesized in Taxus spp. in very tiny quantity. The demand for taxol and its derivatives has increased enormously owing to its unique antineoplastic activity, lack of the taxane ring in nature and complexity of chemical synthesis. Therefore, countless efforts have been executed in worldwide for the biotechnological production of taxol. In this chapter, we have discussed different features of metabolic engineering, including genetic manipulation of plants as well as microbes to increase production of taxol and its precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

10-DAB:

10-Deacetylbaccatin III

BAPT:

Baccatin III C-13-phenylpropanoyl-CoA transferase

BMS:

Bristol-Myers Squibb

DBAT:

10-Deacetylbaccatin III-10-O-acetyltransferase

DBTNBT:

3′-N-debenzoyl-2′-deoxytaxol N-benzoyl transferase

DMAPP:

Dimethylallyl pyrophosphate

FDA:

Food and Drug Administration

FDP:

Farnesyl diphosphate

GGPP:

Geranylgeranyl diphosphate

GGPPS:

Geranylgeranyl diphosphate synthase

IPI:

Isopentenyl diphosphate isomerase

IPP:

Isopentenyl pyrophosphate

MVA:

Mevalonic acid

NCI:

National Cancer Institute

PAM:

Phenylalanine aminomutase

T10βH:

Taxoid 10β-hydroxylase

TBT:

Taxane 2α-O-benzoyl transferase

TDAT:

Taxadiene-5α-ol-O-acetyltransferase

TXS:

Taxadiene synthase

USDA:

United States Department of Agriculture

References

  1. Hartmann T (2007) From waste products to eco chemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  CAS  Google Scholar 

  2. Wink M (2008) Plant secondary metabolism: diversity, function, and its evolution. Nat Prod Commun 3:1205–1216

    CAS  Google Scholar 

  3. Harborne JB (1999) Classes and functions of secondary products. In: Walton NJ, Brown DE (eds) Chemicals from plants, perspectives on secondary plant products. Imperial College Press, London, pp 1–25

    Chapter  Google Scholar 

  4. Bourgaud F, Gravot A, Milesi S, Gonntier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  5. Kutchan TM (1995) Alkaloid biosynthesis-the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070

    CAS  Google Scholar 

  6. Ashour M, Wink M, Gershenzon J (2010) Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes. In: Wink M (ed) Annual plant reviews: biochemistry of plant secondary metabolism, vol 40, 2nd edn. Wiley, New York. doi:10.1002/9781444320503.ch5

    Google Scholar 

  7. Baloglu E, Kingston DG (1999) The taxane diterpenoids. J Nat Prod 62:1448–1472

    Article  CAS  Google Scholar 

  8. Itokawa H (2003) Taxoids occurring in the genus Taxus. In: Itokawa H, Lee K-H (eds) Taxus – the genus Taxus. Taylor & Francis, London, pp 35–78

    Google Scholar 

  9. Wani MC, Taylor HL, Wall ME, Coggan P, McPhail AT (1971) Plant antitumor agents: VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Article  CAS  Google Scholar 

  10. Goodman J, Walsh V (2001) The story of taxol. Cambridge University Press, Cambridge, p 282

    Google Scholar 

  11. Holton RA, Kim HB, Somoza C, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim S (1994) First total synthesis of taxol. 2. Completion of the C and D rings. J Am Chem Soc 116:1599–1600

    Article  CAS  Google Scholar 

  12. Expósito O, Bonfill M, Onrubia M, Jané A, Moyano E, Cusidó RM, Palazón J, Piñol MT (2008) Effect of taxol feeding on taxol and related taxane production in Taxus baccata suspension cultures. New Biotechnol 25:252–259

    Article  CAS  Google Scholar 

  13. Kim JA, Baek KH, Son YM, Son SH, Shin H (2009) Hairy root cultures of Taxus cuspidata for enhanced production of paclitaxel. J Korean Soc Appl Biol Chem 52:144–150

    Article  CAS  Google Scholar 

  14. Masters JJ, Link JT, Snyder LB, Young WB, Danishefsky SJ (1995) A total synthesis of taxol. Angew Chem Int Ed Eng 34:1723–1726

    Article  CAS  Google Scholar 

  15. Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K et al (1994) Total synthesis of taxol. Nature 367:630–634

