Skip to main content

Microbiology of the Deep Continental Biosphere

  • Chapter
  • First Online:
Their World: A Diversity of Microbial Environments

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 1))

Abstract

Subsurface microbial communities in sediment and fractured rock environments beneath continental surface environments and beneath the ocean floor comprise a significant but largely unexplored portion of the Earth’s biosphere. The continental subsurface is highly geologically varied, and so the abundance, diversity, and metabolic functions of its inhabitant microbes are even more widely ranging than those of marine systems. Microbial ecosystems in relatively shallow groundwater systems are largely fueled by organic carbon derived from photosynthesis, whereas deeper groundwater ecosystems are fueled by molecular hydrogen, methane, and short-chain hydrocarbons (“geogas”), produced by abiotic water–rock interactions, e.g., serpentinization and radiolysis of water. The abundances of microbes generally decline with depth, with deep fracture waters containing ~103–104 cells ml−1; many of these microbes are metabolically active, albeit at very slow rates The depth limit of the biosphere may be controlled by a combination of temperature and other factors such as energy availability and pressure. Diverse bacteria and archaea appear to be adapted for life under the extremes posed by subterranean conditions. Further research is needed to explore a wider range of subsurface continental geologic settings, to constrain the rates of microbial metabolism, and to understand mechanisms of evolution in the subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amend JP, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeogr Palaeoclimatol Palaeoecol 219(1–2):131–155

    Article  Google Scholar 

  • Amy PS, Haldeman DL (eds) (1997) The microbiology of the terrestrial subsurface. CRC, Boca Raton, FL

    Google Scholar 

  • Anderson RE, Brazelton WJ, Baross JA (2013) The deep viriosphere: assessing the viral impact on microbial community dynamics in the deep subsurface. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Rev Miner Geochem 75:649–675

    Google Scholar 

  • Aüllo T, Ranchu-Peyruse A, Olivier B, Mogot M (2013) Desulfotomaculum spp. and related gram-positive sulfate reducing bacteria in deep subsurface environments. Front Microbiol 4:1–12

    Article  Google Scholar 

  • Baker BJ, Moser DB, MacGregor BJ, Fishbain S, Wagner M, Fry NK, Jackson B, Speolstra N, Loos S, Takai K, Sherwood Lollar B, Fredrickson J, Balkwill D, Onstott TC, Wimpee CF, Stahl DA (2003) Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ Microbiol 5:1168–1191

    Article  Google Scholar 

  • Balkwill DL, Boone DR (1997) Identity and diversity of microorganisms cultured from subsurface environments. In: Amy PS, Haldeman DL (eds) The microbiology of the terrestrial deep subsurface. CRC Lewis, Boca Raton, pp 105–117

    Google Scholar 

  • Balkwill DL, Reeves RH, Drake GR, Reeves JG, Crocker FH, King MB, Boone DR (1997) Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol Rev 20:201–216

    Article  CAS  PubMed  Google Scholar 

  • Balkwill DL, Kieft TL, Tsukuda T, Kostandarithes HM, Onstott TC, Macnaughton S, Bownas J, Fredrickson JK (2004) Identification of iron-reducing Thermus strains as Thermus scotoductus. Extremophiles 8:37–44

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DH (2009) Microbial life in the trenches. Mar Technol Soc J 43:128–131

    Article  Google Scholar 

  • Bastin ES, Greer FE, Merritt CA, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63:21–24

    Article  CAS  PubMed  Google Scholar 

  • Bonin AS, Boone DR (2004) Microbial isolations and characterizations from the deep terrestrial subsurface of the South African gold mines. Proceedings of the 104th General Meeting of the American Society for Microbiology. New Orleans, LA. May 2004

    Google Scholar 

  • Boone DR, Liu YT, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(II1)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448

    Article  CAS  PubMed  Google Scholar 

  • Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Onstott TC (2011) Nematoda from the terrestrial deep subsurface of South Africa. Nature 474:79–82

    Article  CAS  PubMed  Google Scholar 

  • Brockman FJ, Li SW, Fredrickson JK, Ringelberg DB, Kieft TL, Spadoni CM, White DC, McKinley JP (1998) Post-sampling changes in microbial community composition and activity in a subsurface paleosol. Microb Ecol 36:152–164

