Skip to main content

Pharmacokinetics I: PK-PD Approach, the Case of Antibiotic Drug Development

  • Chapter
  • First Online:
Clinical Pharmacology: Current Topics and Case Studies

Abstract

The therapeutic efficacy of antibiotics is very dependent not only on the drug itself but also on whether there is enough drug concentration at the site of infection for a sufficient amount of time that would stop the development of bacterial resistance and on the susceptibility and severity of the infection. Therapeutic success of therapy is also dependent on the physiological characteristics of the host, including disease state, age, comorbidity, and other factors that are highly variable in the clinical setting. Understanding how these factors or covariates affect antibiotic disposition and their pharmacological effects as well as the relationship between drug concentration in the body at the site of infection and the drug effect on the bacterial pathogen is part of the general concepts of pharmacokinetics (PK) and pharmacodynamics (PD). By using PK-PD principles and linking specific PK exposure parameters to microbiological outcomes, clinicians have designed better dosing strategies for specific classes of antibiotics. By evaluating how covariates affect the drug disposition in specific patient population, dosing regimens can be designed for that population to achieve an optimal therapeutic goal. We examined PK-PD principles that characterize antibiotic activities, experimental designs to characterize pharmacodynamic properties of antimicrobial agents, modeling and simulation approach for translation from in vitro time-kill and animal infection models to human efficacy, and dosing strategies in special populations including critically ill, renal-impaired, obese, geriatric, and pediatric patients, as well as Bayesian approach to individualize dosing regimens based on the sampled drug concentration in a therapeutic drug-monitoring setting. The model-based approach can also streamline the drug development process and support decision-making with greater confidence. These decisions include but not limited to planning clinical trials and developing optimal dosing strategies, and these crucial steps in the drug development process can be costly if the wrong decisions are made. From the perspective of clinical practice, the modeling and simulation approach can provide a more precise medicine to the patients and improve the healthcare outcome. By utilizing all the information available, from in vitro studies, animal models, clinical trials, and patient characteristics, the goal is to maximize the benefits to the patients through evidence-based medicine and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andes D, Craig WA (2002) Animal model pharmacokinetics and pharmacodynamics: a critical review. Int J Antimicrob Agents 19:261–268

    Article  CAS  PubMed  Google Scholar 

  2. Begg EJ, Barclay ML, Duffull SB (1995) A suggested approach to once-daily aminoglycoside dosing. Br J Clin Pharmacol 39:605–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moise PA, Forrest A, Bhavnani SM, Birmingham MC, Schentag JJ (2000) Area under the inhibitory curve and a pneumonia scoring system for predicting outcomes of vancomycin therapy for respiratory infections by Staphylococcus aureus. Am J Health Syst Pharm 57(Suppl 2):S4–S9

    PubMed  Google Scholar 

  4. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ (2004) Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43:925–942

    Article  CAS  PubMed  Google Scholar 

  5. Asin-Prieto E, Rodriguez-Gascon A, Isla A (2015) Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother 21:319–329

    Article  CAS  PubMed  Google Scholar 

  6. Liu P, Muller M, Derendorf H (2002) Rational dosing of antibiotics: the use of plasma concentrations versus tissue concentrations. Int J Antimicrob Agents 19:285–290

    Article  CAS  PubMed  Google Scholar 

  7. Tawara S, Matsumoto S, Kamimura T, Goto S (1992) Effect of protein binding in serum on therapeutic efficacy of cephem antibiotics. Antimicrob Agents Chemother 36:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu B, Sy SK, Derendorf H (2014) Principles of applied pharmacokinetic–pharmacodynamic modeling. In: Vinks AA, Derendorf H, Mouton JW (eds) Fundamentals of antimicrobial pharmacokinetics and pharmacodynamics. Springer, New York, pp 63–79

    Chapter  Google Scholar 

  9. Sy SK, Wang X, Derendorf H (2014) Introduction to pharmacometrics and quantitative pharmacology with an emphasis on physiologically based pharmacokinetics. In: Derendorf H, Schmidt S (eds) Applied pharmacometrics. Springer, New York, pp 1–64

    Google Scholar 

  10. de Kock L, Sy SK, Rosenkranz B, Diacon AH, Prescott K, Hernandez KR et al (2014) Pharmacokinetics of para-aminosalicylic acid in HIV-uninfected and HIV-coinfected tuberculosis patients receiving antiretroviral therapy, managed for multidrug-resistant and extensively drug-resistant tuberculosis. Antimicrob Agents Chemother 58:6242–6250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Shilbayeh SA, Sy SK, Melhem M, Zmeili R, Derendorf H (2015) Quantitation of the impact of CYP3A5 A6986G polymorphism on quetiapine pharmacokinetics by simulation of target attainment. Clin Pharmacol Drug Dev 4:323–399

    Article  CAS  Google Scholar 

  12. Mouton JW, Brown DF, Apfalter P, Canton R, Giske CG, Ivanova M et al (2012) The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect 18:E37–E45

