Skip to main content

Calcium Entry Through Thermosensory Channels

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Abstract

ThermoTRPs are unique channels that mediate Na+ and Ca2+ currents in response to changes in ambient temperature. In combination with their activation by other physical and chemical stimuli, they are considered key integrators of environmental cues into neuronal excitability. Furthermore, roles of thermoTRPs in non-neuronal tissues are currently emerging such as insulin secretion in pancreatic β-cells, and links to cancer. Calcium permeability through thermoTRPs appears a central hallmark for their physiological and pathological activities. Moreover, it is currently being proposed that beyond working as a second messenger, Ca2+ can function locally by acting on protein complexes near the membrane. Interestingly, thermoTRPs can enhance and expand the inherent plasticity of signalplexes by conferring them temperature, pH and lipid regulation through Ca2+ signalling. Thus, unveiling the local role of Ca2+ fluxes induced by thermoTRPs on the dynamics of membrane-attached signalling complexes as well as their significance in cellular processes, are central issues that will expand the opportunities for therapeutic intervention in disorders involving dysfunction of thermoTRP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nilius B, Flockerzi V (2014) Mammalian transient receptor potential (TRP) cation channels. Handbook of experimental pharmacology, vol 222. Springer, Berlin

    Book  Google Scholar 

  2. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217

    Article  CAS  PubMed  Google Scholar 

  3. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baez D, Raddatz N, Ferreira G, Gonzalez C, Latorre R (2014) Gating of thermally activated channels. Curr Top Membr 74:51–87. doi:10.1016/B978-0-12-800181-3.00003-8

    Google Scholar 

  5. Brederson JD, Kym PR, Szallasi A (2013) Targeting TRP channels for pain relief. Eur J Pharmacol 716(1–3):61–76

    Article  CAS  PubMed  Google Scholar 

  6. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G (2007) ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 42(4–5):427–438

    Article  CAS  PubMed  Google Scholar 

  7. Schepers RJ, Ringkamp M (2010) Thermoreceptors and thermosensitive afferents. Neurosci Biobehav Rev 34(2):177–184

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez-Carvajal A, Fernandez-Ballester G, Devesa I, Gonzalez-Ros JM, Ferrer-Montiel A (2011) New strategies to develop novel pain therapies: addressing thermoreceptors from different points of view. Pharm (Basel) 5(1):16–48

    Article  CAS  Google Scholar 

  9. Ferrer-Montiel A, Fernandez-Carvajal A, Planells-Cases R, Fernandez-Ballester G, Gonzalez-Ros JM, Messeguer A, Gonzalez-Muniz R (2012) Advances in modulating thermosensory TRP channels. Expert Opin Ther Pathol 22(9):999–1017

    Article  CAS  Google Scholar 

  10. Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286(44):38168–38176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huynh KW, Cohen MR, Chakrapani S, Holdaway HA, Stewart PL, Moiseenkova-Bell VY (2014) Structural insight into the assembly of TRPV channels. Structure 22(2):260–268

    Article  CAS  PubMed  Google Scholar 

  12. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478):107–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci U S A 105(21):7451–7455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Phelps CB, Huang RJ, Lishko PV, Wang RR, Gaudet R (2008) Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47(8):2476–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia-Sanz N, Fernandez-Carvajal A, Morenilla-Palao C, Planells-Cases R, Fajardo-Sanchez E, Fernandez-Ballester G, Ferrer-Montiel A (2004) Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci 24(23):5307–5314

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Sanz N, Valente P, Gomis A, Fernandez-Carvajal A, Fernandez-Ballester G, Viana F, Belmonte C, Ferrer-Montiel A (2007) A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J Neurosci 27(43):11641–11650

    Article  CAS  PubMed  Google Scholar 

  18. Valente P, Garcia-Sanz N, Gomis A, Fernandez-Carvajal A, Fernandez-Ballester G, Viana F, Belmonte C, Ferrer-Montiel A (2008) Identification of molecular determinants of channel gating in the transient receptor potential box of vanilloid receptor I. FASEB J 22:3298–3309

    Article  CAS  PubMed  Google Scholar 

  19. Gregorio-Teruel L, Valente P, González-Ros JM, Fernández-Ballester G, Ferrer-Montiel A (2014) Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation. J Gen Physiol 143:361–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taberner FJ, Lopez-Cordoba A, Fernandez-Ballester G, Korchev Y, Ferrer-Montiel A (2014) The region adjacent to the C-end of the inner gate in transient receptor potential melastatin 8 (TRPM8) channels plays a central role in allosteric channel activation. J Biol Chem 289(41):28579–28594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nilius B, Vennekens R, Prenen J, Hoenderop JGJ, Droogmans G, Bindels RJM (2001) The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem 276:1020–1025

    Article  CAS  PubMed  Google Scholar 

  22. Talavera K, Staes M, Janssens A, Klugbauer N, Droogmans G, Hofmann F, Nilius B (2001) Aspartate residues of the Glu-Glu-Asp-Asp (EEDD) pore locus control selectivity and permeation of the T-type Ca2+channel α1G. J Biol Chem 276:45628–45635

    Article  CAS  PubMed  Google Scholar 

  23. Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, Catterall WA (2013) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nat Adv Online Publ 505(7481):56

    CAS  Google Scholar 

  24. Yang J, Elllnor PT, Sather WA, Zhang J-F, Tsien RW (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161

    Article  CAS  PubMed  Google Scholar 

  25. Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T (2005) The selectivity filter of the cation channel TRPM4. J Biol Chem 280:22899–22906

    Article  CAS  PubMed  Google Scholar 

  26. Mederos y Schnitzler M, Wäring J, Gudermann T, Chubanov V (2008) Evolutionary determinants of divergent calcium selectivity of TRPM channels. FASEB J 22:1540–1551

    Article  CAS  PubMed  Google Scholar 

  27. Garcı́a-Martı́nez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275:32552–32558

    Article  PubMed  Google Scholar 

  28. Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bödding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710

    Article  CAS  PubMed  Google Scholar 

  29. Xia R, Mei Z-Z, Mao H-J, Yang W, Dong L, Bradley H, Beech DJ, Jiang L-H (2008) Identification of pore residues engaged in determining divalent cationic permeation in transient receptor potential melastatin subtype channel 2. J Biol Chem 283:27426–27432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Darré L, Furini S, Domene C (2015) Permeation and dynamics of an open-activated TRPV1 channel. J Mol Biol 427:537–549

    Article  PubMed  CAS  Google Scholar 

  31. Chung M-K, Güler AD, Caterina MJ (2008) TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 11:555–564

    Article  CAS  PubMed  Google Scholar 

  32. Banke TG, Chaplan SR, Wickenden AD (2010) Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation. Am J Physiol Cell Physiol 298:C1457–C1468

    Article  CAS  PubMed  Google Scholar 

  33. Karashima Y, Prenen J, Talavera K, Janssens A, Voets T, Nilius B (2010) Agonist-induced changes in Ca2+ permeation through the nociceptor cation channel TRPA1. Biophys J 98:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Kim D, Bianchi BR, Cavanaugh EJ, Faltynek CR, Kym PR, Reilly RM (2009) Pore dilation occurs in TRPA1 but not in TRPM8 channels. Mol Pain 5:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Veldhuis NA, Lew MJ, Abogadie FC, Poole DP, Jennings EA, Ivanusic JJ, Eilers H, Bunnett NW, McIntyre P (2012) N-glycosylation determines ionic permeability and desensitization of the TRPV1 capsaicin receptor. J Biol Chem 287:21765–21772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zimmermann K, Lennerz JK, Hein A, Link AS, Kaczmarek JS, Delling M, Uysal S, Pfeifer JD, Riccio A, Clapham DE (2011) Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci U S A 108(44):18114–18119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schilling WP, Goel M (2004) Mammalian TRPC channel subunit assembly. Novartis Found Symp 258:18–30; discussion 30–43, 98–102, 263–266

    Article  CAS  PubMed  Google Scholar 

  38. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    Article  PubMed  Google Scholar 

  39. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    Article  PubMed  Google Scholar 

  40. Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic beta-cells. Cell Calcium 41(1):51–61