    Article  CAS  Google Scholar 

  16. Nicolaou KC, Guy RK (1995) The conquest of taxol. Angew Chem Int Ed Eng 34:2079–2090

    Article  CAS  Google Scholar 

  17. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  Google Scholar 

  18. Jacobsen JR, Khosla C (1998) New directions in metabolic engineering. Curr Opin Chem Biol 2:133–137

    Article  CAS  Google Scholar 

  19. Grotewold E (2008) Transcription factors for predictive plant metabolic engineering: are we there yet? Curr Opin Biotechnol 19:138–144

    Article  CAS  Google Scholar 

  20. Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7:202–209

    Article  CAS  Google Scholar 

  21. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358

    Article  CAS  Google Scholar 

  22. Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, van der Krol S, Wessjohann L, Warzecha H (2013) Natural products – modifying metabolite pathways in plants. Biotechnol J 8:1159–1171

    Article  CAS  Google Scholar 

  23. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178

    Article  CAS  Google Scholar 

  24. Xu P, Bhan N, Koffas MA (2013) Engineering plant metabolism into microbes: from systems biology to synthetic biology. Curr Opin Biotechnol 24:291–299

    Article  CAS  Google Scholar 

  25. Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14:233–241

    Article  CAS  Google Scholar 

  26. Panchagnula R (1998) Pharmaceutical aspects of paclitaxel. Int J Pharm 72:1–15

    Article  Google Scholar 

  27. Perdue RE Jr, Hartwell JL (1969) The search for plant sources of anticancer drugs. Morris Arboretum Bull 20:35–53

    CAS  Google Scholar 

  28. Wall ME, Wani MC (1995) Camptothecin and taxol: discovery to clinic – thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 55:753–760

    CAS  Google Scholar 

  29. Wall ME, Wani MC (1977) Antineoplastic agents from plants. Annu Rev Pharmacol Toxicol 17:117–132

    Article  CAS  Google Scholar 

  30. Fuchs DA, Johnson RK (1978) Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. Cancer Treat Rep 62:1219–1222

    CAS  Google Scholar 

  31. McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, Donehower RC (1989) Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med 111:273–279

    Article  CAS  Google Scholar 

  32. Walsh V, Goodman J (1999) Cancer chemotherapy, biodiversity, public and private property: the case of the anti-cancer drug taxol. Soc Sci Med 49:1215–1225

    Article  CAS  Google Scholar 

  33. Walsh V, Goodman J (2002) From taxol to Taxol: the changing identities and ownership of an anti-cancer drug. Med Anthropol 21:307–336

    Article  Google Scholar 

  34. Walsh V, Goodman J (2002) The billion dollar molecule: taxol in historical and theoretical perspective. Clio Med 66:245–267

    Google Scholar 

  35. Bala S, Uniyal GC, Chattopadhyay SK, Tripathi V, Sashidhara KV, Kulshrestha M et al (1999) Analysis of taxol and major taxoids in Himalayan yew, Taxus wallichiana. J Chromatogr A 858:239–244

    Article  CAS  Google Scholar 

  36. Prasain JK, Stefanowicz P, Kiyota T, Habeichi F, Konishi Y (2001) Taxines from the needles of Taxus wallichiana. Phytochemistry 58:1167–1170

    Article  CAS  Google Scholar 

  37. Jha S, Sanyal D, Ghosh B, Jha TB (1998) Improved taxol yield in cell suspension culture of Taxus wallichiana (Himalayan Yew). Planta Med 64:270–272

    Article  CAS  Google Scholar 

  38. Mukherjee S, Ghosh B, Jha TB, Jha S (2002) Variation in content of taxol and related taxanes in Eastern Himalayan populations of Taxus wallichiana. Planta Med 68:757–759

    Article  CAS  Google Scholar 

  39. Jha S, Jha TB (1995) A fast growing cell line of Taxus baccata L. (Himalayan yew) as a potential source of taxol precursor. Curr Sci 69:971–973

    CAS  Google Scholar 

  40. Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97

    Article  CAS  Google Scholar 

  41. Guenard D, Gueritte-Voegelein F, Poiter P (1993) Taxol and taxotere: discovery, chemistry and structure activity relationship. Acc Chem Res 26:160–167

    Article  CAS  Google Scholar 

  42. Pronk LC, Stoter G, Verweij J (1995) Docetaxel (Taxotere): single agent activity, development of combination treatment and reducing side-effects. Cancer Treat Rev 21:463–478