    Article  CAS  PubMed  Google Scholar 

  13. Mouton JW, Punt N, Vinks AA (2005) A retrospective analysis using Monte Carlo simulation to evaluate recommended ceftazidime dosing regimens in healthy volunteers, patients with cystic fibrosis, and patients in the intensive care unit. Clin Ther 27:762–772

    Article  CAS  PubMed  Google Scholar 

  14. Sy SK, Derendorf H (2014) Pharmacometrics in bacterial infections. In: Schmidt S, Derendorf H (eds) Applied pharmacometrics, 1st edn. Springer, New York, pp 229–258

    Google Scholar 

  15. Zhuang L, Xia H, He Y, Liu Y, Sy SK, Derendorf H (2016) Gentamicin dosing strategy in patients with end-stage renal disease receiving hemodialysis: evaluation using a semi-mechanistic pharmacokinetic/pharmacodynamic model. J Antimicrob Chemother (Forthcoming)

    Google Scholar 

  16. Zhuang L, Sy SK, Xia H, Singh RP, Mulder MB, Liu C et al (2015) Evaluation of in vitro synergy between vertilmicin and ceftazidime against Pseudomonas aeruginosa using a semi-mechanistic pharmacokinetic/pharmacodynamic model. Int J Antimicrob Agents 45:151–160

    Article  CAS  PubMed  Google Scholar 

  17. Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30:44–55

    CAS  PubMed  Google Scholar 

  18. Muller M, dela Pena A, Derendorf H (2004) Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother 48:1441–1453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Plock N, Kloft C (2005) Microdialysis – theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci 25:1–24

    Article  CAS  PubMed  Google Scholar 

  20. Traunmuller F, Zeitlinger M, Zeleny P, Muller M, Joukhadar C (2007) Pharmacokinetics of single- and multiple-dose oral clarithromycin in soft tissues determined by microdialysis. Antimicrob Agents Chemother 51:3185–3189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Barbour A, Schmidt S, Rout WR, Ben-David K, Burkhardt O, Derendorf H (2009) Soft tissue penetration of cefuroxime determined by clinical microdialysis in morbidly obese patients undergoing abdominal surgery. Int J Antimicrob Agents 34:231–235

    Article  CAS  PubMed  Google Scholar 

  22. Hutschala D, Skhirtladze K, Kinstner C, Mayer-Helm B, Muller M, Wolner E et al (2007) In vivo microdialysis to measure antibiotic penetration into soft tissue during cardiac surgery. Ann Thorac Surg 84:1605–1610

    Article  PubMed  Google Scholar 

  23. Pankey GA, Sabath LD (2004) Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38:864–870

    Article  CAS  PubMed  Google Scholar 

  24. Craig WA (2014) In vitro and animal PK/PD models. In: Vinks AA, Derendorf H, Mouton JW (eds) Fundamentals of antimicrobial pharmacokinetics and pharmacodynamics. Springer, New York, pp 23–44

    Chapter  Google Scholar 

  25. Peterson LR, Shanholtzer CJ (1992) Tests for bactericidal effects of antimicrobial agents: technical performance and clinical relevance. Clin Microbiol Rev 5:420–432

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fernandes PB, Bailer R, Swanson R, Hanson CW, McDonald E, Ramer N et al (1986) In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrob Agents Chemother 30:865–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piscitelli SC, Danziger LH, Rodvold KA (1992) Clarithromycin and azithromycin: new macrolide antibiotics. Clin Pharm 11:137–152

    CAS  PubMed  Google Scholar 

  28. Retsema J, Girard A, Schelkly W, Manousos M, Anderson M, Bright G et al (1987) Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother 31:1939–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nastro LJ, Finegold SM (1972) Bactericidal activity of five antimicrobial agents against Bacteroides fragilis. J Infect Dis 126:104–107

    Article  CAS  PubMed  Google Scholar 

  30. Bostic GD, Perri MB, Thal LA, Zervos MJ (1998) Comparative in vitro and bactericidal activity of oxazolidinone antibiotics against multidrug-resistant enterococci. Diagn Microbiol Infect Dis 30:109–112

    Article  CAS  PubMed  Google Scholar 

  31. Zurenko GE, Yagi BH, Schaadt RD, Allison JW, Kilburn JO, Glickman SE et al (1996) In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother 40:839–845

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoyne AL, Simon DL (1953) Intramuscular terramycin in treatment of meningitis: report of 21 recoveries. Arch Pediatr 70:319–325

    CAS  PubMed  Google Scholar 

  33. Paredes A, Taber LH, Yow MD, Clark D, Nathan W (1976) Prolonged pneumococcal meningitis due to an organism with increased resistance to penicillin. Pediatrics 58:378–381

    CAS  PubMed  Google Scholar 

  34. Shaikh ZH, Peloquin CA, Ericsson CD (2001) Successful treatment of vancomycin-resistant Enterococcus faecium meningitis with linezolid: case report and literature review. Scand J Infect Dis 33:375–379