    Article  CAS  PubMed  Google Scholar 

  • Cason ED, Piater LA, van Heerden E (2012) Reduction of U(VI) by the deep subsurface bacterium, Thermus scotoductus SA-01, and the involvement of the ABC transporter protein. Chemosphere 86:572–577

    Article  CAS  PubMed  Google Scholar 

  • Chapelle FH (2000) Ground-water microbiology and geochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Chivian D, Alm E, Brodie E, Culley D, Dehal P, DeSantis T, Gihring T, Lapidus A, Lin L-H, Lowry S, Moser D, Richardson P, Southam G, Wanger G, Pratt L, Andersen G, Hazen T, Brockman F, Arkin A, Onstott T (2008) Environmental genomics reveals a single species ecosystem deep within the Earth. Science 322:275–278

    Article  CAS  PubMed  Google Scholar 

  • Colwell FS, D’Hondt S (2013) Nature and extent of the deep biosphere. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Rev Miner Geochem 75:547–574

    Google Scholar 

  • Colwell FS, Onstott TC, Delwiche ME, Chandler D, Fredrickson JK, Yao QJ, McKinley JP, Boone DR, Griffiths R, Phelps TJ, Ringelberg D, White DC, LaFreniere L, Balkwill D, Lehman RM, Konisky J, Long PE (1997) Microorganisms from deep, high temperature sandstones: constraints on microbial colonization. FEMS Microbiol Rev 20:425–435

    Article  CAS  Google Scholar 

  • Colwell FS, Stormberg GJ, Phelps TJ, Birnbaum SA, McKinley J, Rawson SA, Veverka C, Goodwin S, Long PE, Russell BF, Garland T, Thompson D, Skinner P, Grover S (1992) Innovative techniques for collection of saturated and unsaturated subsurface basalts and sediments for microbiological characterization. J Microbiol Methods 15:279–292

    Article  CAS  Google Scholar 

  • Colwell FS, Smith RP (2004) Unifying principles of the deep terrestrial and deep marine biospheres. biospheres. In: Wilcock WSD, Delong EF, Kelley DS, Baross JA, Cary SC (eds) Subseafloor biosphere at mid-ocean ridges, vol 104, Geophysical Monograph Series. American Geophysical Union, Washington, DC, pp 355–367

    Chapter  Google Scholar 

  • Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappé MS, Hutnak M, Lam P (2003) Fluids from aging ocean crust that support microbial life. Science 299:120–123

    Article  CAS  PubMed  Google Scholar 

  • Davidson MM, Bisher ME, Pratt LM, Fong J, Southam G, Pfiffner SM, Reches Z, Onstott TC (2009) Sulfur isotope enrichment during maintenance metabolism in the thermophilic sulfate-reducing bacterium Desulfotomaculum putei. Appl Environ Microbiol 75:5621–5630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson MM, Silver BJ, Onstott TC, Moser DP, Gihring TM, Pratt LM, Boice EA, Sherwood Lollar B, Lippmann-Pipke J, Pfiffner SM, Kieft TL, Symore W, Ralston C (2011) Capture of planktonic microbial diversity in fractures by long-term monitoring of flowing boreholes, Evander Basin, South Africa. Geomicrobiol J 28:275–300

    Article  Google Scholar 

  • D'Hondt S, Jorgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang GZ, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guerin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    Article  PubMed  CAS  Google Scholar 

  • DeFlaun MF, Fredrickson JK, Dong H, Pfiffner SM, Onstott TC, Balkwill DL, Streger SH, Stackebrandt E, Knoessen S, van Heerden E (2007) Isolation and characterization of a Geobacillus thermoleovorans strain from an ultra-deep South African gold mine. Syst Appl Microbiol 30:152–164

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Zhang G, Huang L, Dai X, Wang Y, Lu G, Dong Z, Dong X (2009) The deep subsurface microbiology research in China: results from Chinese Continental Scientific Drilling Project, AGU Fall meeting, San Francisco, CA, December 2009

    Google Scholar 

  • Dong Y, Kumar CG, Chia N, Kim P-J, Miller PA, Price ND, Can IKO, Flynn TM, Sanford RA, Krapac IG, Locke RA, Hong P-Y, Tamaki H, Liu W-T, Mackie RI, Hernandez AG, Wright CL, Mikel MA, Walker JL, Sivaguru M, Fried G, Yannarell AC, Fouke BW (2014) Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. Environ Microbiol 16:1695–708. doi:10.1111/1462-2920.12325