    Article  CAS  Google Scholar 

  43. Fumoleau P, Chevallier B, Kerbrat P, Dieras V, Azli N, Bayssas M, Glabbeke MV (1995) Current status of Taxotere® (docetaxel) as a new treatment in breast cancer. Breast Cancer Res Treat 33:39–46

    Article  CAS  Google Scholar 

  44. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  Google Scholar 

  45. Strobel GA, Hess WM, Li JY (1997) Pestalotiopsis guepinii, a taxol producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Biotechnol 45:1073–1082

    Article  CAS  Google Scholar 

  46. Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W (2000) Taxol from Tuberfularia sp, strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193:249–253

    Article  CAS  Google Scholar 

  47. Zhang P, Zhou PP, Jiang C, Yu H, Yu LJ (2008) Screening of Taxol – producing fungi based on PCR amplification from Taxus. Biotechnol Lett 30:2119–2123

    Article  CAS  Google Scholar 

  48. Zhao K, Sun L, Ma X, Li X, Wang X, Ping W, Zhou D (2011) Improved Taxol production in Nodulisporium sylviforme derived from inactivated protoplast fusion. Afr J Biotechnol 10:4175–4182

    Article  CAS  Google Scholar 

  49. Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ (1996) Endophytic Taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 142:2223–2226

    Article  CAS  Google Scholar 

  50. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nat Biotechnol 277:665–667

    CAS  Google Scholar 

  51. Rischin D, Smith J, Millward M, Lewis C, Boyer M, Richardson G, Toner G, Gurney H, McKendrick J (2000) A phase II trial of paclitaxel and epirubicin in advanced breast cancer. Br J Cancer 83:438–442

    Article  CAS  Google Scholar 

  52. Fauzee NJS (2011) Taxanes: promising anti-cancer drugs. Asian Pac J Cancer Prev 12:837–851

    Google Scholar 

  53. Wall ME, Wani MC, Cook CE, Palmer CE, McPhail AT (1966) Plant antitumor agents: I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3894

    Article  CAS  Google Scholar 

  54. Wani MC, Kepler JA, Thompson JB, Wall ME, Levine SG (1970) Plant antitumour agents: alkaloids – synthesis of a pentacyclic camptothecin precursor. Chem Commun 7:404

    Article  Google Scholar 

  55. Wall ME, Wani MC, Taylor HL (1976) Isolation and chemical characterization of antitumor agents from plants. Cancer Treat Rep 60:1011–1014

    CAS  Google Scholar 

  56. Patel RN (1998) Tour de paclitaxel: biocatalysis for semisynthesis. Annu Rev Microbiol 98:361–395

    Article  Google Scholar 

  57. Horwitz SB (1992) Mechanism of action of taxol. Trends Pharmacol Sci 13:134–136

    Article  CAS  Google Scholar 

  58. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77:1561–1565

    Article  CAS  Google Scholar 

  59. Jordan MA, Toso RJ, Thrower D, Wilson L (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci U S A 90:9552–9556

    Article  CAS  Google Scholar 

  60. Jordan M, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10:123–130

    Article  CAS  Google Scholar 

  61. Long B, Fairchild C (1994) Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res 54:4355–4361

    CAS  Google Scholar 

  62. Donaldson K, Goolsby G, Wahl A (1994) Cytotoxicity of the anti-cancer agents cisplatin and taxol during cell proliferation and the cell cycle. Int J Cancer 57:847–855

    Article  CAS  Google Scholar 

  63. Huisman C, Ferreira C, Broker L, Rodriguez J, Smit E, Postmus P, Kruyt F, Giaccone G (2002) Paclitaxel triggers cell death primarily via caspase-independent routes in the nonsmall cell lung cancer cell line NCI-H460. Clin Cancer Res 8:596–606

    CAS  Google Scholar 

  64. Oyaizu H, Adachi Y, Taketani S, Tokunaga R, Fukuhara S, Ikehara S (1999) A crucial role of caspase 3 and caspase 8 in paclitaxel-induced apoptosis. Mol Cell Biol Res Commun 2:36–41

    Article  CAS  Google Scholar 

  65. Mielgo A, Torres V, Clair K, Barbero S, Stupack D (2009) Paclitaxel promotes a caspase 8-mediated apoptosis through death effector domain association with microtubules. Oncogene 28:3551–3562