    Article  CAS  PubMed  Google Scholar 

  35. Zeana C, Kubin CJ, Della-Latta P, Hammer SM (2001) Vancomycin-resistant Enterococcus faecium meningitis successfully managed with linezolid: case report and review of the literature. Clin Infect Dis 33:477–482

    Article  CAS  PubMed  Google Scholar 

  36. Levitz RE, Quintiliani R (1984) Trimethoprim-sulfamethoxazole for bacterial meningitis. Ann Intern Med 100:881–890

    Article  CAS  PubMed  Google Scholar 

  37. Nemeth J, Oesch G, Kuster SP (2015) Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: systematic review and meta-analysis. J Antimicrob Chemother 70:382–395

    Article  CAS  PubMed  Google Scholar 

  38. Crandon JL, Nicolau DP (2013) Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging gram-negative organisms, including metallo-beta-lactamase producers. Antimicrob Agents Chemother 57:3299–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sy SK, Beaudoin ME, Nichols WW, Schuck VJ, Derendorf H (2014) Avibactam and ceftazidime combination against multidrug resistant organisms in an in vitro pharmacokinetic/pharmacodynamic model. In: 54th Interscience conference of antimicrobial agents and chemotherapy. Washington, DC, pp abstr A–1344

    Google Scholar 

  40. Sy SK, Beaudoin ME, Schuck VJ, Derendorf H (2013) Modeling the potentiation of in vitro aztreonam activities by avibactam against four beta-lactam-resistant bacterial strains. In: 53rd Interscience conference of antimicrobial agents and chemotherapy. Denver, pp abstr A–1014

    Google Scholar 

  41. Ly NS, Bulitta JB, Rao GG, Landersdorfer CB, Holden PN, Forrest A et al (2015) Colistin and doripenem combinations against Pseudomonas aeruginosa: profiling the time course of synergistic killing and prevention of resistance. J Antimicrob Chemother 70:1434–1442

    Article  CAS  PubMed  Google Scholar 

  42. Blaser J, Stone BB, Zinner SH (1985) Two compartment kinetic model with multiple artificial capillary units. J Antimicrob Chemother 15(Suppl A):131–137

    Article  CAS  PubMed  Google Scholar 

  43. Blaser J, Stone BB, Zinner SH (1985) Efficacy of intermittent versus continuous administration of netilmicin in a two-compartment in vitro model. Antimicrob Agents Chemother 27:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zinner SH, Husson M, Klastersky J (1981) An artificial capillary in vitro kinetic model of antibiotic bactericidal activity. J Infect Dis 144:583–587

    Article  CAS  PubMed  Google Scholar 

  45. Michael J, Barth A, Kloft C, Derendorf H (2014) Pharmacodynamic in vitro models to determine the effect of antibiotics. In: Vinks AA, Derendorf H, Mouton JW (eds) Fundamentals of antimicrobial pharmacokinetics and pharmacodynamics. Springer, New York, pp 81–112

    Chapter  Google Scholar 

  46. Ba BB, Bernard A, Iliadis A, Quentin C, Ducint D, Etienne R et al (2001) New approach for accurate simulation of human pharmacokinetics in an in vitro pharmacodynamic model: application to ciprofloxacin. J Antimicrob Chemother 47:223–227

    Article  CAS  PubMed  Google Scholar 

  47. Louie A, Grasso C, Bahniuk N, Van Scoy B, Brown DL, Kulawy R et al (2010) The combination of meropenem and levofloxacin is synergistic with respect to both Pseudomonas aeruginosa kill rate and resistance suppression. Antimicrob Agents Chemother 54:2646–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Drusano GL, Sgambati N, Eichas A, Brown DL, Kulawy R, Louie A (2010) The combination of rifampin plus moxifloxacin is synergistic for suppression of resistance but antagonistic for cell kill of Mycobacterium tuberculosis as determined in a hollow-fiber infection model. MBio 1: e00139–10

    Google Scholar 

  49. Kim A, Banevicius MA, Nicolau DP (2008) In vivo pharmacodynamic profiling of doripenem against Pseudomonas aeruginosa by simulating human exposures. Antimicrob Agents Chemother 52:2497–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Andes D, Craig WA (1998) In vivo activities of amoxicillin and amoxicillin-clavulanate against Streptococcus pneumoniae: application to breakpoint determinations. Antimicrob Agents Chemother 42:2375–2379

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nicolau DP, Onyeji CO, Zhong M, Tessier PR, Banevicius MA, Nightingale CH (2000) Pharmacodynamic assessment of cefprozil against Streptococcus pneumoniae: implications for breakpoint determinations. Antimicrob Agents Chemother 44:1291–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kunst MW, Mattie H (1978) Cefazolin and cephradine: relationship between antibacterial activity in vitro and in mice experimentally infected with Escherichia coli. J Infect Dis 137:391–402

    Article  CAS  PubMed  Google Scholar 

  53. Gerber AU, Craig WA, Brugger HP, Feller C, Vastola AP, Brandel J (1983) Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice. J Infect Dis 147:910–917