    Article  CAS  PubMed  Google Scholar 

  • Edwards RA, Rodrigues-Brito B, Wegley L, Haynes M, Breitbart M, Peterson D, Saar M, Alexander S, Alexander EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eloe EA, Fadrosh DW, Novotny M, Allen LZ, Kim M, Lombardo MJ, Yee-Greenbaum J, Yooseph S, Alen EE, Lasken R, Williamson SJ, Bartlett DH (2011) Going deeper: metagenome of a hadopelagic microbial community. PLoS One 6, e20388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erzinger J, Wiersberg T, Zimmer M (2006) Real-time mud gas logging and sampling during drilling. Geofluids 6:225–233

    CAS  Google Scholar 

  • Eydal HSC, Jagevall S, Hermansson M, Pedersen K (2009) Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. ISME J 3:1139–1147

    Article  PubMed  Google Scholar 

  • Fredrickson JK, Balkwill DL (2006) Geomicrobiological processes and diversity in the deep terrestrial subsurface. Geomicrobiol J 23:345–356

    Article  CAS  Google Scholar 

  • Fredrickson JK, Kieft TL, Moran N, Moser DP, Onstott TC, Phelps TJ, Teidje JM (2006) DUSEL: Window to the Subsurface Biosphere. National Science Foundation Report. http://www.deepscience.org/TechnicalDocuments/Final/deepbiology_final.pdf

  • Fredrickson JK, Onstott TC (1996) Microbes deep inside the Earth. Sci Am 275(4):68–73

    Article  CAS  PubMed  Google Scholar 

  • Freifeld B (2009) The U-tube: a new paradigm for borehole fluid sampling. Scientific Drill 8:41–45

    Article  Google Scholar 

  • Fukuda A, Haigiwara H, Ishimura T, Kouduka M, Ioka S, Amano Y, Tsunogai U, Suzuki Y, Mizuno T (2010) Microb Ecol 60:214–225

    Article  CAS  PubMed  Google Scholar 

  • Gales G, Cehider N, Joulian C, Battaglia-Brunet F, Cayol J-L, Postec A, Borgomano J, Neria-Gonzales I, Lomans BP, Ollivier B, Alazard D (2011) Characterization of Haloanaerocella petroleara gen. nov., sp. nov., a new anaerobic moderately halophilic fermentative bacterium isolated from a deep subsurface hypersaline oil reservoir. Extremophiles 15:565–571

    Article  CAS  PubMed  Google Scholar 

  • Gihring TM, Moser DP, Lin L-H, Davidson M, Onstott TC, Morgan L, Millesson M, Kieft TL, Trimarco E, Balkwill DL, Dollhopf ME (2006) The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol J 23:415–430

    Article  CAS  Google Scholar 

  • Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci 89:6045–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms U, Koeberl C, Zoback MD (eds) (2007) Continental scientific drilling, a decade of progress, and challenges for the future. Springer, Berlin

    Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–349

    Article  CAS  PubMed  Google Scholar 

  • Huber JA, Mark Welch D, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  CAS  PubMed  Google Scholar 

  • Itavaara M, Nyyssonen M, Kapanen A, Nousiainen A, Ahonen L, Kukkonen I (2011) Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. FEMS Microbiol Lett 77:295–309

    Article  CAS  Google Scholar 

  • Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci 109:16213–16216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    Article  CAS  PubMed  Google Scholar 

  • Kelley DS, Karson JA, Fru GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Bernasconi SM, Elend MJ, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Article  CAS  PubMed  Google Scholar 

  • Kieft TL (2010) Sampling the deep sub-surface using drilling and coring techniques. In: Timmis KN (ed) Microbiology of hydrocarbons and lipids. Springer, Berlin, pp 3427–3441

    Chapter  Google Scholar 

  • Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale A, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kieft TL, McCuddy SM, Onstott TC, Davidson M, Lin L-H, Mislowac B, Pratt L, Boice E, Sherwood Lollar B, Lippmann-Pipke J, Pfiffner SM, Phelps TJ, Gihring T, Moser D, van Heerden E (2005) Geochemically generated, energy-rich substrates and indigenous microorganisms in deep, ancient groundwater. Geomicrobiol J 22:325–335