    Article  CAS  Google Scholar 

  66. Park S-J, Wu C-H, Gordon J, Zhong X, Emami A, Safa A (2004) Taxol induces caspase 10-dependent apoptosis. J Biol Chem 279:51057–51067

    Article  CAS  Google Scholar 

  67. Kingston DGI (2000) Recent advances in the chemistry of taxol. J Nat Prod 63:726–734

    Article  CAS  Google Scholar 

  68. He L, Jagtap GP, Kingston DGI, Shen HJ, Orr GA, Horwitz SB (2000) A common pharmacophore for taxol and the epothilones based on the biological activity of taxane molecule lacking a C-13 side chain. Biochemist 39:3972–3978

    Article  CAS  Google Scholar 

  69. Hezari M, Ketchum REB, Gibson DM, Croteau R (1997) Taxol production and taxadiene synthase activity in Taxus canadensis cell suspension cultures. Arch Biochem Biophys 337:185–190

    Article  CAS  Google Scholar 

  70. Koepp AE, Hezari M, Zajicek J, Stofer VB, LaFever RE, Lewis NG, Croteau RB (1995) Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of taxol biosynthesis in Pacific yew. J Biol Chem 270:8686–8690

    Article  CAS  Google Scholar 

  71. Wildung MR, Croteau RA (1996) cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271:9201–9204

    Article  CAS  Google Scholar 

  72. Jennewein S, Long RM, Williams RM, Croteau R (2004) Cytochrome p450 taxadiene 5alpha-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis. Chem Biol 11:379–387

    Article  CAS  Google Scholar 

  73. Hefner J, Rubenstein SM, Ketchum REB, Gibson DM, Williams RM, Croteau R (1996) Cytochrome p450-catalyzed hydroxylation of taxa-4(5),11(12)-dien to taxa-4(20),11(12)-dien-alpha-ol. The first oxygenation step in taxol biosynthesis. Chem Biol 3:479–489

    Article  CAS  Google Scholar 

  74. Walker KD, Schoendorf A, Croteau R (2000) Molecular cloning of taxa-4(20),11(12)-dien-5alpha-ol-O-acetyl-transferase cDNA from Taxus and functional expresión in Escherichia coli. Arch Biochem Biophys 374:371–380

    Article  CAS  Google Scholar 

  75. Schoendorf A, Rithner CD, Williams R, Croteau RB (2001) Molecular cloning of a cytochrome P450 taxane 10b-hydroxylase cDNA from Taxus and functional expresión in yeast. Proc Natl Acad Sci U S A 98:1501–1506

    Article  CAS  Google Scholar 

  76. Vongpaseuth K, Roberts SC (2007) Advancements in the understanding of paclitaxel metabolism in tissue culture. Curr Pharm Biotechnol 8:219–236

    Article  CAS  Google Scholar 

  77. Walker K, Klettke K, Akiyama T, Croteau RB (2004) Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in taxol biosynthesis. J Biol Chem 279:53947–53954

    Article  CAS  Google Scholar 

  78. Expósito O, Bonfill M, Onrubia M, Jané A, Moyano E, Cusidó RM et al (2009) Effect of taxol feeding on taxol and related taxane production in Taxus baccata suspension cultures. New Biotechnol 25:252–259

    Article  CAS  Google Scholar 

  79. Guo BH, Kai GY, Jin HB, Tang KX (2006) Taxol synthesis. Afr J Biotechnol 5:15–20

    CAS  Google Scholar 

  80. Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154

    Article  CAS  Google Scholar 

  81. Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19:454–460

    Article  CAS  Google Scholar 

  82. Stafford DE, Stephanopoulos G (2001) Metabolic engineering as an integrating platform for strain development. Curr Opin Microbiol 4:336–340

    Article  CAS  Google Scholar 

  83. Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    Article  CAS  Google Scholar 

  84. Blazeck J, Alper H (2010) Systems metabolic engineering: genome-scale models and beyond. Biotechnol J 5:647–569

    Article  CAS  Google Scholar 

  85. Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25:132–137

    Article  CAS  Google Scholar 

  86. Tyo KEJ, Kocharin K, Nielsen J (2010) Toward design-based engineering of industrial microbes. Curr Opin Microbiol 13:255–262