    Article  CAS  PubMed  Google Scholar 

  54. Zuluaga AF, Salazar BE, Rodriguez CA, Zapata AX, Agudelo M, Vesga O (2006) Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases. BMC Infect Dis 6:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10; quiz 1–2

    Article  CAS  PubMed  Google Scholar 

  56. Craig WA (2001) Does the dose matter? Clin Infect Dis 33(Suppl 3):S233–S237

    Article  CAS  PubMed  Google Scholar 

  57. Kovar A, Dalla Costa T, Derendorf H (1997) Comparison of plasma and free tissue levels of ceftriaxone in rats by microdialysis. J Pharm Sci 86:52–56

    Article  CAS  PubMed  Google Scholar 

  58. Liu P, Fuhrherr R, Webb AI, Obermann B, Derendorf H (2005) Tissue penetration of cefpodoxime into the skeletal muscle and lung in rats. Eur J Pharm Sci 25:439–444

    Article  CAS  PubMed  Google Scholar 

  59. Crandon JL, Schuck VJ, Banevicius MA, Beaudoin ME, Nichols WW, Tanudra MA et al (2012) Comparative in vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime-avibactam against Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:6137–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Housman ST, Crandon JL, Nichols WW, Nicolau DP (2014) Efficacies of ceftazidime-avibactam and ceftazidime against Pseudomonas aeruginosa in a murine lung infection model. Antimicrob Agents Chemother 58:1365–1371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mangoni AA, Jackson SH (2004) Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol 57:6–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wooten JM (2012) Pharmacotherapy considerations in elderly adults. South Med J 105:437–445

    Article  PubMed  Google Scholar 

  63. Hollenberg SM, Ahrens TS, Annane D, Astiz ME, Chalfin DB, Dasta JF et al (2004) Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med 32:1928–1948

    Article  PubMed  Google Scholar 

  64. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  65. Rackow EC, Falk JL, Fein IA, Siegel JS, Packman MI, Haupt MT et al (1983) Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 11:839–850

    Article  CAS  PubMed  Google Scholar 

  66. Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37:840–851; quiz 59

    Article  CAS  PubMed  Google Scholar 

  67. McKinnon PS, Paladino JA, Schentag JJ (2008) Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 31:345–351

    Article  CAS  PubMed  Google Scholar 

  68. Angus BJ, Smith MD, Suputtamongkol Y, Mattie H, Walsh AL, Wuthiekanun V et al (2000) Pharmacokinetic-pharmacodynamic evaluation of ceftazidime continuous infusion vs intermittent bolus injection in septicaemic melioidosis. Br J Clin Pharmacol 50:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mouton JW, den Hollander JG (1994) Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 38:931–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roosendaal R, Bakker-Woudenberg IA, van den Berghe-van Raffe M, Vink-van den Berg JC, Michel BM (1989) Impact of the dosage schedule on the efficacy of ceftazidime, gentamicin and ciprofloxacin in Klebsiella pneumoniae pneumonia and septicemia in leukopenic rats. Eur J Clin Microbiol Infect Dis 8:878–887

    Article  CAS  PubMed  Google Scholar 

  71. Lodise TP Jr, Lomaestro B, Drusano GL (2007) Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 44:357–363

    Article  CAS  PubMed  Google Scholar 

  72. Marik PE (1993) Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care 21:172–173

    CAS  PubMed  Google Scholar 

  73. Buijk SE, Mouton JW, Gyssens IC, Verbrugh HA, Bruining HA (2002) Experience with a once-daily dosing program of aminoglycosides in critically ill patients. Intensive Care Med 28:936–942

    Article  CAS  PubMed  Google Scholar 

  74. Lee J, Yoon S, Shin D, Han H, An H, Lee J et al (2014) Predictive performance of gentamicin dosing nomograms. Drug Des Devel Ther 8:1097–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Toschlog EA, Blount KP, Rotondo MF, Sagraves SG, Bard MR, Schenarts PJ et al (2003) Clinical predictors of subtherapeutic aminoglycoside levels in trauma patients undergoing once-daily dosing. J Trauma 55:255–260; discussion 60–62

    Article  PubMed  Google Scholar 

  76. Udy AA, Roberts JA, Lipman J (2013) Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med 39:2070–2082

    Article  CAS  PubMed  Google Scholar 

  77. Carlier M, Carrette S, Roberts JA, Stove V, Verstraete A, Hoste E et al (2013) Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care 17:R84

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huttner A, Von Dach E, Renzoni A, Huttner BD, Affaticati M, Pagani L et al (2015) Augmented renal clearance, low beta-lactam concentrations and clinical outcomes in the critically ill: an observational prospective cohort study. Int J Antimicrob Agents 45:385–392

    Article  CAS  PubMed  Google Scholar 

  79. Sime FB, Udy AA, Roberts JA (2015) Augmented renal clearance in critically ill patients: etiology, definition and implications for beta-lactam dose optimization. Curr Opin Pharmacol 24:1–6