    Article  CAS  Google Scholar 

  • Kieft TL, Phelps TJ (1997) Life in the slow lane: Activities of microorganisms in the subsurface. In: Amy PS, Haldeman DL (eds) The microbiology of the terrestrial subsurface. CRC, Boca Raton, FL, pp 137–163

    Google Scholar 

  • Kieft TL, Phelps TJ, Fredrickson JK (2007) Drilling, coring, and sampling subsurface environments. In: Hurst CJ (ed) Manual of environmental microbiology, 3rd edn. ASM, Washington, DC, pp 799–817

    Google Scholar 

  • Kyle JE, Eydal HSC, Ferris FG, Pedersen K (2008) Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. ISME J 2:571–574

    Article  PubMed  Google Scholar 

  • Klouche N, Basso O, Lascourrèges JF, Cayol JL, Thmas P, Fauque G, Fardeau ML, Magot M (2009) Desulfocurvus vexinensis gen. nov. sp. nov., a sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 59:3100–3104

    Article  CAS  PubMed  Google Scholar 

  • Labonté JM, Field EK, Lau M, Chivian D, Van Heerden E, Wommack KE, Kieft TL, Onstott TC, Stepanauskas R (2015) Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front Microbiol 6:349

    PubMed  PubMed Central  Google Scholar 

  • Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25

    Article  PubMed  Google Scholar 

  • Lau MCY, Magnabosco C, Brown CT, Grim S, Lacrampe-Couloume G, Wilkie K, Sherwood Lollar B, Simkus DN, Slater GF, Hendrickson S, Pullin M, Kieft TL, Li L, Snyder L, Kuloyo O, Linage B, Borgonie G, Vermeulen J, Maleke M, Tlalajoe N, Moloantoa KM, van Heerden E, Vermeulen F, Pienaar M, Munro A, Joubert L, Ackerman J, van Jaarsveld C, Onstott TC (2013) Continental subsurface waters support unique but diverse C-acquisition strategies. AGU Fall Meeting, San Francisco, California, US, 9th–13th December 2013

    Google Scholar 

  • Lehman RM, Colwell FS, Ringelberg DB, White DC (1995) Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. J Microbiol Methods 22:263–281

    Article  Google Scholar 

  • Lin LH, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Sherwood Lollar B, Brodie E, Hazen T, Andersen G, DeSantis T, Moser DP, Kershaw D, Onstott TC (2006) Long term biosustainability in a high energy, low diversity crustal biome. Science 314:479–482

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Kennedy D, Fredrickson J, Bjornstad B, Konopka A (2012a) Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ Microbiol 14:414–425

    Article  CAS  PubMed  Google Scholar 

  • Lin X, McKinley J, Resch CT, Kaluzny R, Lauber CL, Fredrickson J, Knight R, Konopka A (2012b) Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer. ISME J 6:1665–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippmann-Pipke J, Erzinger J, Zimmer M, Kujawa C, Boettcher M, van Heerden E, Bester A, Moller H, Stroncik NA, Reches Z (2011a) Geogas transport in fractured hard rock—Correlations with mining seismicity at 3.54 km depth, TauTona gold mine, South Africa. Appl Geochem 26:2134–2146

    Article  CAS  Google Scholar 

  • Lippmann-Pipke J, Sherwood Lollar B, Neidermann S, Stroncik N, Naumann R, VanHeerden E, Onstott TC (2011b) Neon identifies two billion year old fluid component in Kaapvaal Craton. Chem Geol 282:287–296

    Article  CAS  Google Scholar 

  • Lippmann-Pipke J, Stute M, Torgersen T, Moser DP, Hall J, Lin L, Borcsik M, Bellamy RES, Onstott TC (2003) Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand, South Africa. Geochimica Cosmoshimica Acta 67:4597–4619

    Article  CAS  Google Scholar 

  • Liu YT, Karnauchow TM, Jarrell KF, Balkwill DL, Drake GR, Ringelberg D, Clarno R, Boone DR (1997) Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov, from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov, from a hot spring. Int J System Bacteriol 47:615–621