    Article  CAS  PubMed  Google Scholar 

  41. Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118:917–928

    Article  CAS  PubMed  Google Scholar 

  42. Fischer MJM, Balasuriya D, Jeggle P, Goetze TA, McNaughton PA, Reeh PW, Edwardson JM (2014) Direct evidence for functional TRPV1/TRPA1 heteromers. Pflugers Arch – Eur J Physiol 466:2229–2241

    Article  CAS  Google Scholar 

  43. Köttgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, Boehlke C, Steffl D, Tauber R, Wegierski T, Nitschke R, Suzuki M, Kramer-Zucker A, Germino GG, Watnick T, Prenen J, Nilius B, Kuehn EW, Walz G (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ma X, Nilius B, Wong JW-Y, Huang Y, Yao X (2011) Electrophysiological properties of heteromeric TRPV4–C1 channels. Biochim Biophys Acta Biomembr 1808:2789–2797

    Article  CAS  Google Scholar 

  45. Ma X, Cheng K-T, Wong C-O, O’Neil RG, Birnbaumer L, Ambudkar IS, Yao X (2011) Heteromeric TRPV4-C1 channels contribute to store-operated Ca2+ entry in vascular endothelial cells. Cell Calcium 50:502–509

    Article  CAS  PubMed  Google Scholar 

  46. Stewart AP, Smith GD, Sandford RN, Edwardson JM (2010) Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99:790–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Launay P, Fleig A, Perraud A-L, Scharenberg AM, Penner R, Kinet J-P (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  CAS  PubMed  Google Scholar 

  48. Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel. Curr Biol 13:1153–1158

    Article  CAS  PubMed  Google Scholar 

  49. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433

    Article  CAS  PubMed  Google Scholar 

  50. Yamaguchi S, Tanimoto A, K-i O, Hibino H, Ito S (2014) Negatively charged amino acids near and in transient receptor potential (TRP) domain of TRPM4 channel are one determinant of its Ca2+ sensitivity. J Biol Chem 289:35265–35282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gross SA, Guzmán GA, Wissenbach U, Philipp SE, Zhu MX, Bruns D, Cavalié A (2009) TRPC5 is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels. J Biol Chem 284:34423–34432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zholos AV (2014) TRPC5. In: Nilius B, Flockerzi V (eds) Mammalian transient receptor potential (TRP) cation channels. Handbook of experimental pharmacology. Springer, Berlin, pp 129–156

    Chapter  Google Scholar 

  53. Mahieu F, Janssens A, Gees M, Talavera K, Nilius B, Voets T (2010) Modulation of the cold-activated cation channel TRPM8 by surface charge screening. J Physiol 588(Pt 2):315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Doerner JF, Hatt H, Ramsey IS (2011) Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J Gen Physiol 137:271–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10:277–279

    Article  CAS  PubMed  Google Scholar 

  56. Nilius B, Voets T, Peters J (2005) TRP channels in disease. Sci STKE 2005(295):re8

    PubMed  Google Scholar 

  57. O’Neil RG, Brown RC (2003) The vanilloid receptor family of calcium-permeable channels: molecular integrators of microenvironmental stimuli. News Physiol Sci 18:226–231

    PubMed  Google Scholar 

  58. Benham CD, Davis JB, Randall AD (2002) Vanilloid and TRP channels: a family of lipid-gated cation channels. Neuropharmacology 42(7):873–888

    Article  CAS  PubMed  Google Scholar 

  59. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    Article  CAS  PubMed  Google Scholar 

  60. McNamara FN, Randall A, Gunthorpe MJ (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol 144:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM (2007) Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol 583:175–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543

    Article  CAS  PubMed  Google Scholar 

  63. Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CS, Yeats JC (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 107:544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Valente P, Fernández-Carvajal A, Camprubí-Robles M, Gomis A, Quirce S, Viana F, Fernández-Ballester G, González-Ros JM, Belmonte C, Planells-Cases R, Ferrer-Montiel A (2011) Membrane-tethered peptides patterned after the TRP domain (TRPducins) selectively inhibit TRPV1 channel activity. FASEB J 25:1628–1640

    Article  CAS  PubMed  Google Scholar 

  65. Valenzano KJ, Grant ER, Wu G, Hachicha M, Schmid L, Tafesse L, Sun Q, Rotshteyn Y, Francis J, Limberis J, Malik S, Whittemore ER, Hodges D (2003) N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: I. In vitro characterization and pharmacokinetic properties. J Pharmacol Exp Ther 306:377–386

    Article  CAS  PubMed  Google Scholar 

  66. Gavva NR, Klionsky L, Qu Y, Shi L, Tamir R, Edenson S, Zhang TJ, Viswanadhan VN, Toth A, Pearce LV, Vanderah TW, Porreca F, Blumberg PM, Lile J, Sun Y, Wild K, Louis J-C, Treanor JJS (2004) Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem 279:20283–20295

    Article  CAS  PubMed  Google Scholar 

  67. Jordt S-E, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430

    Article  CAS  PubMed  Google Scholar 

  68. Yao J, Liu B, Qin F (2011) Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc Natl Acad Sci 108:11109–11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Myers BR, Bohlen CJ, Julius D (2008) A yeast genetic screen reveals a critical role for the pore helix domain in TRP channel gating. Neuron 58(3):362–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim SE, Patapoutian A, Grandl J (2013) Single residues in the outer pore of TRPV1 and TRPV3 have temperature-dependent conformations. PLoS One 8(3):e59593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R (2006) A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26:4835–4840

    Article  CAS  PubMed  Google Scholar 

  72. Docherty RJ, Yeats JC, Bevan S, Boddeke HW (1996) Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch – Eur J Physiol 431(6):828–837

    Article  CAS  Google Scholar 

  73. Koplas PA, Rosenberg RL, Oxford GS (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci 17(10):3525–3537

    CAS  PubMed  Google Scholar 

  74. Lukacs V, Rives J-M, Sun X, Zakharian E, Rohacs T (2013) Promiscuous activation of transient receptor potential vanilloid 1 (TRPV1) channels by negatively charged intracellular lipids. The key role of endogenous phosphoinositides in maintaining channel activity. J Biol Chem 288:35003–35013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Devesa I, Planells-Cases R, Fernandez-Ballester G, Gonzalez-Ros JM, Ferrer-Montiel A, Fernandez-Carvajal A (2011) Role of the transient receptor potential vanilloid 1 in inflammation and sepsis. J Inflamm Res 4:67–81

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Planells-Cases R, Valente P, Ferrer-Montiel A, Qin F, Szallasi A (2011) Complex regulation of TRPV1 and related thermo-TRPs: implications for therapeutic intervention. Adv Exp Med Biol 704:491–515

    Article  CAS  PubMed  Google Scholar 

  77. Camprubi-Robles M, Planells-Cases R, Ferrer-Montiel A (2009) Differential contribution of SNARE-dependent exocytosis to inflammatory potentiation of TRPV1 in nociceptors. FASEB J 23(11):3722–3733

    Article  CAS  PubMed  Google Scholar 

  78. Morenilla-Palao C, Planells-Cases R, Garcia-Sanz N, Ferrer-Montiel A (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 279(24):25665–25672

    Article  CAS  PubMed  Google Scholar 

  79. Price TJ, Flores CM (2007) Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. J Pain 8(3):263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Devesa I, Ferrandiz-Huertas C, Mathivanan S, Wolf C, Lujan R, Changeux JP, Ferrer-Montiel A (2014) alphaCGRP is essential for algesic exocytotic mobilization of TRPV1 channels in peptidergic nociceptors. Proc Natl Acad Sci U S A 111(51):18345–18350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barton NJ, McQueen DS, Thomson D, Gauldie SD, Wilson AW, Salter DM, Chessell IP (2006) Attenuation of experimental arthritis in TRPV1R knockout mice. Exp Mol Pathol 81(2):166–170

    Article  CAS  PubMed  Google Scholar 

  82. Keeble J, Russell F, Curtis B, Starr A, Pinter E, Brain SD (2005) Involvement of transient receptor potential vanilloid 1 in the vascular and hyperalgesic components of joint inflammation. Arthritis Rheum 52(10):3248–3256

    Article  CAS  PubMed  Google Scholar 

  83. Engler A, Aeschlimann A, Simmen BR, Michel BA, Gay RE, Gay S, Sprott H (2007) Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem Biophys Res Commun 359(4):884–888