    Article  CAS  Google Scholar 

  87. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546

    Article  CAS  Google Scholar 

  88. Shin JH, Kim HU, Kim DI, Lee SY (2013) Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol Adv 31:925–935

    Article  CAS  Google Scholar 

  89. Biggs BW, De Paepe B, Santos CN, De Mey M, Kumaran Ajikumar P (2014) Multivariate modular metabolic engineering for pathway and strain optimization. Curr Opin Biotechnol 29:156–162

    Article  CAS  Google Scholar 

  90. Junjun W, Peiran L, Yongming F, Han B, Guocheng D, Jingwen Z, Chen J (2013) Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from l-tyrosine. J Biotechnol 167:404–411

    Article  CAS  Google Scholar 

  91. DellaPenna D (2001) Plant metabolic engineering. Plant Physiol 125:160–163

    Article  CAS  Google Scholar 

  92. Miralpeix B, Rischer H, Häkkinen ST, Ritala A, Seppänen-Laakso T, Oksman-Caldentey KM, Capell T, Christou P (2013) Metabolic engineering of plant secondary products: which way forward? Curr Pharm Des 19:5622–5639

    Article  CAS  Google Scholar 

  93. Wilson SA, Roberts SC (2014) Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr Opin Biotechnol 26:174–182

    Article  CAS  Google Scholar 

  94. Ogita S (2015) Plant cell, tissue and organ culture: the most flexible foundations for plant metabolic engineering applications. Nat Prod Commun 10:815–820

    Google Scholar 

  95. Yuan L, Grotewold E (2015) Metabolic engineering to enhance the value of plants as green factories. Metab Eng 27:83–91

    Article  CAS  Google Scholar 

  96. Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, Carroll AJ, Saito K, Fraser PD, DeLuca V (2011) Recommendations for reporting metabolite data. Plant Cell 23:2477–2482

    Article  CAS  Google Scholar 

  97. Morgan JA, Rhodes D (2002) Mathematical modeling of plant metabolic pathways. Metab Eng 4:80–89

    Article  CAS  Google Scholar 

  98. Baghalian K, Hajirezaei MR, Schreiber F (2014) Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering. Plant Cell 26:3847–3866

    Article  CAS  Google Scholar 

  99. de Oliveira Dal’Molin CG, Nielsen LK (2013) Plant genome-scale metabolic reconstruction and modelling. Curr Opin Biotechnol 24:271–277

    Article  CAS  Google Scholar 

  100. Bishop JF, Dewar J, Toner GC, Tattersall MH, Olver IN, Ackland S, Kennedy I, Goldstein D, Gurney H, Walpole E, Levi J, Stephenson J (1997) Paclitaxel as first-line treatment for metastatic breast cancer. The Taxol Investigational Trials Group, Australia and New Zealand. Oncology (Williston Park) 11:19–23

    CAS  Google Scholar 

  101. Gautam A, Koshkina N (2003) Paclitaxel (taxol) and taxoid derivates for lung cancer treatment: potential for aerosol delivery. Curr Cancer Drug Targets 3:287–296

    Article  CAS  Google Scholar 

  102. Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102

    Article  CAS  Google Scholar 

  103. Han KH, Fleming P, Walker K, Loper M, Chilton WS, Mocek U, Gordon MP, Floss HG (1994) Genetic transformation of mature Taxus: an approach to genetically control the in vitro production of the anticancer drug, taxol. Plant Sci 95:187–196

    Article  CAS  Google Scholar 

  104. Furmanowa M, Syklowska-Baranek K (2000) Hairy root cultures of Taxus × media var. Hicksii Rehd. as a new source of paclitaxel and 10-deacetylbaccatin III. Biotechnol Lett 22:683–686

    Article  CAS  Google Scholar 

  105. Syklowska-Baranek K, Pietrosiuk A, Kokoszka A, Furmanowa M (2009) Enhancement of taxane production in hairy root culture of Taxus × media var. Hicksii. J Plant Physiol 166:1950–1954

    Article  CAS  Google Scholar 

  106. Ho CK, Chang SH, Lung J, Tsai CJ, Chen KP (2005) The strategies to increase taxol production by using Taxus mairei cells transformed with TS and DBAT genes. Int J Appl Sci Eng 3:179–185