    Article  CAS  PubMed  Google Scholar 

  80. Udy AA, De Waele JJ, Lipman J (2015) Augmented renal clearance and therapeutic monitoring of beta-lactams. Int J Antimicrob Agents 45:331–333

    Article  CAS  PubMed  Google Scholar 

  81. Udy AA, Lipman J, Jarrett P, Klein K, Wallis SC, Patel K et al (2015) Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care 19:28

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vinks AA (2002) The application of population pharmacokinetic modeling to individualized antibiotic therapy. Int J Antimicrob Agents 19:313–322

    Article  CAS  PubMed  Google Scholar 

  83. van Lent-Evers NA, Mathot RA, Geus WP, van Hout BA, Vinks AA (1999) Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit 21:63–73

    Article  PubMed  Google Scholar 

  84. Kong X, Wen JQ, Qi RF, Luo S, Zhong JH, Chen HJ et al (2014) Diffuse interstitial brain edema in patients with end-stage renal disease undergoing hemodialysis: a tract-based spatial statistics study. Medicine 93:e313

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gupta V, Yassin MH (2013) Infection and hemodialysis access: an updated review. Infect Disord Drug Targets 13:196–205

    Article  CAS  PubMed  Google Scholar 

  86. Sowinski KM, Magner SJ, Lucksiri A, Scott MK, Hamburger RJ, Mueller BA (2008) Influence of hemodialysis on gentamicin pharmacokinetics, removal during hemodialysis, and recommended dosing. Clin J Am Soc Nephrol 3:355–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Teigen MM, Duffull S, Dang L, Johnson DW (2006) Dosing of gentamicin in patients with end-stage renal disease receiving hemodialysis. J Clin Pharmacol 46:1259–1267

    Article  CAS  PubMed  Google Scholar 

  88. Trotman RL, Williamson JC, Shoemaker DM, Salzer WL (2005) Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis 41:1159–1166

    Article  CAS  PubMed  Google Scholar 

  89. Plajer SM, Chin PK, Vella-Brincat JW, Buffery PJ, Begg EJ (2015) Gentamicin and renal function: lessons from 15 years’ experience of a pharmacokinetic service for extended interval dosing of gentamicin. Ther Drug Monit 37:98–103

    Article  CAS  PubMed  Google Scholar 

  90. Capellier G, Cornette C, Boillot A, Guinchard C, Jacques T, Blasco G et al (1998) Removal of piperacillin in critically ill patients undergoing continuous venovenous hemofiltration. Crit Care Med 26:88–91

    Article  CAS  PubMed  Google Scholar 

  91. van der Werf TS, Mulder PO, Zijlstra JG, Uges DR, Stegeman CA (1997) Pharmacokinetics of piperacillin and tazobactam in critically ill patients with renal failure, treated with continuous veno-venous hemofiltration (CVVH). Intensive Care Med 23:873–877

    Article  PubMed  Google Scholar 

  92. Valtonen M, Tiula E, Takkunen O, Backman JT, Neuvonen PJ (2001) Elimination of the piperacillin/tazobactam combination during continuous venovenous haemofiltration and haemodiafiltration in patients with acute renal failure. J Antimicrob Chemother 48:881–885

    Article  CAS  PubMed  Google Scholar 

  93. Mueller SC, Majcher-Peszynska J, Hickstein H, Francke A, Pertschy A, Schulz M et al (2002) Pharmacokinetics of piperacillin-tazobactam in anuric intensive care patients during continuous venovenous hemodialysis. Antimicrob Agents Chemother 46:1557–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Asin-Prieto E, Rodriguez-Gascon A, Troconiz IF, Soraluce A, Maynar J, Sanchez-Izquierdo JA et al (2014) Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: application to pharmacokinetic/pharmacodynamic analysis. J Antimicrob Chemother 69:180–189

    Article  CAS  PubMed  Google Scholar 

  95. Derendorf H, Dalla Costa T (1996) Pharmacokinetics of piperacillin, tazobactam and its metabolite in renal impairment. Int J Clin Pharmacol Ther 34:482–488

    CAS  PubMed  Google Scholar 

  96. Joy MS, Matzke GR, Frye RF, Palevsky PM (1998) Determinants of vancomycin clearance by continuous venovenous hemofiltration and continuous venovenous hemodialysis. Am J Kidney Dis 31:1019–1027

    Article  CAS  PubMed  Google Scholar 

  97. Matzke GR, O’Connell MB, Collins AJ, Keshaviah PR (1986) Disposition of vancomycin during hemofiltration. Clin Pharmacol Ther 40:425–430

    Article  CAS  PubMed  Google Scholar 

  98. Matzke GR, Zhanel GG, Guay DR (1986) Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet 11:257–282

    Article  CAS  PubMed  Google Scholar 

  99. DelDot ME, Lipman J, Tett SE (2004) Vancomycin pharmacokinetics in critically ill patients receiving continuous venovenous haemodiafiltration. Br J Clin Pharmacol 58:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Boereboom FT, Ververs FF, Blankestijn PJ, Savelkoul TJ, van Dijk A (1999) Vancomycin clearance during continuous venovenous haemofiltration in critically ill patients. Intensive Care Med 25:1100–1104