    Article  CAS  PubMed  Google Scholar 

  84. Menendez L, Juarez L, Garcia E, Garcia-Suarez O, Hidalgo A, Baamonde A (2006) Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice. Neurosci Lett 393(1):70–73

    Article  CAS  PubMed  Google Scholar 

  85. Hong S, Wiley JW (2005) Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem 280(1):618–627

    Article  CAS  PubMed  Google Scholar 

  86. Jhaveri MD, Elmes SJ, Kendall DA, Chapman V (2005) Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naive, carrageenan-inflamed and neuropathic rats. Eur J Neurosci 22(2):361–370

    Article  PubMed  Google Scholar 

  87. Richardson JD, Vasko MR (2002) Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 302(3):839–845

    Article  CAS  PubMed  Google Scholar 

  88. Edwards JG (2014) TRPV1 in the central nervous system: synaptic plasticity, function, and pharmacological implications. Prog Drug Res 68:77–104

    CAS  PubMed  Google Scholar 

  89. Maione S, Cristino L, Migliozzi AL, Georgiou AL, Starowicz K, Salt TE, Di MV (2009) TRPV1 channels control synaptic plasticity in the developing superior colliculus. J Physiol 587(Pt 11):2521–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Matta JA, Ahern GP (2011) TRPV1 and synaptic transmission. Curr Pharm Biotechnol 12(1):95–101

    Article  CAS  PubMed  Google Scholar 

  91. Song J, Lee JH, Lee SH, Park KA, Lee WT, Lee JE (2013) TRPV1 activation in primary cortical neurons induces calcium-dependent programmed cell death. Exp Neurobiol 22(1):51–57

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shirakawa H, Yamaoka T, Sanpei K, Sasaoka H, Nakagawa T, Kaneko S (2008) TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons. Biochem Biophys Res Commun 377(4):1211–1215

    Article  CAS  PubMed  Google Scholar 

  93. Ghazizadeh V, Naziroglu M (2014) Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats. Metab Brain Dis 29(3):787–799

    Article  CAS  PubMed  Google Scholar 

  94. Ovey IS, Naziroglu M (2015) Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience 284:225–233

    Article  CAS  PubMed  Google Scholar 

  95. Starowicz K, Cristino L, Di MV (2008) TRPV1 receptors in the central nervous system: potential for previously unforeseen therapeutic applications. Curr Pharm Des 14(1):42–54

    Article  CAS  PubMed  Google Scholar 

  96. Alawi K, Keeble J (2010) The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation. Pharmacol Ther 125(2):181–195

    Article  CAS  PubMed  Google Scholar 

  97. Fernandes ES, Fernandes MA, Keeble JE (2012) The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 166(2):510–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Denda M, Tsutsumi M (2011) Roles of transient receptor potential proteins (TRPs) in epidermal keratinocytes. Adv Exp Med Biol 704:847–860

    Article  CAS  PubMed  Google Scholar 

  99. Miyazaki A, Ohkubo T, Hatta M, Ishikawa H, Yamazaki J (2015) Integrin alpha6beta4 and TRPV1 channel coordinately regulate directional keratinocyte migration. Biochem Biophys Res Commun 458(1):161–167

    Article  CAS  PubMed  Google Scholar 

  100. Lee YM, Kang SM, Chung JH (2012) The role of TRPV1 channel in aged human skin. J Dermatol Sci 65(2):81–85

    Article  CAS  PubMed  Google Scholar 

  101. Li S, Bode AM, Zhu F, Liu K, Zhang J, Kim MO, Reddy K, Zykova T, Ma WY, Carper AL, Langfald AK, Dong Z (2011) TRPV1-antagonist AMG9810 promotes mouse skin tumorigenesis through EGFR/Akt signaling. Carcinogenesis 32(5):779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lieben L, Carmeliet G (2012) The involvement of TRP channels in bone homeostasis. Front Endocrinol 3:99

    Google Scholar 

  103. Idris AI, Landao-Bassonga E, Ralston SH (2010) The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone 46(4):1089–1099

    Article  CAS  PubMed  Google Scholar 

  104. Rossi F, Bellini G, Torella M, Tortora C, Manzo I, Giordano C, Guida F, Luongo L, Papale F, Rosso F, Nobili B, Maione S (2014) The genetic ablation or pharmacological inhibition of TRPV1 signalling is beneficial for the restoration of quiescent osteoclast activity in ovariectomized mice. Br J Pharmacol 171(10):2621–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Park U, Vastani N, Guan Y, Raja SN, Koltzenburg M, Caterina MJ (2011) TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci 31(32):11425–11436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mercado J, Gordon-Shaag A, Zagotta WN, Gordon SE (2010) Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 30:13338–13347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gordon-Shaag A, Zagotta WN, Gordon SE (2008) Mechanism of Ca2+-dependent desensitization in TRP channels. Channels 2:125–129

    Article  PubMed  Google Scholar 

  108. Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1:165–170

    Article  CAS  PubMed  Google Scholar 

  109. Cohen MR, Huynh KW, Cawley D, Moiseenkova-Bell VY (2013) Understanding the cellular function of TRPV2 channel through generation of specific monoclonal antibodies. PLoS One 8:e85392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28(24):6231–6238

    Article  CAS  PubMed  Google Scholar 

  111. Shibasaki K, Murayama N, Ono K, Ishizaki Y, Tominaga M (2010) TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J Neurosci 30(13):4601–4612

    Article  CAS  PubMed  Google Scholar 

  112. Mihara H, Boudaka A, Shibasaki K, Yamanaka A, Sugiyama T, Tominaga M (2010) Involvement of TRPV2 activation in intestinal movement through nitric oxide production in mice. J Neurosci 30(49):16536–16544

    Article  CAS  PubMed  Google Scholar 

  113. Aoyagi K, Ohara-Imaizumi M, Nishiwaki C, Nakamichi Y, Nagamatsu S (2010) Insulin/phosphoinositide 3-kinase pathway accelerates the glucose-induced first-phase insulin secretion through TrpV2 recruitment in pancreatic beta-cells. Biochem J 432(2):375–386

    Article  CAS  PubMed  Google Scholar 

  114. Hisanaga E, Nagasawa M, Ueki K, Kulkarni RN, Mori M, Kojima I (2009) Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells. Diabetes 58(1):174–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pottosin I, Delgado-Enciso I, Bonales-Alatorre E, Nieto-Pescador MG, Moreno-Galindo EG, Dobrovinskaya O (2015) Mechanosensitive Ca(2)(+)-permeable channels in human leukemic cells: pharmacological and molecular evidence for TRPV2. Biochim Biophys Acta 1848(1 Pt A):51–59

    Article  CAS  PubMed  Google Scholar 

  116. Schwarz EC, Wolfs MJ, Tonner S, Wenning AS, Quintana A, Griesemer D, Hoth M (2007) TRP channels in lymphocytes. Handb Exp Pharmacol 179:445–456

    Article  CAS  PubMed  Google Scholar 

  117. Santoni G, Farfariello V, Liberati S, Morelli MB, Nabissi M, Santoni M, Amantini C (2013) The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front Immunol 4:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Zhang D, Spielmann A, Wang L, Ding G, Huang F, Gu Q, Schwarz W (2012) Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol Res 61(1):113–124

    CAS  PubMed  Google Scholar 

  119. Stokes AJ, Shimoda LM, Koblan-Huberson M, Adra CN, Turner H (2004) A TRPV2-PKA signaling module for transduction of physical stimuli in mast cells. J Exp Med 200(2):137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nagasawa M, Nakagawa Y, Tanaka S, Kojima I (2007) Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol 210(3):692–702

    Article  CAS  PubMed  Google Scholar 

  121. Issa CM, Hambly BD, Wang Y, Maleki S, Wang W, Fei J, Bao S (2014) TRPV2 in the development of experimental colitis. Scand J Immunol 80(5):307–312

    Article  CAS  PubMed  Google Scholar 

  122. Entin-Meer M, Levy R, Goryainov P, Landa N, Barshack I, Avivi C, Semo J, Keren G (2014) The transient receptor potential vanilloid 2 cation channel is abundant in macrophages accumulating at the peri-infarct zone and may enhance their migration capacity towards injured cardiomyocytes following myocardial infarction. PLoS One 9(8):e105055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11(3):232–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Morelli MB, Liberati S, Amantini C, Nabiss M, Santoni M, Farfariello V, Santoni G (2013) Expression and function of the transient receptor potential ion channel family in the hematologic malignancies. Curr Mol Pharmacol 6(3):137–148

    Article  CAS  PubMed  Google Scholar 

  125. Liberati S, Morelli MB, Amantini C, Santoni M, Nabissi M, Cardinali C, Santoni G (2014) Advances in transient receptor potential vanilloid-2 channel expression and function in tumor growth and progression. Curr Protein Pept Sci 15(7):732–737

    Article  CAS  PubMed  Google Scholar 

  126. Morelli MB, Nabissi M, Amantini C, Farfariello V, Ricci-Vitiani L, di Martino S, Pallini R, Larocca LM, Caprodossi S, Santoni M, De Maria R, Santoni G (2012) The transient receptor potential vanilloid-2 cation channel impairs glioblastoma stem-like cell proliferation and promotes differentiation. International journal of cancer. J Int Cancer 131(7):E1067–E1077

    Article  CAS  Google Scholar 

  127. Nabissi M, Morelli MB, Amantini C, Farfariello V, Ricci-Vitiani L, Caprodossi S, Arcella A, Santoni M, Giangaspero F, De Maria R, Santoni G (2010) TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner. Carcinogenesis 31(5):794–803

    Article  CAS  PubMed  Google Scholar 

  128. Yamada T, Ueda T, Shibata Y, Ikegami Y, Saito M, Ishida Y, Ugawa S, Kohri K, Shimada S (2010) TRPV2 activation induces apoptotic cell death in human T24 bladder cancer cells: a potential therapeutic target for bladder cancer. Urology 76(2):509 e501–509 e507

    Article  Google Scholar 

  129. Liu Q, Wang X (2013) Effect of TRPV2 cation channels on the proliferation, migration and invasion of 5637 bladder cancer cells. Exp Ther Med 6(5):1277–1282

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Nabissi M, Morelli MB, Santoni M, Santoni G (2013) Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis 34(1):48–57

    Article  CAS  PubMed  Google Scholar 

  131. Liu G, Xie C, Sun F, Xu X, Yang Y, Zhang T, Deng Y, Wang D, Huang Z, Yang L, Huang S, Wang Q, Liu G, Zhong D, Miao X (2010) Clinical significance of transient receptor potential vanilloid 2 expression in human hepatocellular carcinoma. Cancer Genet Cytogenet 197(1):54–59

    Article  CAS  PubMed  Google Scholar 

  132. Zhou K, Zhang SS, Yan Y, Zhao S (2014) Overexpression of transient receptor potential vanilloid 2 is associated with poor prognosis in patients with esophageal squamous cell carcinoma. Med Oncol 31(7):17

    Article  PubMed  CAS  Google Scholar 

  133. Monet M, Lehen’kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C, Delcourt P, Rassendren F, Bergerat JP, Ceraline J, Cabon F, Humez S, Prevarskaya N (2010) Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res 70(3):1225–1235

    Article  CAS  PubMed  Google Scholar 

  134. Oulidi A, Bokhobza A, Gkika D, Vanden Abeele F, Lehen’kyi V, Ouafik L, Mauroy B, Prevarskaya N (2013) TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion. PLoS One 8(5):e64885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Katanosaka Y, Iwasaki K, Ujihara Y, Takatsu S, Nishitsuji K, Kanagawa M, Sudo A, Toda T, Katanosaka K, Mohri S, Naruse K (2014) TRPV2 is critical for the maintenance of cardiac structure and function in mice. Nat Commun 5:3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Koch SE, Gao X, Haar L, Jiang M, Lasko VM, Robbins N, Cai W, Brokamp C, Varma P, Tranter M, Liu Y, Ren X, Lorenz JN, Wang HS, Jones WK, Rubinstein J (2012) Probenecid: novel use as a non-injurious positive inotrope acting via cardiac TRPV2 stimulation. J Mol Cell Cardiol 53(1):134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rubinstein J, Lasko VM, Koch SE, Singh VP, Carreira V, Robbins N, Patel AR, Jiang M, Bidwell P, Kranias EG, Jones WK, Lorenz JN (2014) Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance. Am J Physiol Heart Circ Physiol 306(4):H574–H584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 161(5):957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S (2009) Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 18(5):824–834

    CAS  PubMed  Google Scholar 

  140. Harisseh R, Chatelier A, Magaud C, Deliot N, Constantin B (2013) Involvement of TRPV2 and SOCE in calcium influx disorder in DMD primary human myotubes with a specific contribution of alpha1-syntrophin and PLC/PKC in SOCE regulation. Am J Physiol Cell Physiol 304(9):C881–C894

    Article  CAS  PubMed  Google Scholar 

  141. Iwata Y, Ohtake H, Suzuki O, Matsuda J, Komamura K, Wakabayashi S (2013) Blockade of sarcolemmal TRPV2 accumulation inhibits progression of dilated cardiomyopathy. Cardiovasc Res 99(4):760–768

    Article  CAS  PubMed  Google Scholar 

  142. Lorin C, Vogeli I, Niggli E (2015) Dystrophic cardiomyopathy: role of TRPV2 channels in stretch-induced cell damage. Cardiovasc Res 106:153–162

    Article  PubMed  Google Scholar 

  143. Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186

    Article  CAS  PubMed  Google Scholar 

  144. Bang S, Yoo S, Yang T-J, Cho H, Hwang SW (2010) Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J Biol Chem 285:19362–19371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xiao R, Tang J, Wang C, Colton CK, Tian J, Zhu MX (2008) Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J Biol Chem 283:6162–6174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285(1):731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Saito S, Fukuta N, Shingai R, Tominaga M (2011) Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs. PLoS Genet 7(4):e1002041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296(5575):2046–2049

    Article  CAS  PubMed  Google Scholar 

  149. Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307(5714):1468–1472

    Article  CAS  PubMed  Google Scholar 

  150. Huang SM, Li X, Yu Y, Wang J, Caterina MJ (2011) TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol Pain 7:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Nilius B, Biro T (2013) TRPV3: a ‘more than skinny’ channel. Exp Dermatol 22(7):447–452

    Article  CAS  PubMed  Google Scholar 

  152. Nilius B, Biro T, Owsianik G (2014) TRPV3: time to decipher a poorly understood family member! J Physiol 592(Pt 2):295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Huang SM, Lee H, Chung MK, Park U, Yu YY, Bradshaw HB, Coulombe PA, Walker JM, Caterina MJ (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28(51):13727–13737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Masamoto Y, Kawabata F, Fushiki T (2009) Intragastric administration of TRPV1, TRPV3, TRPM8, and TRPA1 agonists modulates autonomic thermoregulation in different manners in mice. Biosci Biotechnol Biochem 73(5):1021–1027

    Article  CAS  PubMed  Google Scholar 

  155. Cheng X, Jin J, Hu L, Shen D, Dong XP, Samie MA, Knoff J, Eisinger B, Liu ML, Huang SM, Caterina MJ, Dempsey P, Michael LE, Dlugosz AA, Andrews NC, Clapham DE, Xu H (2010) TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141(2):331–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xiao R, Tian J, Tang J, Zhu MX (2008) The TRPV3 mutation associated with the hairless phenotype in rodents is constitutively active. Cell Calcium 43(4):334–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14(2):152–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Garcia-Elias A, Mrkonjic S, Jung C, Pardo-Pastor C, Vicente R, Valverde MA (2014) The TRPV4 channel. Handb Exp Pharmacol 222:293–319

    Article  CAS  PubMed  Google Scholar 

  159. Güler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci Off J Soc Neurosci 22:6408–6414

    Google Scholar 

  160. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051

    Article  CAS  PubMed  Google Scholar 

  161. Garcia-Elias A, Mrkonjic S, Pardo-Pastor C, Inada H, Hellmich UA, Rubio-Moscardo F, Plata C, Gaudet R, Vicente R, Valverde MA (2013) Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci U S A 110(23):9553–9558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vriens J, Owsianik G, Janssens A, Voets T, Nilius B (2007) Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem 282:12796–12803

    Article  CAS  PubMed  Google Scholar 

  163. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Watanabe H, Vriens J, Janssens A, Wondergem R, Droogmans G, Nilius B (2003) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium 33(5–6):489–495

    Article  CAS  PubMed  Google Scholar 

  165. Strotmann R, Semtner M, Kepura F, Plant TD, Schöneberg T (2010) Interdomain interactions control Ca2+-dependent potentiation in the cation channel TRPV4. PLoS One 5:e10580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Alessandri-Haber N, Dina OA, Joseph EK, Reichling D, Levine JD (2006) A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci Off J Soc Neurosci 26:3864–3874

    Article  CAS  Google Scholar 

  167. Xu F, Satoh E, Iijima T (2003) Protein kinase C-mediated Ca2+ entry in HEK 293 cells transiently expressing human TRPV4. Br J Pharmacol 140:413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol 103(1):2–17

    Article  CAS  PubMed  Google Scholar 

  169. Dai J, Cho TJ, Unger S, Lausch E, Nishimura G, Kim OH, Superti-Furga A, Ikegawa S (2010) TRPV4-pathy, a novel channelopathy affecting diverse systems. J Hum Genet 55(7):400–402

    Article  PubMed  Google Scholar 

  170. Verma P, Kumar A, Goswami C (2010) TRPV4-mediated channelopathies. Channels 4(4):319–328

    Article  CAS  PubMed  Google Scholar 

  171. McNulty AL, Leddy HA, Liedtke W, Guilak F (2015) TRPV4 as a therapeutic target for joint diseases. Naunyn-Schmiedeberg’s Arch Pharmacol 388(4):437–450

    Article  CAS  Google Scholar 

  172. Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L, Okenfuss EB, Janssens A, Voets T, Rimoin DL, Lachman RS, Nilius B, Cohn DH (2009) Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 84(3):307–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Camacho N, Krakow D, Johnykutty S, Katzman PJ, Pepkowitz S, Vriens J, Nilius B, Boyce BF, Cohn DH (2010) Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. Am J Med Genet Part A 152A(5):1169–1177

    Article  CAS  PubMed  Google Scholar 

  174. Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, Vaglio A, Owsianik G, Janssens A, Voets T, Ikegawa S, Nagai T, Rimoin DL, Nilius B, Cohn DH (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40(8):999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Weinstein MM, Tompson SW, Chen Y, Lee B, Cohn DH (2014) Mice expressing mutant Trpv4 recapitulate the human TRPV4 disorders. J Bone Mineral Res 29(8):1815–1822

    Article  CAS  Google Scholar 

  176. Lamande SR, Yuan Y, Gresshoff IL, Rowley L, Belluoccio D, Kaluarachchi K, Little CB, Botzenhart E, Zerres K, Amor DJ, Cole WG, Savarirayan R, McIntyre P, Bateman JF (2011) Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet 43(11):1142–1146

    Article  CAS  PubMed  Google Scholar 

  177. Clark AL, Votta BJ, Kumar S, Liedtke W, Guilak F (2010) Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum 62(10):2973–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nilius B, Carmeliet G (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8(3):257–265

    Article  CAS  PubMed  Google Scholar 

  179. O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A 111(4):1316–1321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Fecto F, Shi Y, Huda R, Martina M, Siddique T, Deng HX (2011) Mutant TRPV4-mediated toxicity is linked to increased constitutive function in axonal neuropathies. J Biol Chem 286(19):17281–17291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Klein CJ, Shi Y, Fecto F, Donaghy M, Nicholson G, McEntagart ME, Crosby AH, Wu Y, Lou H, McEvoy KM, Siddique T, Deng HX, Dyck PJ (2011) TRPV4 mutations and cytotoxic hypercalcemia in axonal Charcot-Marie-Tooth neuropathies. Neurology 76(10):887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mederos y Schnitzler M, Waring J, Gudermann T, Chubanov V (2008) Evolutionary determinants of divergent calcium selectivity of TRPM channels. FASEB J 22(5):1540–1551

    Article  CAS  PubMed  Google Scholar 

  183. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25(9):1804–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Faouzi M, Penner R (2014) Trpm2. Handb Exp Pharmacol 222:403–426

    Article  CAS  PubMed  Google Scholar 

  185. Du J, Xie J, Yue L (2009) Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proc Natl Acad Sci U S A 106(17):7239–7244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tong Q, Zhang W, Conrad K, Mostoller K, Cheung JY, Peterson BZ, Miller BA (2006) Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin. J Biol Chem 281(14):9076–9085

    Article  CAS  PubMed  Google Scholar 

  187. Uchida K, Tominaga M (2011) TRPM2 modulates insulin secretion in pancreatic beta-cells. Islets 3(4):209–211

    Article  PubMed  Google Scholar 

  188. Hecquet CM, Malik AB (2009) Role of H(2)O(2)-activated TRPM2 calcium channel in oxidant-induced endothelial injury. Thromb Haemost 101(4):619–625

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Starkus J, Beck A, Fleig A, Penner R (2007) Regulation of TRPM2 by extra- and intracellular calcium. J Gen Physiol 130(4):427–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Knowles H, Li Y, Perraud AL (2013) The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol Res 55(1–3):241–248

    Article  CAS  PubMed  Google Scholar 

  191. Sumoza-Toledo A, Lange I, Cortado H, Bhagat H, Mori Y, Fleig A, Penner R, Partida-Sanchez S (2011) Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca2+ release. FASEB J 25(10):3529–3542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Takahashi N, Kozai D, Kobayashi R, Ebert M, Mori Y (2011) Roles of TRPM2 in oxidative stress. Cell Calcium 50(3):279–287

    Article  CAS  PubMed  Google Scholar 

  193. Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14(7):738–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Oda S, Uchida K, Wang X, Lee J, Shimada Y, Tominaga M, Kadowaki M (2013) TRPM2 contributes to antigen-stimulated Ca(2)(+) influx in mucosal mast cells. Pflugers Arch – Eur J Physiol 465(7):1023–1030

    Article  CAS  Google Scholar 

  195. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26(3):159–178

    Article  CAS  PubMed  Google Scholar 

  196. Vandewauw I, Owsianik G, Voets T (2013) Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci 14:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Naziroglu M, Ozgul C (2013) Vitamin E modulates oxidative stress and protein kinase C activator (PMA)-induced TRPM2 channel gate in dorsal root ganglion of rats. J Bioenerg Biomembr 45(6):541–549

    Article  CAS  PubMed  Google Scholar 

  198. Xu C, Macciardi F, Li PP, Yoon IS, Cooke RG, Hughes B, Parikh SV, McIntyre RS, Kennedy JL, Warsh JJ (2006) Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet Part B Neuropsychiatr Genet 141B(1):36–43

    Article  CAS  Google Scholar 

  199. Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101(1):66–76

    Article  CAS  PubMed  Google Scholar 

  200. Hermosura MC, Garruto RM (2007) TRPM7 and TRPM2-candidate susceptibility genes for Western Pacific ALS and PD? Biochim Biophys Acta 1772(8):822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhang E, Liao P (2015) Brain transient receptor potential channels and stroke. J Neurosci Res 93(8):1165–1183

    Article  CAS  PubMed  Google Scholar 

  202. Amina S, Hashii M, Ma WJ, Yokoyama S, Lopatina O, Liu HX, Islam MS, Higashida H (2010) Intracellular calcium elevation induced by extracellular application of cyclic-ADP-ribose or oxytocin is temperature-sensitive in rodent NG108-15 neuronal cells with or without exogenous expression of human oxytocin receptors. J Neuroendocrinol 22(5):460–466

    Article  CAS  PubMed  Google Scholar 

  203. Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R (2009) TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2(71):ra23

    Article  PubMed  PubMed Central  Google Scholar 

  204. Zhang Z, Zhang W, Jung DY, Ko HJ, Lee Y, Friedline RH, Lee E, Jun J, Ma Z, Kim F, Tsitsilianos N, Chapman K, Morrison A, Cooper MP, Miller BA, Kim JK (2012) TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab 302(7):E807–E816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Uchida K, Tominaga M (2014) The role of TRPM2 in pancreatic beta-cells and the development of diabetes. Cell Calcium 56(5):332–339

    Article  CAS  PubMed  Google Scholar 

  206. Oberwinkler J, Philipp SE (2014) Trpm3. Handb Exp Pharmacol 222:427–459

    Article  CAS  PubMed  Google Scholar 

  207. Holendova B, Grycova L, Jirku M, Teisinger J (2012) PtdIns(4,5)P2 interacts with CaM binding domains on TRPM3 N-terminus. Channels 6(6):479–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lee N, Chen J, Sun L, Wu S, Gray KR, Rich A, Huang M, Lin JH, Feder JN, Janovitz EB, Levesque PC, Blanar MA (2003) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278(23):20890–20897

    Article  CAS  PubMed  Google Scholar 

  209. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280(23):22540–22548

    Article  CAS  PubMed  Google Scholar 

  210. Thiel G, Muller I, Rossler OG (2013) Signal transduction via TRPM3 channels in pancreatic beta-cells. J Mol Endocrinol 50(3):R75–R83

    Article  CAS  PubMed  Google Scholar 

  211. Naylor J, Li J, Milligan CJ, Zeng F, Sukumar P, Hou B, Sedo A, Yuldasheva N, Majeed Y, Beri D, Jiang S, Seymour VA, McKeown L, Kumar B, Harteneck C, O’Regan D, Wheatcroft SB, Kearney MT, Jones C, Porter KE, Beech DJ (2010) Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ Res 106(9):1507–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494

    Article  CAS  PubMed  Google Scholar 

  213. Gonzales AL, Amberg GC, Earley S (2010) Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 299(2):C279–C288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. McHugh D, Flemming R, Xu S-Z, Perraud A-L, Beech DJ (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278:11002–11006

    Article  CAS  PubMed  Google Scholar 

  215. Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438(7070):1022–1025

    Article  CAS  PubMed  Google Scholar 

  216. Mathar I, Jacobs G, Kecskes M, Menigoz A, Philippaert K, Vennekens R (2014) Trpm4. Handb Exp Pharmacol 222:461–487

    Article  CAS  PubMed  Google Scholar 

  217. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25(3):467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Crnich R, Amberg GC, Leo MD, Gonzales AL, Tamkun MM, Jaggar JH, Earley S (2010) Vasoconstriction resulting from dynamic membrane trafficking of TRPM4 in vascular smooth muscle cells. Am J Physiol Cell Physiol 299(3):C682–C694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Barbet G, Demion M, Moura IC, Serafini N, Leger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P (2008) The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9(10):1148–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8(3):312–320

    Article  CAS  PubMed  Google Scholar 

  221. Serafini N, Dahdah A, Barbet G, Demion M, Attout T, Gautier G, Arcos-Fajardo M, Souchet H, Jouvin MH, Vrtovsnik F, Kinet JP, Benhamou M, Monteiro RC, Launay P (2012) The TRPM4 channel controls monocyte and macrophage, but not neutrophil, function for survival in sepsis. J Immunol 189(7):3689–3699

    Article  CAS  PubMed  Google Scholar 

  222. Weber KS, Hildner K, Murphy KM, Allen PM (2010) Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J Immunol 185(5):2836–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Bruck W, Pongs O, Vennekens R, Kneussel M, Freichel M, Merkler D, Friese MA (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 18(12):1805–1811

    Article  CAS  PubMed  Google Scholar 

  224. Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, Geng Z, Chen Z, Nilius B, Flockerzi V, Freichel M, Simard JM (2009) De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15(2):185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Nelson P, Ngoc Tran TD, Zhang H, Zolochevska O, Figueiredo M, Feng JM, Gutierrez DL, Xiao R, Yao S, Penn A, Yang LJ, Cheng H (2013) Transient receptor potential melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation. Stem Cells 31(1):167–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Nelson PL, Zolochevska O, Figueiredo ML, Soliman A, Hsu WH, Feng JM, Zhang H, Cheng H (2011) Regulation of Ca(2+)-entry in pancreatic alpha-cell line by transient receptor potential melastatin 4 plays a vital role in glucagon release. Mol Cell Endocrinol 335(2):126–134

    Article  CAS  PubMed  Google Scholar 

  227. Kruse M, Pongs O (2014) TRPM4 channels in the cardiovascular system. Curr Opin Pharmacol 15:68–73

    Article  CAS  PubMed  Google Scholar 

  228. Gonzales AL, Earley S (2012) Endogenous cytosolic Ca(2+) buffering is necessary for TRPM4 activity in cerebral artery smooth muscle cells. Cell Calcium 51(1):82–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Earley S (2013) TRPM4 channels in smooth muscle function. Pflugers Arch – Eur J Physiol 465(9):1223–1231

    Article  CAS  Google Scholar 

  230. Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Schulze-Bahr E, Brink P, Pongs O (2009) Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 119(9):2737–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Brink AJ (2009) Breaking new ground in research. Cardiovasc J Afr 20(6):335

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Stallmeyer B, Zumhagen S, Denjoy I, Duthoit G, Hebert JL, Ferrer X, Maugenre S, Schmitz W, Kirchhefer U, Schulze-Bahr E, Guicheney P, Schulze-Bahr E (2012) Mutational spectrum in the Ca(2+) – activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum Mutat 33(1):109–117

    Article  CAS  PubMed  Google Scholar 

  233. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100(25):15160–15165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zhang Z, Zhao Z, Margolskee R, Liman E (2007) The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci Off J Soc Neurosci 27:5777–5786

    Article  CAS  Google Scholar 

  235. Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267–278

    Article  CAS  PubMed  Google Scholar 

  236. Palmer RK, Lunn CA (2013) TRP channels as targets for therapeutic intervention in obesity: focus on TRPV1 and TRPM5. Curr Top Med Chem 13(3):247–257

    Article  CAS  PubMed  Google Scholar 

  237. Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D (2007) Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 104(7):2471–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5(11):1169–1176

    Article  CAS  PubMed  Google Scholar 

  239. Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc Natl Acad Sci U S A 107(11):5208–5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Brixel LR, Monteilh-Zoller MK, Ingenbrandt CS, Fleig A, Penner R, Enklaar T, Zabel BU, Prawitt D (2010) TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Arch – Eur J Physiol 460(1):69–76

    Article  CAS  Google Scholar 

  241. Ketterer C, Mussig K, Heni M, Dudziak K, Randrianarisoa E, Wagner R, Machicao F, Stefan N, Holst JJ, Fritsche A, Haring HU, Staiger H (2011) Genetic variation within the TRPM5 locus associates with prediabetic phenotypes in subjects at increased risk for type 2 diabetes. Metab Clin Exp 60(9):1325–1333

    Article  CAS  PubMed  Google Scholar 

  242. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204–208

    Article  CAS  PubMed  Google Scholar 

  243. Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54(3):379–386

    Article  CAS  PubMed  Google Scholar 

  244. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54(3):371–378

    Article  CAS  PubMed  Google Scholar 

  245. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  246. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52–58

    Article  CAS  PubMed  Google Scholar 

  247. Yudin Y, Rohacs T (2012) Regulation of TRPM8 channel activity. Mol Cell Endocrinol 353(1–2):68–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Sarria I, Gu J (2010) Menthol response and adaptation in nociceptive-like and nonnociceptive-like neurons: role of protein kinases. Mol Pain 6:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Sarria I, Ling J, Zhu MX, Gu JG (2011) TRPM8 acute desensitization is mediated by calmodulin and requires PIP(2): distinction from tachyphylaxis. J Neurophysiol 106(6):3056–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8(5):626–634

    Article  CAS  PubMed  Google Scholar 

  251. Liu B, Qin F (2005) Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25(7):1674–1681

    Article  CAS  PubMed  Google Scholar 

  252. Daniels RL, Takashima Y, McKemy DD (2009) Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 284(3):1570–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Yudin Y, Lukacs V, Cao C, Rohacs T (2011) Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J Physiol 589:6007–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Bavencoffe A, Gkika D, Kondratskyi A, Beck B, Borowiec AS, Bidaux G, Busserolles J, Eschalier A, Shuba Y, Skryma R, Prevarskaya N (2010) The transient receptor potential channel TRPM8 is inhibited via the alpha 2A adrenoreceptor signaling pathway. J Biol Chem 285(13):9410–9419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. De Petrocellis L, Starowicz K, Moriello AS, Vivese M, Orlando P, Di Marzo V (2007) Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB1 receptors and endovanilloids. Exp Cell Res 313:1911–1920

    Article  PubMed  CAS  Google Scholar 

  256. Linte RM, Ciobanu C, Reid G, Babes A (2007) Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp Brain Res 178(1):89–98

    Article  CAS  PubMed  Google Scholar 

  257. Abe J, Hosokawa H, Sawada Y, Matsumura K, Kobayashi S (2006) Ca2+-dependent PKC activation mediates menthol-induced desensitization of transient receptor potential M8. Neurosci Lett 397(1–2):140–144

    Article  CAS  PubMed  Google Scholar 

  258. Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F (2005) Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J Neurosci 25(49):11322–11329

    Article  CAS  PubMed  Google Scholar 

  259. Malkia A, Morenilla-Palao C, Viana F (2011) The emerging pharmacology of TRPM8 channels: hidden therapeutic potential underneath a cold surface. Curr Pharm Biotechnol 12(1):54–67

    Article  CAS  PubMed  Google Scholar 

  260. Bidaux G, Flourakis M, Thebault S, Zholos A, Beck B, Gkika D, Roudbaraki M, Bonnal JL, Mauroy B, Shuba Y, Skryma R, Prevarskaya N (2007) Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Invest 117(6):1647–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Thebault S, Lemonnier L, Bidaux G, Flourakis M, Bavencoffe A, Gordienko D, Roudbaraki M, Delcourt P, Panchin Y, Shuba Y, Skryma R, Prevarskaya N (2005) Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J Biol Chem 280(47):39423–39435

    Article  CAS  PubMed  Google Scholar 

  262. Zhang L, Barritt GJ (2006) TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function? Endocr Relat Cancer 13(1):27–38

    Article  PubMed  CAS  Google Scholar 

  263. Flourakis M, Prevarskaya N (2009) Insights into Ca2+ homeostasis of advanced prostate cancer cells. Biochim Biophys Acta 1793(6):1105–1109

    Article  CAS  PubMed  Google Scholar 

  264. Mergler S, Derckx R, Reinach PS, Garreis F, Bohm A, Schmelzer L, Skosyrski S, Ramesh N, Abdelmessih S, Polat OK, Khajavi N, Riechardt AI (2014) Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells. Cell Signal 26(1):56–69

    Article  CAS  PubMed  Google Scholar 

  265. Yamamura H, Ugawa S, Ueda T, Morita A, Shimada S (2008) TRPM8 activation suppresses cellular viability in human melanoma. Am J Physiol Cell Physiol 295(2):C296–C301

    Article  CAS  PubMed  Google Scholar 

  266. Mergler S, Strowski MZ, Kaiser S, Plath T, Giesecke Y, Neumann M, Hosokawa H, Kobayashi S, Langrehr J, Neuhaus P, Plockinger U, Wiedenmann B, Grotzinger C (2007) Transient receptor potential channel TRPM8 agonists stimulate calcium influx and neurotensin secretion in neuroendocrine tumor cells. Neuroendocrinology 85(2):81–92

    Article  CAS  PubMed  Google Scholar 

  267. Wondergem R, Ecay TW, Mahieu F, Owsianik G, Nilius B (2008) HGF/SF and menthol increase human glioblastoma cell calcium and migration. Biochem Biophys Res Commun 372(1):210–215

    Article  CAS  PubMed  Google Scholar 

  268. Cucu D, Chiritoiu G, Petrescu S, Babes A, Stanica L, Duda DG, Horii A, Dima SO, Popescu I (2014) Characterization of functional transient receptor potential melastatin 8 channels in human pancreatic ductal adenocarcinoma cells. Pancreas 43(5):795–800

    Article  CAS  PubMed  Google Scholar 

  269. Eid SR, Cortright DN (2009) Transient receptor potential channels on sensory nerves. Handb Exp Pharmacol 194:261–281

    Article  CAS  PubMed  Google Scholar 

  270. Levine JD, Alessandri-Haber N (2007) TRP channels: targets for the relief of pain. Biochim Biophys Acta 1772(8):989–1003

    Article  CAS  PubMed  Google Scholar 

  271. Chung MK, Jung SJ, Oh SB (2011) Role of TRP channels in pain sensation. Adv Exp Med Biol 704:615–636

    Article  CAS  PubMed  Google Scholar 

  272. Almaraz L, Manenschijn JA, de la Pena E, Viana F (2014) Trpm8. Handb Exp Pharmacol 222:547–579

    Article  CAS  PubMed  Google Scholar 

  273. Proudfoot CJ, Garry EM, Cottrell DF, Rosie R, Anderson H, Robertson DC, Fleetwood-Walker SM, Mitchell R (2006) Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr Biol 16(16):1591–1605

    Article  CAS  PubMed  Google Scholar 

  274. Knowlton WM, Daniels RL, Palkar R, McCoy DD, McKemy DD (2011) Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One 6(9):e25894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Zuo X, Ling JX, Xu GY, Gu JG (2013) Operant behavioral responses to orofacial cold stimuli in rats with chronic constrictive trigeminal nerve injury: effects of menthol and capsazepine. Mol Pain 9:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Xing H, Chen M, Ling J, Tan W, Gu JG (2007) TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 27(50):13680–13690

    Article  CAS  PubMed  Google Scholar 

  277. Kurose M, Meng ID (2013) Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells. J Neurophysiol 110(2):495–504

    Article  PubMed  PubMed Central  Google Scholar 

  278. Parra A, Madrid R, Echevarria D, del Olmo S, Morenilla-Palao C, Acosta MC, Gallar J, Dhaka A, Viana F, Belmonte C (2010) Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat Med 16(12):1396–1399

    Article  CAS  PubMed  Google Scholar 

  279. Lashinger ES, Steiginga MS, Hieble JP, Leon LA, Gardner SD, Nagilla R, Davenport EA, Hoffman BE, Laping NJ, Su X (2008) AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am J Physiol Renal Physiol 295(3):F803–F810

    Article  CAS  PubMed  Google Scholar 

  280. Mukerji G, Yiangou Y, Corcoran SL, Selmer IS, Smith GD, Benham CD, Bountra C, Agarwal SK, Anand P (2006) Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol 6:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    Article  CAS  PubMed  Google Scholar 

  282. Flemming PK, Dedman AM, Xu S-Z, Li J, Zeng F, Naylor J, Benham CD, Bateson AN, Muraki K, Beech DJ (2006) Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 281:4977–4982

    Article  CAS  PubMed  Google Scholar 

  283. Zhu MH, Chae M, Kim HJ, Lee YM, Kim MJ, Jin NG, Yang DK, So I, Kim KW (2005) Desensitization of canonical transient receptor potential channel 5 by protein kinase C. Am J Physiol Cell Physiol 289(3):C591–C600

    Article  CAS  PubMed  Google Scholar 

  284. Kinoshita-Kawada M, Tang J, Xiao R, Kaneko S, Foskett JK, Zhu MX (2005) Inhibition of TRPC5 channels by Ca2+-binding protein 1 in Xenopus oocytes. Pflügers Arch 450:345–354

    Article  CAS  PubMed  Google Scholar 

  285. Sung TS, Jeon JP, Kim BJ, Hong C, Kim SY, Kim J, Jeon JH, Kim HJ, Suh CK, Kim SJ, So I (2011) Molecular determinants of PKA-dependent inhibition of TRPC5 channel. Am J Physiol Cell Physiol 301:C823–C832

    Article  CAS  PubMed  Google Scholar 

  286. Zholos AV (2014) Trpc5. Handb Exp Pharmacol 222:129–156

    Article  CAS  PubMed  Google Scholar 

  287. Faber ES, Sedlak P, Vidovic M, Sah P (2006) Synaptic activation of transient receptor potential channels by metabotropic glutamate receptors in the lateral amygdala. Neuroscience 137(3):781–794

    Article  CAS  PubMed  Google Scholar 

  288. von Bohlen Und Halbach O, Hinz U, Unsicker K, Egorov AV (2005) Distribution of TRPC1 and TRPC5 in medial temporal lobe structures of mice. Cell Tissue Res 322(2):201–206

    Article  CAS  Google Scholar 

  289. De March Z, Giampa C, Patassini S, Bernardi G, Fusco FR (2006) Cellular localization of TRPC5 in the substantia nigra of rat. Neurosci Lett 402(1–2):35–39

    Article  PubMed  CAS  Google Scholar 

  290. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6(8):837–845

    Article  CAS  PubMed  Google Scholar 

  291. He Z, Jia C, Feng S, Zhou K, Tai Y, Bai X, Wang Y (2012) TRPC5 channel is the mediator of neurotrophin-3 in regulating dendritic growth via CaMKIIalpha in rat hippocampal neurons. J Neurosci 32(27):9383–9395

    Article  CAS  PubMed  Google Scholar 

  292. Gomis A, Soriano S, Belmonte C, Viana F (2008) Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J Physiol 586(Pt 23):5633–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Min J-W, Liu W-H, He X-H, Peng B-W (2013) Different types of toxins targeting TRPV1 in pain. Toxicon 71:66–75

    Article  CAS  PubMed  Google Scholar 

  294. Zygmunt PM, Hogestatt ED (2014) Trpa1. Handb Exp Pharmacol 222:583–630

    Article  CAS  PubMed  Google Scholar 

  295. Hinman A, H-h C, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci 103:19564–19568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545

    Article  CAS  PubMed  Google Scholar 

  297. Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sánchez EE, Perez JC, Weissman JS, Julius D (2010) Molecular basis of infrared detection by snakes. Nature 464:1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Moparthi L, Survery S, Kreir M, Simonsen C, Kjellbom P, Högestätt ED, Johanson U, Zygmunt PM (2014) Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc Natl Acad Sci 111:16901–16906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Chen J, Kang D, Xu J, Lake M, Hogan JO, Sun C, Walter K, Yao B, Kim D (2013) Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun 4:2501

    PubMed  PubMed Central  Google Scholar 

  300. Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454:217–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Investig 117:1979–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Cui X, Tominaga M, Noguchi K (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131:1241–1251

    Article  PubMed  Google Scholar 

  303. Schmidt M, Dubin AE, Petrus MJ, Earley TJ, Patapoutian A (2009) Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 64(4):498–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER (2008) The nociceptor Ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem 283:32691–32703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Nassini R, Materazzi S, Benemei S, Geppetti P (2014) The TRPA1 channel in inflammatory and neuropathic pain and migraine. Rev Physiol Biochem Pharmacol 167:1–43

    CAS  PubMed  Google Scholar 

  306. Andrade EL, Meotti FC, Calixto JB (2012) TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 133(2):189–204

    Article  CAS  PubMed  Google Scholar 

  307. Sawada Y, Hosokawa H, Hori A, Matsumura K, Kobayashi S (2007) Cold sensitivity of recombinant TRPA1 channels. Brain Res 1160:39–46

    Article  CAS  PubMed  Google Scholar 

  308. Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 106(4):1273–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricker FR, Villegas A, Acosta N, Pineda-Trujillo NG, Ramirez JD, Zea J, Burley MW, Bedoya G, Bennett DL, Wood JN, Ruiz-Linares A (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66(5):671–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Patapoutian A, Macpherson L (2006) Channeling pain. Nat Med 12(5):506–507

    Article  CAS  PubMed  Google Scholar 

  311. Hjerling-Leffler J, Alqatari M, Ernfors P, Koltzenburg M (2007) Emergence of functional sensory subtypes as defined by transient receptor potential channel expression. J Neurosci 27(10):2435–2443

    Article  CAS  PubMed  Google Scholar 

  312. Kim YS, Son JY, Kim TH, Paik SK, Dai Y, Noguchi K, Ahn DK, Bae YC (2010) Expression of transient receptor potential ankyrin 1 (TRPA1) in the rat trigeminal sensory afferents and spinal dorsal horn. J Comp Neurol 518(5):687–698

    Article  CAS  PubMed  Google Scholar 

  313. Kunkler PE, Ballard CJ, Oxford GS, Hurley JH (2011) TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain 152(1):38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Pozsgai G, Bodkin JV, Graepel R, Bevan S, Andersson DA, Brain SD (2010) Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovasc Res 87(4):760–768

    Article  CAS  PubMed  Google Scholar 

  315. Engel MA, Leffler A, Niedermirtl F, Babes A, Zimmermann K, Filipovic MR, Izydorczyk I, Eberhardt M, Kichko TI, Mueller-Tribbensee SM, Khalil M, Siklosi N, Nau C, Ivanovic-Burmazovic I, Neuhuber WL, Becker C, Neurath MF, Reeh PW (2011) TRPA1 and substance P mediate colitis in mice. Gastroenterology 141(4):1346–1358

    Article  CAS  PubMed  Google Scholar 

  316. Aubdool AA, Graepel R, Kodji X, Alawi KM, Bodkin JV, Srivastava S, Gentry C, Heads R, Grant AD, Fernandes ES, Bevan S, Brain SD (2014) TRPA1 is essential for the vascular response to environmental cold exposure. Nat Commun 5:5732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Benemei S, Fusi C, Trevisan G, Geppetti P (2014) The TRPA1 channel in migraine mechanism and treatment. Br J Pharmacol 171(10):2552–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Wei H, Koivisto A, Saarnilehto M, Chapman H, Kuokkanen K, Hao B, Huang JL, Wang YX, Pertovaara A (2011) Spinal transient receptor potential ankyrin 1 channel contributes to central pain hypersensitivity in various pathophysiological conditions in the rat. Pain 152(3):582–591

    Article  CAS  PubMed  Google Scholar 

  319. da Costa DS, Meotti FC, Andrade EL, Leal PC, Motta EM, Calixto JB (2010) The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 148(3):431–437

    Article  PubMed  CAS  Google Scholar 

  320. Miyakawa T, Terashima Y, Takebayashi T, Tanimoto K, Iwase T, Ogon I, Kobayashi T, Tohse N, Yamashita T (2014) Transient receptor potential ankyrin 1 in spinal cord dorsal horn is involved in neuropathic pain in nerve root constriction rats. Mol Pain 10:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Andersson DA, Gentry C, Alenmyr L, Killander D, Lewis SE, Andersson A, Bucher B, Galzi JL, Sterner O, Bevan S, Hogestatt ED, Zygmunt PM (2011) TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Delta(9)-tetrahydrocannabiorcol. Nat Commun 2:551

    Article  PubMed  CAS  Google Scholar 

  322. Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS (2012) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15(1):70–80

    Article  CAS  PubMed Central  Google Scholar 

  323. Belvisi MG, Dubuis E, Birrell MA (2011) Transient receptor potential A1 channels: insights into cough and airway inflammatory disease. Chest 140(4):1040–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Geppetti P, Patacchini R, Nassini R (2014) Transient receptor potential channels and occupational exposure. Curr Opin Allergy Clin Immunol 14(2):77–83

    Article  CAS  PubMed  Google Scholar 

  325. Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG (2014) Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 171(10):2593–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Grace MS, Belvisi MG (2011) TRPA1 receptors in cough. Pulm Pharmacol Ther 24(3):286–288

    Article  CAS  PubMed  Google Scholar 

  327. Schaefer EA, Stohr S, Meister M, Aigner A, Gudermann T, Buech TR (2013) Stimulation of the chemosensory TRPA1 cation channel by volatile toxic substances promotes cell survival of small cell lung cancer cells. Biochem Pharmacol 85(3):426–438

    Article  CAS  PubMed  Google Scholar 

  328. Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14(5):595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Liu B, Escalera J, Balakrishna S, Fan L, Caceres AI, Robinson E, Sui A, McKay MC, McAlexander MA, Herrick CA, Jordt SE (2013) TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 27(9):3549–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by MINECO (Grants BFU2012-39092-C02-01 and CONSOLIDER-INGENIO 2010 CSD2008-00005) and by GVA (Grant PROMETEO/2014/011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco J. Taberner or Isabel Devesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taberner, F.J., Devesa, I., Ferrer-Montiel, A. (2016). Calcium Entry Through Thermosensory Channels. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_12

Download citation

Publish with us

Policies and ethics