    Google Scholar 

  107. Exposito O, Syklowska-Baranek K, Moyano E, Onrubia M, Bonfill M, Palazon J, Cusido RM (2010) Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate. Biotechnol Prog 26:1145–1153

    CAS  Google Scholar 

  108. Li ST, Fu CH, Zhang M, Zhang Y, Xie S, Yu LJ (2012) Enhancing taxol biosynthesis by overexpressing a 9-cis-epoxycarotenoid dioxygenase gene in transgenic cell lines of Taxus chinensis. Plant Mol Biol Report 30:1125–1130

    Article  CAS  Google Scholar 

  109. Sykłowska-Baranek K, Grech-Baran M, Naliwajski MR, Bonfill M, Pietrosiuk A (2015) Paclitaxel production and PAL activity in hairy root cultures of Taxus xmedia var. Hicksii carrying a taxadiene synthase transgene elicited with nitric oxide and methyl jasmonate. Acta Physiol Plant 37:218

    Article  CAS  Google Scholar 

  110. Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MA (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460

    Article  CAS  Google Scholar 

  111. Zhao S, Jones JA, Lachance DM, Bhan N, Khalidi O, Venkataraman S, Wang Z, Koffas MA (2015) Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab Eng 28:43–53

    Article  CAS  Google Scholar 

  112. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    Article  CAS  Google Scholar 

  113. Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789

    Article  CAS  Google Scholar 

  114. Chang MCY, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274–277

    Article  CAS  Google Scholar 

  115. Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242

    Article  CAS  Google Scholar 

  116. Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5:167–190

    Article  CAS  Google Scholar 

  117. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  Google Scholar 

  118. Meng H, Wang Y, Hua Q, Zhang S, Wang X (2011) In silico analysis and experimental improvement of taxadiene heterologous biosynthesis in Escherichia coli. Biotechnol Bioprocess Eng 16:205–215

    Article  CAS  Google Scholar 

  119. Boghigian BA, Salas D, Ajikumar PK, Stephanopoulos G, Pfeifer BA (2012) Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli. Appl Microbiol Biotechnol 93:1651–1661

    Article  CAS  Google Scholar 

  120. Biggs BW, Lim CG, Sagliani K, Shankar S, Stephanopoulos G, De Mey M, Ajikumar PK (2016) Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc Natl Acad Sci U S A 113:3209–32114

    Article  CAS  Google Scholar 

  121. Dejong JM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224

    Article  CAS  Google Scholar 

  122. Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10:201–206

    Article  CAS  Google Scholar 

  123. Ding MZ, Yan HF, Li LF, Zhai F, Shang LQ, Yin Z, Yuan YJ (2014) Biosynthesis of Taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS One 9:e109348

    Article  CAS  Google Scholar 

  124. Besumbes O, Sauret-Güeto S, Phillips MA, Imperial S, Rodríguez-Concepción M, Boronat A (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol Bioeng 88:168–175

    Article  CAS  Google Scholar 

  125. Kovacs K, Zhang L, Linforth RS, Whittaker B, Hayes CJ, Fray RG (2007) Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit. Transgenic Res 16:121–126

    Article  CAS  Google Scholar 

  126. Cha M, Shim SH, Kim SH, Kim OT, Lee SW, Kwon SY, Baek KH (2012) Production of taxadiene from cultured ginseng roots transformed with taxadiene synthase gene. BMB Rep 45:589–594

    Article  CAS  Google Scholar 

  127. Hasan MM, Kim HS, Jeon JH, Kim SH, Moon B, Song JY, Shim SH, Baek KH (2014) Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene. Plant Cell Rep 33:895–904

    Article  CAS  Google Scholar 

  128. Li M, Jiang F, Yu X, Miao Z (2015) Engineering isoprenoid biosynthesis in Artemisia annua L. for the production of taxadiene: a key intermediate of taxol. Biomed Res Int 2015:504932

    Google Scholar 

Download references

Acknowledgment

Subrata Kundu gratefully acknowledges to Council of Scientific and Industrial Research (CSIR), India, for providing Research Associate (RA) fellowship [Sanction No. 08/525(0004)/2014-EMR1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Kundu, S., Jha, S., Ghosh, B. (2017). Metabolic Engineering for Improving Production of Taxol. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-28669-3_29

Download citation

Publish with us

Policies and ethics