    Article  CAS  PubMed  Google Scholar 

  101. Santre C, Leroy O, Simon M, Georges H, Guery B, Beuscart C et al (1993) Pharmacokinetics of vancomycin during continuous hemodiafiltration. Intensive Care Med 19:347–350

    Article  CAS  PubMed  Google Scholar 

  102. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A (2006) High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med 166:2138–2144

    Article  PubMed  Google Scholar 

  103. Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC Jr, Craig WA, Billeter M et al (2009) Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy 29:1275–1279

    Article  CAS  PubMed  Google Scholar 

  104. Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM et al (2012) National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metrics 10:22

    Article  Google Scholar 

  105. Ogden CL, Carroll MD, Flegal KM (2014) Prevalence of obesity in the United States. JAMA 312:189–190

    Article  CAS  PubMed  Google Scholar 

  106. Ogden CL, Carroll MD, Kit BK, Flegal KM (2014) Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311:806–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Han PY, Duffull SB, Kirkpatrick CM, Green B (2007) Dosing in obesity: a simple solution to a big problem. Clin Pharmacol Ther 82:505–508

    Article  CAS  PubMed  Google Scholar 

  108. Longo C, Bartlett G, Macgibbon B, Mayo N, Rosenberg E, Nadeau L et al (2013) The effect of obesity on antibiotic treatment failure: a historical cohort study. Pharmacoepidemiol Drug Saf 22:970–976

    CAS  PubMed  Google Scholar 

  109. Pai MP, Paloucek FP (2000) The origin of the “ideal” body weight equations. Ann Pharmacother 34:1066–1069

    Article  CAS  PubMed  Google Scholar 

  110. Bauer LA, Edwards WA, Dellinger EP, Simonowitz DA (1983) Influence of weight on aminoglycoside pharmacokinetics in normal weight and morbidly obese patients. Eur J Clin Pharmacol 24:643–647

    Article  CAS  PubMed  Google Scholar 

  111. Schwartz SN, Pazin GJ, Lyon JA, Ho M, Pasculle AW (1978) A controlled investigation of the pharmacokinetics of gentamicin and tobramycin in obese subjects. J Infect Dis 138:499–505

    Article  CAS  PubMed  Google Scholar 

  112. Korsager S (1980) Administration of gentamicin to obese patients. Int J Clin Pharmacol Ther Toxicol 18:549–553

    CAS  PubMed  Google Scholar 

  113. Janson B, Thursky K (2012) Dosing of antibiotics in obesity. Curr Opin Infect Dis 25:634–649

    Article  CAS  PubMed  Google Scholar 

  114. Ortega A, Aldaz A, Giraldez J, Brugarolas A (1999) Relationship between pharmacokinetic parameters of gentamicin and patient characteristics and/or clinical data in patients with solid organ tumours. Pharm World Sci 21:227–232

    Article  CAS  PubMed  Google Scholar 

  115. Leader WG, Tsubaki T, Chandler MH (1994) Creatinine-clearance estimates for predicting gentamicin pharmacokinetic values in obese patients. Am J Hosp Pharm 51:2125–2130

    CAS  PubMed  Google Scholar 

  116. Bauer LA, Blouin RA, Griffen WO Jr, Record KE, Bell RM (1980) Amikacin pharmacokinetics in morbidly obese patients. Am J Hosp Pharm 37:519–522

    CAS  PubMed  Google Scholar 

  117. Blouin RA, Mann HJ, Griffen WO Jr, Bauer LA, Record KE (1979) Tobramycin pharmacokinetics in morbidly obese patients. Clin Pharmacol Ther 26:508–512

    Article  CAS  PubMed  Google Scholar 

  118. Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC, Craig WA, Billeter M et al (2009) Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 49:325–327

    Article  PubMed  Google Scholar 

  119. Grace E (2012) Altered vancomycin pharmacokinetics in obese and morbidly obese patients: what we have learned over the past 30 years. J Antimicrob Chemother 67:1305–1310

    Article  CAS  PubMed  Google Scholar 

  120. Bauer LA, Black DJ, Lill JS (1998) Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol 54:621–625

    Article  CAS  PubMed  Google Scholar 

  121. Ducharme MP, Slaughter RL, Edwards DJ (1994) Vancomycin pharmacokinetics in a patient population: effect of age, gender, and body weight. Ther Drug Monit 16:513–518

    Article  CAS  PubMed  Google Scholar 

  122. Vance-Bryan K, Guay DR, Gilliland SS, Rodvold KA, Rotschafer JC (1993) Effect of obesity on vancomycin pharmacokinetic parameters as determined by using a Bayesian forecasting technique. Antimicrob Agents Chemother 37:436–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Leong JV, Boro MS, Winter M (2011) Determining vancomycin clearance in an overweight and obese population. Am J Health Syst Pharm 68:599–603

