Skip to main content

Physarum Wires, Sensors and Oscillators

  • Chapter
  • First Online:
Advances in Physarum Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 21))

Abstract

To make an electronic wetware device doing something useful we need sensors to input information, wires to transfer information between distant parts of the devices, and an oscillator to act as a clock and synchronise the device. We show how slime mould wires, optical colour and tactile sensors and oscillators can be made. A Physarum wire is a protoplasmic tube. Given two pins to be connected by a wire, we place a piece of slime mould at one pin and an attractant at another pin. Physarum propagates towards the attractant and thus connects the pins with a protoplasmic tube. A protoplasmic tube is conductive, it can survive substantial over-voltage and can be used to transfer electrical current to electronic loads. We demonstrate experimental approaches towards programmable routing of Physarum wires with chemoattractants and electrical fields, show how to grow the slime mould wires on almost bare breadboards and electronic circuits, and insulate the Physarum. We evaluate feasibility of slime-mould based colour sensors by illuminating Physarum with red, green, blue and white colours and analysing patterns of the slime mould’s electrical potential oscillations. We define that the slime mould recognises a colour if it reacts to illumination with the colour by a unique changes in amplitude and periods of oscillatory activity. In laboratory experiments we found that the slime mould recognises red and blue colour. The slime mould does not differentiate between green and white colours. The slime mould also recognises when red colour is switched off. We also map colours to diversity of the oscillations: illumination with a white colour increases diversity of amplitudes and periods of oscillations, other colours studied increase diversity either of amplitude or period. We design experimental laboratory implementation of a slime mould based tactile bristles, where the slime mould responds to repeated deflection of bristle by an immediate high-amplitude spike and a prolonged increase in amplitude and width of its oscillation impulses. We demonstrate that signal strength of the Physarum tactile bristle sensor averages near six for an immediate response and two for a prolonged response. Finally, we show how to make an electronic oscillator from the slime mould. The slime mould oscillator is made of two electrodes connected by a protoplasmic tube of the living slime mould. A protoplasmic tube has an average resistance of 3 MOhm. The tube’s resistance is changing over time due to peristaltic contractile activity of the tube. The resistance of the protoplasmic tube oscillates with average period of 73 s and average amplitude of 0.6 MOhm. We present experimental laboratory results on dynamics of Physarum oscillator under direct current voltage up to 15 V and speculate that slime mould P. polycephalum can be employed as a living electrical oscillator in biological and hybrid circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Steering plasmodium with light: dynamical programming of physarum machine. arXiv:0908.0850 (2009)

  2. Adamatzky, A.: Physarum wires: self-growing self-repairing smart wires made from slime mould. Biomed. Eng. Lett. 3(4), 232–241 (2013)

    Article  Google Scholar 

  3. Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3355–3361 (2013)

    Article  Google Scholar 

  4. Adamatzky, A.: Slime mould electronic oscillators. Microelectron. Eng. 124, 58–65 (2014)

    Article  Google Scholar 

  5. Adamatzky, A.: Tactile bristle sensors made with slime mold. Sensors J. IEEE 14(2), 324–332 (2014)

    Article  Google Scholar 

  6. Adamatzky, A., Jones, J.: On electrical correlates of Physarum polycephalum spatial activity: can we see physarum machine in the dark? Biophys. Rev. Lett. 6(01n02):29–57 (2011)

    Google Scholar 

  7. Anderson, J.D.: Galvanotaxis of slime mold. J. Gen. Physiol. 35(1), 1–16 (1951)

    Article  Google Scholar 

  8. Barth, F.G.: Spider mechanoreceptors. Curr. Opin. Neurobiol. 14(4), 415–422 (2004)

    Article  Google Scholar 

  9. Beratan, D.N., Priyadarshy, S., Risser, S.M.: DNA: insulator or wire? Chem. Biol. 4(1), 3–8 (1997)

    Article  Google Scholar 

  10. Berry, V., Saraf, R.F.: Self-assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices. Angewandte Chemie 117(41), 6826–6831 (2005)

    Article  Google Scholar 

  11. Bialczyk, J.: An action spectrum for light avoidance by Physarum nudum plasmodia. Photochem. Photobiol. 30(2), 301–303 (1979)

    Article  Google Scholar 

  12. Block, I., Wohlfarth-Bottermann, K.E.: Blue light as a medium to influence oscillatory contraction frequency in Physarum. Cell Biol. Int. Rep. 5(1), 73–81 (1981)