    Article  CAS  Google Scholar 

  • Lovley DR, Chapelle FH, Woodward JC (1994) Use of dissolved H2 concentration to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ Sci Technol 28:1205–1210

    Article  CAS  PubMed  Google Scholar 

  • Madden AS, Swidle AL, Beazley MJ, Moon JW, Ravel B, Phelps TJ (2012) Long-term solid-phase fate of co-precipitated U(VI)-Fe(III) following biological iron reduction by Thermoanaerobacter. Am Miner 97:1641–1652

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Stahl DA, Clark DP (2013) Brock biology of microorganisms, 13th edn. Benjamin Cummings, Boston, MA

    Google Scholar 

  • Moon J-W, Roh Y, Lucas W, Yeary LW, Lau RJ, Rawn CJ, Love LJ, Phelps TJ (2007) Microbial formation of lanthanide-substituted magnetites by Thermoanaerobacter sp. TOR-39. Extremophiles 11:859–867

    Article  CAS  PubMed  Google Scholar 

  • Moser DP (2012) Deep microbial ecosystems in the U.S. Great Basin: a second home for Desulforudis audaxviator? Abstract B41F-08 presented at 2012 Fall Meeting, AGU, San Francisco, CA, 3–7

    Google Scholar 

  • Moser D, Boston PJ, Martin H (2001) Sampling in caves and mines. In: Bitton GE (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 821–835

    Google Scholar 

  • Moser DP, Gihring T, Fredrickson JK, Brockman FJ, Balkwill D, Dollhopf ME, Sherwood-Lollar B, Pratt LM, Boice E, Southam G, Wanger G, Welty AT, Baker BJ, Onstott TC (2005) Desulfotomaculum spp. and Methanobacterium spp. dominate a 4– to 5–kilometer deep fault. Appl Environ Microbiol 71:8773–8783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser DP, Onstott TC, Fredrickson JK, Brockman FJ, Balkwill DL, Drake GR, Pfiffner SM, White DC, Takai K, Pratt LM, Fong J, Sherwood-Lollar B, Slater G, Phelps TJ, Spoelstra N, DeFlaun M, Southam G, Welty AT, Baker BJ, Hoek J (2003) Temporal shifts in microbial community structure and geochemistry of an ultradeep South African gold mine borehole. Geomicrobiol J 20:517–548

    Article  CAS  Google Scholar 

  • Motamedi M, Pedersen K (1998) Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Äspö hard rock labioratory. Sweden Int J Syst Bacteriol 48:311–315

    Article  PubMed  Google Scholar 

  • Murphy EM, Schramke JA, Fredrickson JK, Bledsoe HW, Francis AJ, Sklarew DS, Linehand JC (1992) The influence of microbial activity and sedimentary organic carbon on the isotope geochemistry of the Middendorf aquifer. Water Resour Res 28:723–740

    Article  CAS  Google Scholar 

  • Nagata T, Tamburini C, Arístegui J, Baltar F, Bochdansky A, Fonda-Umani S, Fukuda H, Gogou A, Hansell DA, Hansman RJ, Herndl GJ, Panagiotopoulos C, Reinthaler T, Sohrin R, Verdugo P, Yamada N, Yamashita Y, Yokokawa T, Bartlett DH (2010) Emerging concepts on microbial processes in the bathypelagic ocean – ecology, biogeochemistry, and genomics. Deep-Sea Res II 57:1519–1536

    Article  CAS  Google Scholar 

  • National Science Foundation (2003) EarthLab, NSF-sponsored report of underground opportunities in GeoSciences and GeoEngineering. National Science Foundation, Washington, DC

    Google Scholar 

  • Nealson KH, Inagaki F, Takai K (2005) Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SliMEs): do they exist and why should we care? Trends Microbiol 13:405–410

    Article  CAS  PubMed  Google Scholar 

  • Nyssönen M, Bomberg M, Kapanen A, Nousiainen A, Pitkänen P, Itävaara M (2012) Methanogenic and sulphate-reducing microbial communities in deep groundwater of crystalline rock fractures in Oliluoto, Finland. Geomicrobiol J 29:863–878

    Article  CAS  Google Scholar 

  • Omar G, Onstott TC, Hoek J (2003) The origin of deep subsurface microbial communities in the Witwatersrand Basin, South Africa as deduced from apatite fission track analyses. Geofluids 3:69–80

    Article  CAS  Google Scholar 

  • Onstott TC, Colwell FS, Kieft TL, Murdoch L (2009) New horizons for deep subsurface microbiology. Microbe 4:499–505

    Google Scholar 

  • Onstott TC, Lin LH, Davidson M, Mislowac B, Borcsik M, Hall J, Slater G, Ward J, Sherwood Lollar B, Lippmann-Pipke J, Boice E, Pratt L, Pfiffner BS, Moser D, Gihring T, Kieft TL, Phelps TJ, van Heerden E, Litthauer D, DeFlaun M, Rothmel R (2006) The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand basin, South Africa. Geomicrobiol J 23:369–414

    Article  CAS  Google Scholar 

  • Onstott TC, Magnabosco C, Aubrey AD, Burton AS, Dworkin JP, Elsila JE, Grunsfeld S, Cao BH, Hein JE, Glavin DP, Kieft TL, Silver BJ, Phelps TJ, van Heerden E, Opperman DJ, Bada JL (2014) Does aspartic acid racemization constrain the depth limit of the subsurface biosphere? Geobiology 12:1–19

    Article  CAS  PubMed  Google Scholar 

  • Onstott TC, Moser DP, Pfiffner SM, Fredrickson JK, Brockman FJ, Phelps TJ, White DC, Peacock A, Balkwill D, Hoover R, Krumholz LR, Borscik M, Kieft TL, Wilson R (2003) Indigenous and contaminant microbes in ultradeep mines. Environ Microbiol 5:1168–1191

    Article  CAS  PubMed  Google Scholar 

  • Onstott TC, Phelps TJ, Colwell FS, Ringelberg D, White DC, Boone DR, McKinley JP, Stevens TO, Long PE, Balkwill DL, Griffin T, Kieft T (1998) Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia. Geomicrobiol J 15:353–385

    Article  Google Scholar 

  • Onstott TC, Phelps TJ, Kieft TL, Colwell FS, Balkwill DL, Fredrickson JK, Brockman FJ (1999) A global perspective on the microbial abundance and activity in the deep subsurface. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer, The Netherlands, pp 489–500

    Google Scholar 

  • Opperman DJ, Sewell BT, Litthauer D, Isupov MN, Littlechild JA, van Heerden E (2010) Biochem Biophys Res Commun 393:426–431

    Article  CAS  PubMed  Google Scholar 

  • Orcutt BN, Bach W, Becker K, Fisher AT, Hentscher M, Toner BM, Wheat CG, Edwards KJ (2011) Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5:692–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orcutt B, Wheat CG, Edwards K (2010) Subseafloor ocean crust microbial observatories: development of FLOCS (flow-through osmo colonization system) and evaluation of borehole construction materials. Geomicrobiol J 27:143–157

    Article  Google Scholar 

  • Orsi W, Biddle JF, Edgcomb V (2013) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8:e56335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413

    Article  Google Scholar 

  • Pedersen K (1993) The deep subterranean biosphere. Earth-Sci Rev 34:243–260

    Article  CAS  Google Scholar 

  • Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414

    Article  CAS  Google Scholar 

  • Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Article  CAS  PubMed  Google Scholar 

  • Phelps TJ, Fliermans CB, Garland TR, Pfiffner SM, White DC (1989) Methods for recovery of deep terrestrial subsurface sediments for microbiological studies. J Microbiol Methods 9:267–279

    Article  Google Scholar 

  • Phelps TJ, Murphy EM, Pfiffner SM, White DC (1994) Comparisons between geochemical and biological estimates of subsurface microbial activities. Microb Ecol 28:335–349

    Article  CAS  PubMed  Google Scholar 

  • Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing Theroanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68:6013–6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Røy H, Kallmeyer J, Adhikari RR, Pockalny R, Jørgensen BB, D’Hondt S (2012) Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336:922–925

    Article  PubMed  CAS  Google Scholar 

  • Russell BF, Phelps TJ, Griffin WT, Sargent KA (1992) Procedures for sampling deep subsurface communities in unconsolidated sediments. Groundwater Monit Remediat 12:96–104

    Article  Google Scholar 

  • Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Templeton AS, Kieft TL, Smith RL, Sanford WE, Callaghan RL, Mitton JB, Spear JR (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl Environ Microbiol 74:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrenk MO, Brazelton WJ, Lang SQ (2013) Serpentinization, carbon and deep life. Rev Miner Geochem 75:575–606

    Article  CAS  Google Scholar 

  • Silver BJ, Onstott TC, Rose G, Lin L-H, Ralston C, Sherwood-Lollar B, Pfiffner SM, Kieft TL, McCuddy S (2010) In situ cultivation of subsurface microorganisms in a deep mafic sill: implications for SLiMEs. Geomicrobiology J27:329–348

    Article  CAS  Google Scholar 

  • Sinclair JL, Ghiorse WC (1989) Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments. Geomicrobiol J 7:15–32

    Article  Google Scholar 

  • Sherwood Lollar B, Voglesonger K, Lin L-H, LaCrampe-Couloume G, Telling J, Abrajano TA, Onstott TC, Pratt LM (2007) Hydrologic controls on episodic H2 release from Precambrian fractured rocks—energy for deep subsurface life on Earth and Mars. Astrobiology 7:971–986

    Article  CAS  PubMed  Google Scholar 

  • Sherwood Lollar B, Westgate TD, Ward JA, Slater GF, Lacrampe-Couloume G (2002) Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416:522–524

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Harris SH (2007) Determining the terminal electron-accepting reaction in the saturated subsurface. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds) Manual of environmental microbiology, 3rd edn. ASM Press, Washington, DC, pp 860–871

    Google Scholar 

  • Smith DC, Spivack AJ, Fisk MR, Haveman SA, Staudigel H, The Leg 185 Shipboard Scientific Party (2000) Methods for quantifying potential microbial contamination during deep ocean coring. ODP Tech. Note 28

    Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454

    Article  CAS  Google Scholar 

  • Stevens TO, McKinley JP (2000) Abiotic controls on H2 production from basalt-water reactions and implications for aquifer biogeochemistry. Environ Sci Technol 34:826–831

    Article  CAS  Google Scholar 

  • Stober I, Bucher K (2004) Fluid sinks within the earth’s crust. Geofluids 4:143–151

    Article  CAS  Google Scholar 

  • Takai K, Moser DP, DeFlaun MF, Onstott TC, Fredrickson JK (2001a) Archaeal diversity in waters from deep South African Gold mines. Appl Environ Microbiol 67:5750–5760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001b) Alakliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J System Evol Microbiol 51:1245–1256

    Article  CAS  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunagai U, Miyazaki M, Hirayama H, Nakagawa S, Nonoura T, Horikoshi K (2008) Cell proliferation at 122C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FP, Zhou HY, Meng J, Peng XT, Jiang LJ, Sun P, Zhang CL, Van Nostrand JD, Deng Y, He ZL, Wu LY, Zhou JH, Xiao X (2009) GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proc Natl Acad Sci USA 106:4840–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanger G, Onstott TC, Southam G (2008) Stars of the terrestrial deep subsurface: a novel ‘star-shaped’ bacterial morphotype from a South African platinum mine. Geobiology 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:1034–1037

    Article  CAS  PubMed  Google Scholar 

  • Wilson JT, McNabb JF, Balkwill DL, Ghiorse WC (1983) Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer. Ground Water 21:134–142

    Article  Google Scholar 

  • Wu JY, Gao WM, Johnson RH, Zhang WW, Meldrum DR (2013) Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of North Pacific Ocean. Marine Drugs 11:3777–3801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 meters in the deep sea. Ann Rev Microbiol 49:777–805

    Article  CAS  Google Scholar 

  • Yayanos AA (2001) Deep-sea piezophilic bacteria. Meth Microbiol 30:615–637

    Article  Google Scholar 

  • Yeary LW, Moon J-W, Rawn CJ, Love LJ, Rondinone AJ, Thompson JR, Chakoumakos BC, Phelps TJ (2011) Magnetic properties of bio-synthesized zinc ferrite nanoparticles. J Magnet Magnetic Mater 323:3043–3048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Kieft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kieft, T.L. (2016). Microbiology of the Deep Continental Biosphere. In: Hurst, C. (eds) Their World: A Diversity of Microbial Environments. Advances in Environmental Microbiology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28071-4_6

Download citation

Publish with us

Policies and ethics