    Article  CAS  PubMed  Google Scholar 

  124. Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL (2009) Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis 49:507–514

    Article  CAS  PubMed  Google Scholar 

  125. Lodise TP, Lomaestro B, Graves J, Drusano GL (2008) Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother 52:1330–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Truong J, Levkovich BJ, Padiglione AA (2012) Simple approach to improving vancomycin dosing in intensive care: a standardised loading dose results in earlier therapeutic levels. Intern Med J 42:23–29

    Article  CAS  PubMed  Google Scholar 

  127. Toma O, Suntrup P, Stefanescu A, London A, Mutch M, Kharasch E (2011) Pharmacokinetics and tissue penetration of cefoxitin in obesity: implications for risk of surgical site infection. Anesth Analg 113:730–737

    Article  CAS  PubMed  Google Scholar 

  128. Rich BS, Keel R, Ho VP, Turbendian H, Afaneh CI, Dakin GF et al (2012) Cefepime dosing in the morbidly obese patient population. Obes Surg 22:465–471

    Article  PubMed  Google Scholar 

  129. Mann HJ, Buchwald H (1986) Cefamandole distribution in serum, adipose tissue, and wound drainage in morbidly obese patients. Drug Intell Clin Pharm 20:869–873

    CAS  PubMed  Google Scholar 

  130. Ho VP, Nicolau DP, Dakin GF, Pomp A, Rich BS, Towe CW et al (2012) Cefazolin dosing for surgical prophylaxis in morbidly obese patients. Surg Infect (Larchmt) 13:33–37

    Article  Google Scholar 

  131. Chen M, Nafziger AN, Drusano GL, Ma L, Bertino JS Jr (2006) Comparative pharmacokinetics and pharmacodynamic target attainment of ertapenem in normal-weight, obese, and extremely obese adults. Antimicrob Agents Chemother 50:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zakrison TL, Hille DA, Namias N (2012) Effect of body mass index on treatment of complicated intra-abdominal infections in hospitalized adults: comparison of ertapenem with piperacillin-tazobactam. Surg Infect (Larchmt) 13:38–42

    Article  Google Scholar 

  133. Cheatham SC, Fleming MR, Healy DP, Chung EK, Shea KM, Humphrey ML et al (2014) Steady-state pharmacokinetics and pharmacodynamics of meropenem in morbidly obese patients hospitalized in an intensive care unit. J Clin Pharmacol 54:324–330

    Article  CAS  PubMed  Google Scholar 

  134. Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW (1976) The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol 31:155–163

    Article  CAS  PubMed  Google Scholar 

  135. Davies DF, Shock NW (1950) Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest 29:496–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  137. Greenblatt DJ, Divoll M, Abernethy DR, Shader RI (1982) Physiologic changes in old age: relation to altered drug disposition. J Am Geriatr Soc 30:S6–S10

    Article  CAS  PubMed  Google Scholar 

  138. Greenblatt DJ, Sellers EM, Shader RI (1982) Drug therapy: drug disposition in old age. N Engl J Med 306:1081–1088

    Article  CAS  PubMed  Google Scholar 

  139. Pucino F, Beck CL, Seifert RL, Strommen GL, Sheldon PA, Silbergleit IL (1985) Pharmacogeriatrics. Pharmacotherapy 5:314–326

    Article  CAS  PubMed  Google Scholar 

  140. Wallace S, Whiting B (1976) Factors affecting drug binding in plasma of elderly patients. Br J Clin Pharmacol 3:327–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Marangos MN, Skoutelis AT, Nightingale CH, Zhu Z, Psyrogiannis AG, Nicolau DP et al (1995) Absorption of ciprofloxacin in patients with diabetic gastroparesis. Antimicrob Agents Chemother 39:2161–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ebbesen J, Buajordet I, Erikssen J, Brors O, Hilberg T, Svaar H et al (2001) Drug-related deaths in a department of internal medicine. Arch Intern Med 161:2317–2323

    Article  CAS  PubMed  Google Scholar 

  143. Hohl CM, Dankoff J, Colacone A, Afilalo M (2001) Polypharmacy, adverse drug-related events, and potential adverse drug interactions in elderly patients presenting to an emergency department. Ann Emerg Med 38:666–671

    Article  CAS  PubMed  Google Scholar 

  144. Jorgensen T, Johansson S, Kennerfalk A, Wallander MA, Svardsudd K (2001) Prescription drug use, diagnoses, and healthcare utilization among the elderly. Ann Pharmacother 35:1004–1009

    Article  CAS  PubMed  Google Scholar 

  145. Faulkner CM, Cox HL, Williamson JC (2005) Unique aspects of antimicrobial use in older adults. Clin Infect Dis 40:997–1004

    Article  PubMed  Google Scholar 

  146. Biggs WS (2003) Hypoglycemia and hyperglycemia associated with gatifloxacin use in elderly patients. J Am Board Fam Pract 16:455–457

    Article  PubMed  Google Scholar 

  147. Menzies DJ, Dorsainvil PA, Cunha BA, Johnson DH (2002) Severe and persistent hypoglycemia due to gatifloxacin interaction with oral hypoglycemic agents. Am J Med 113:232–234

    Article  PubMed  Google Scholar 

  148. Amankwa K, Krishnan SC, Tisdale JE (2004) Torsades de pointes associated with fluoroquinolones: importance of concomitant risk factors. Clin Pharmacol Ther 75:242–247

    Article  CAS  PubMed  Google Scholar 

  149. Black FO, Pesznecker SC (1993) Vestibular ototoxicity. Clinical considerations. Otolaryngol Clin North Am 26:713–736

    CAS  PubMed  Google Scholar 

  150. Gatell JM, Ferran F, Araujo V, Bonet M, Soriano E, Traserra J et al (1987) Univariate and multivariate analyses of risk factors predisposing to auditory toxicity in patients receiving aminoglycosides. Antimicrob Agents Chemother 31:1383–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mahmood I (2014) Dosing in children: a critical review of the pharmacokinetic allometric scaling and modelling approaches in paediatric drug development and clinical settings. Clin Pharmacokinet 53:327–346

    Article  CAS  PubMed  Google Scholar 

  152. Mahmood I (2007) Prediction of drug clearance in children: impact of allometric exponents, body weight, and age. Ther Drug Monit 29:271–278

    Article  PubMed  Google Scholar 

  153. Cella M, Knibbe C, Danhof M, Della Pasqua O (2010) What is the right dose for children? Br J Clin Pharmacol 70:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sy SK, Asin-Prieto E, Derendorf H, Samara E (2014) Predicting pediatric age-matched weight and body mass index. AAPS J 16:1372–1379

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hu TM, Hayton WL (2001) Allometric scaling of xenobiotic clearance: uncertainty versus universality. AAPS Pharm Sci 3:E29

    Article  CAS  Google Scholar 

  156. Jensen PD, Edgren BE, Brundage RC (1992) Population pharmacokinetics of gentamicin in neonates using a nonlinear, mixed-effects model. Pharmacotherapy 12:178–182

    CAS  PubMed  Google Scholar 

  157. Botha JH, du Preez MJ, Adhikari M (2003) Population pharmacokinetics of gentamicin in South African newborns. Eur J Clin Pharmacol 59:755–759

    Article  CAS  PubMed  Google Scholar 

  158. Vervelde ML, Rademaker CM, Krediet TG, Fleer A, van Asten P, van Dijk A (1999) Population pharmacokinetics of gentamicin in preterm neonates: evaluation of a once-daily dosage regimen. Ther Drug Monit 21:514–519

    Article  CAS  PubMed  Google Scholar 

  159. Zakova M, Pong S, Trope A, Atenafu EG, Papaioannou V, Bitnun SA et al (2014) Dose derivation of once-daily dosing guidelines for gentamicin in critically ill pediatric patients. Ther Drug Monit 36:288–294

    Article  CAS  PubMed  Google Scholar 

  160. Mohamed AF, Nielsen EI, Cars O, Friberg LE (2012) Pharmacokinetic-pharmacodynamic model for gentamicin and its adaptive resistance with predictions of dosing schedules in newborn infants. Antimicrob Agents Chemother 56:179–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Haughey DB, Hilligoss DM, Grassi A, Schentag JJ (1980) Two-compartment gentamicin pharmacokinetics in premature neonates: a comparison to adults with decreased glomerular filtration rates. J Pediatr 96:325–330

    Article  CAS  PubMed  Google Scholar 

  162. Landers S, Berry PL, Kearns GL, Kaplan SL, Rudolph AJ (1984) Gentamicin disposition and effect on development of renal function in the very low birth weight infant. Dev Pharmacol Ther 7:285–302

    CAS  PubMed  Google Scholar 

  163. Sherwin CM, Svahn S, Van der Linden A, Broadbent RS, Medlicott NJ, Reith DM (2009) Individualised dosing of amikacin in neonates: a pharmacokinetic/pharmacodynamic analysis. Eur J Clin Pharmacol 65:705–713

    Article  CAS  PubMed  Google Scholar 

  164. Ikawa K, Morikawa N, Ikeda K, Miki M, Kobayashi M (2010) Population pharmacokinetics and pharmacodynamics of meropenem in Japanese pediatric patients. J Infect Chemother 16:139–143

    Article  CAS  PubMed  Google Scholar 

  165. Bradley JS, Sauberan JB, Ambrose PG, Bhavnani SM, Rasmussen MR, Capparelli EV (2008) Meropenem pharmacokinetics, pharmacodynamics, and Monte Carlo simulation in the neonate. Pediatr Infect Dis J 27:794–799

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Derendorf PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sy, S.K.B., Derendorf, H. (2016). Pharmacokinetics I: PK-PD Approach, the Case of Antibiotic Drug Development. In: Müller, M. (eds) Clinical Pharmacology: Current Topics and Case Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-27347-1_13

Download citation

Publish with us

Policies and ethics