    Article  Google Scholar 

  13. Cingolani, E., Ionta, V., Giacomello, A., Marbán, E., Cho, H.C.: Creation of a biological wire using cell-targeted paramagnetic beads. Biophys. J. 102(3), 416a (2012)

    Article  Google Scholar 

  14. Cutkosky, M.R., Kim, S.: Design and fabrication of multi-material structures for bioinspired robots. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 367(1894):1799–1813 (2009)

    Google Scholar 

  15. Dahiya, R.S., Valle, M., Metta, G., Lorenzelli, L.: Bio-inspired tactile sensing arrays. In: SPIE Europe Microtechnologies for the New Millennium, pp. 73650D–73650D. International Society for Optics and Photonics (2009)

    Google Scholar 

  16. Engel, J., Chen, N., Chen, N., Pandya, S., Liu, C.: Multi-walled carbon nanotube filled conductive elastomers: materials and application to micro transducers. In: Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul, pp 246–249. IEEE (2006)

    Google Scholar 

  17. Engel, J.M., Chen, J., Liu, C., Bullen, D.: Polyurethane rubber all-polymer artificial hair cell sensor. J. Microelectromech. Syst. 15(4), 729–736 (2006)

    Google Scholar 

  18. Geddes, L.A., Baker, L.E.: The specific resistance of biological materiala compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 5(3), 271–293 (1967)

    Article  Google Scholar 

  19. Guttes, E., Guttes, S., Rusch, H.P.: Morphological observations on growth and differentiation of Physarum polycephalum grown in pure culture. Dev. Biol. 3(5), 588–614 (1961)

    Article  Google Scholar 

  20. Häder, D.-P., Schreckenbach, T.: Phototactic orientation in plasmodia of the acellular slime mold, Physarum polycephalum. Plant Cell Physiol. 25(1), 55–61 (1984)

    Google Scholar 

  21. Hamed, A.M., Tse, Z.T.H., Young, I., Davies, B.L., Lampérth, M.: Applying tactile sensing with piezoelectric materials for minimally invasive surgery and magnetic-resonance-guided interventions. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 223(1), 99–110 (2009)

    Article  Google Scholar 

  22. Hildebrandt, A.: A morphogen for the sporulation of Physarum polycephalum detected by cell fusion experiments. Exp. Cell Res. 167(2), 453–457 (1986)

    Article  Google Scholar 

  23. Horowitz, P., Hill, W.: The Art of Electronics. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  24. Iwamura, T.: Correlations between protoplasmic streaming and bioelectric potential of a slime mold, Physarum polycephalum. Bot. Mag. 62(735–736), 126–131 (1949)

    Google Scholar 

  25. Kakiuchi, Y., Takahashi, T., Murakami, A., Ueda, T.: Light irradiation induces fragmentation of the plasmodium, a novel photomorphogenesis in the true slime mold physarum polycephalum: action spectra and evidence for involvement of the phytochrome. Photochem. Photobiol. 73(3), 324–329 (2001)

    Article  Google Scholar 

  26. Kamiya, N., Abe, S.: Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow. J. Colloid Sci. 5(2), 149–163 (1950)

    Article  Google Scholar 

  27. Kato, Y., Mukai, T., Hayakawa, T., Shibata, T.: Tactile sensor without wire and sensing element in the tactile region based on EIT method. In: Sensors, 2007 IEEE, pp. 792–795. IEEE (2007)

    Google Scholar 

  28. Knowles, D.J.C., Carlile, M.J.: The chemotactic response of plasmodia of the myxomycete Physarum polycephalum to sugars and related compounds. J. General Microbiol. 108(1), 17–25 (1978)

    Google Scholar 

  29. Lucarotti, C., Oddo, C.M., Vitiello, N., Carrozza, M.C.: Synthetic and bio-artificial tactile sensing: a review. Sensors 13(2):1435–1466 (2013)

    Google Scholar 

  30. Merck, V.: An encyclopaedia of chemicals, drugs and biologicals. In: The Merck Index, pp. 3737 (1995)

    Google Scholar 

  31. Meyer, R., Stockem, W.: Studies on microplasmodia of Physarum polycephalum V: electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol. Int. Rep. 3(4), 321–330 (1979)

    Article  Google Scholar 

  32. Mukai, T., Hirano, S., Kato, Y.: Fast and accurate tactile sensor system for a human-interactive robot. INTECH Open Access Publisher (2008)

    Google Scholar 

  33. Nakagaki, T., Yamada, H., Ueda, T.: Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. Biophys. Chem. 82(1), 23–28 (1999)

    Article  Google Scholar 

  34. Ohmukai, M., Kami, Y., Matsuura, R.: Electrode for force sensor of conductive rubber (2012)

    Google Scholar 

  35. Park, Y.-L., Chen, B.-R., Wood, R.J.: Soft artificial skin with multi-modal sensing capability using embedded liquid conductors. In: Sensors, 2011 IEEE, pp. 81–84. IEEE (2011)

    Google Scholar 

  36. Park, Y.-L., Majidi, C., Kramer, R., Bérard, P., Wood, R.J.: Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20(12), 125029 (2010)

    Google Scholar 

  37. Rocha, J.G., Lanceros-Mendez, S.: Sensors: Focus on Tactile Force and Stress Sensors. wwwSciyo.com (2008)

  38. Sabah, A., Dakua, I., Kumar, P., Mohammed, W.S., Dutta, J.: Growth of templated gold microwires by self organization of colloids on Aspergillus niger. Digest J. Nanomater. Biostruct. 7, 583–591 (2012)

    Google Scholar 

  39. Sauer, H.W., Babcock, K.L., Rusch, H.P.: Sporulation in Physarum polycephalum: a model system for studies on differentiation. Exp. Cell Res. 57(2), 319–327 (1969)

    Article  Google Scholar 

  40. Schreckenbach, T., Walckhoff, B., Verfuerth, C.: Blue-light receptor in a white mutant of Physarum polycephalum mediates inhibition of spherulation and regulation of glucose metabolism. Proc. Natl. Acad. Sci. 78(2), 1009–1013 (1981)

    Google Scholar 

  41. Starostzik, C., Marwan, W.: A photoreceptor with characteristics of phytochrome triggers sporulation in the true slime mould Physarum polycephalum. FEBS Lett. 370(1), 146–148 (1995)

    Article  Google Scholar 

  42. Sun, T., Tsuda, S., Zauner, K.-P., Morgan, H.: Single cell imaging using electrical impedance tomography. In: 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009. NEMS 2009, pp. 858–863. IEEE (2009)

    Google Scholar 

  43. Sun, T., Tsuda, S., Zauner, K.-P., Morgan, H.: On-chip electrical impedance tomography for imaging biological cells. Biosens. Bioelectron. 25(5), 1109–1115 (2010)

    Article  Google Scholar 

  44. Tiwana, M.I., Redmond, S.J., Lovell, N.H.: A review of tactile sensing technologies with applications in biomedical engineering. Sensors Actuators A: Phys. 179, 17–31 (2012)

    Article  Google Scholar 

  45. Tsuda, S., Jones, J., Adamatzky, A., Mills, J.: Routing Physarum with electrical flow/current. arXiv:1204.1752 (2012)

  46. Ueda, T., Mori, Y., Kobatake, Y.: Patterns in the distribution of intracellular atp concentration in relation to coordination of amoeboid cell behavior in Physarum polycephalum. Exp. Cell Res. 169(1), 191–201 (1987)

    Article  Google Scholar 

  47. Wang, C., Pålsson, L.-O., Batsanov, A.S., Bryce, M.R.: Molecular wires comprising \(\pi \)-extended ethynyl-and butadiynyl-2, 5-diphenyl-1, 3, 4-oxadiazole derivatives: synthesis, redox, structural, and optoelectronic properties. J. Am. Chem. Soc. 128(11), 3789–3799 (2006)

    Article  Google Scholar 

  48. Wang, J., Xu, C., Taya, M., Kuga, Y.: Bio-inspired tactile sensor with arrayed structures based on electroactive polymers. In: Proceedings of the 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, pp. 69271B–69271B (2008) International Society for Optics and Photonics (2008)

    Google Scholar 

  49. Wettels, N., Santos, V.J., Johansson, R.S., Loeb, G.E.: Biomimetic tactile sensor array. Adv. Robot. 22(8), 829–849 (2008)

    Article  Google Scholar 

  50. Wohlfarth-Bottermann, K.E., Block, I.: The pathway of photosensory transduction in Physarum polycephalum. Cell Biol. Int. Rep. 5(4), 365–373 (1981)

    Article  Google Scholar 

  51. Wolf, R., Niemuth, J., Sauer, H.: Thermotaxis and protoplasmic oscillations in Physarum plasmodia analysed in a novel device generating stable linear temperature gradients. Protoplasma 197(1–2), 121–131 (1997)

    Article  Google Scholar 

  52. Wong, R.D.P., Posner, J.D., Santos, V.J.: Flexible microfluidic normal force sensor skin for tactile feedback. Sensors Actuators A: Phys. 179, 62–69 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adamatzky, A. (2016). Physarum Wires, Sensors and Oscillators. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics