Skip to main content
Log in

Thermotaxis and protoplasmic oscillations inPhysarum plasmodia analysed in a novel device generating stable linear temperature gradients

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The application of sublethal temperature gradients offers a simple, non-invasive means for in vivo studies of thermotaxis and other temperature-dependent processes in various organisms. Development, for instance, can be dramatically desynchronized, and the resulting development gradients allow to analyze physiological inter-dependencies between locally separated subsystems. For this purpose a simple device has been developed, by which a stable linear gradient of 8 °C/cm is established on an inert metal sheet with the aid of Peltier elements. The effects of linear temperature gradients on fusion, growth, and migration of plasmodia of the slime moldPhysarum polycephalum was filmed by 16 mm film time-lapse technique, and their local contraction—relaxation cycles analysed by “multistrip kymography”, which represents a graphic documentation of the spatio-temporal pattern of protoplasmic movements that occur along well-defined regions within the giant cell.Physarum plasmodia preferentially fuse, and grow, in the range of 24–26 °C. Different parts of a single macroplasmodium can simultaneously show positive and negative thermotaxis. The contraction—relaxation cycles generating the protoplasmic shuttle streaming within the network of veins essentially depend on local temperatures and are instantaneously desynchronized by the temperature gradient. Thus they cannot be controlled by a central pacemaker or an overall electric signal. However, there is a strong tendency to locally synchronize the various oscillation frequencies present within the giant cell if temperature differences do not exceed 2 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach U, Wohlfarth-Bottermann KE (1980a) Oscillating contractions in protoplasmic strands ofPhysarum. Mechanical and thermal methods of phase shifting for studying the nature of the synchronizing factor and its transmission. J Exp Biol 85: 21–31

    Google Scholar 

  • — — (1980b) Synchronization and signal transmission in protoplasmic strands ofPhysarum. Reaction to varying temperature gradients. Planta 150: 180–188

    Google Scholar 

  • Baranowski Z (1976) 3-dimensional analysis of movement inPhysarum polycephalum. Cytobiologie 15: 118–131

    Google Scholar 

  • Cho J, Sauer HW (1994) A non-cycling mitotic cyclin in the naturally synchronous cell cycle ofPhysarum polycephalum. Eur J Cell Biol 65: 94–102

    PubMed  Google Scholar 

  • Daniel JW, Baldwin HH (1964) Methods of culture for plasmodial myxomycetes. In: Prescott DM (ed) Methods in cell physiology vol 1, 9. Academic Press, New York, pp 9–41

    Google Scholar 

  • —, Rusch HP (1961) The pure culture ofPhysarum polycephalum on a partially defined soluble medium. J Gen Microbiol 25: 47–59

    PubMed  Google Scholar 

  • Grebecki A (1979) Organization of motory functions in amoebae and in slime molds plasmodia. Acta Protozool 18: 43–58

    Google Scholar 

  • —, Cieslawska M (1978a) Dynamics of ectoplasma walls during pulsation of plasmodial veins ofPhysarum polycephalum. Protoplasma 97: 365–371

    Google Scholar 

  • — (1978b) Plasmodium ofPhysarum polycephalum as a synchronous contractile system. Cytobiologie 17: 335–342

    PubMed  Google Scholar 

  • —, Kolodziejczyk J (1983) Contraction and streaming relations recorded simultaneously at two points along the plasmodial veins and frontal channels ofPhysarum polycephalum. Acta Protozool 22: 1–18

    Google Scholar 

  • —, Moczori M (1978) Correlation of contractile activity and of streaming direction between branching veins ofPhysarum polycephalum. Protoplasma 97: 153–164

    Google Scholar 

  • Haas W (1994) Physiological analyses of host-finding behaviour in trematode cercariae: adaptations for transmission success. Parasitology 109: 15–29

    Google Scholar 

  • —, Granzer M, Garcia EG (1987) Host identification bySchistosoma japonicum cercariae. J Parasitol 73: 568–677

    PubMed  Google Scholar 

  • Halvorsrud R, Giaever I, Laane MM (1995a) Patterns of oscillation during mitosis in plasmodia ofPhysarum polycephalum. Protoplasma 188: 12–21

    Google Scholar 

  • —, Laane MM, Giaever I (1995b) A novel electrical method to study plasmodial contractions inPhysarum. Synchrony and temperature dependence. Biol Rhythm Res 26: 316–330

    Google Scholar 

  • Hülsmann N, Wohlfarth-Bottermann KE (1978a) Spatio-temporal analysis of contraction dependent surface movements inPhysarum polycephalum. Cytobiologie 17: 23–41

    PubMed  Google Scholar 

  • — — (1978b) Spatio-temporal relationships between protoplasmic streaming and contraction activities in plasmodial veins ofPhysarum polycephalum. Cytobiologie 17: 317–334

    PubMed  Google Scholar 

  • Kamiya N (1959) Protoplasmic streaming. Springer, Wien [Heilbrunn LV et al (eds) Protoplasmatologia, vol VIII/3 a]

    Google Scholar 

  • Knowles DJC, Carlile MJ (1978) Growth and migration of plasmodia of the myxomycetePhysarum polycephalum: the effect of carbohydrates, including agar. J Gen Microbiol 108: 9–16

    PubMed  Google Scholar 

  • Kolodziejczyk J, Grebecki A (1982) Further studies on the relation between contraction and streaming oscillations in the plasmodial veins ofPhysarum polycephalum. Acta Protozool 21: 37–53

    Google Scholar 

  • Miller DM, Anderson JD, Abbott BC (1968) Potentials and ionic exchange in slime mold plasmodia. Comp Biochem Physiol 27: 633–646

    PubMed  Google Scholar 

  • Mustacich RV, Ware BR (1977) A study of protoplasmic streaming inPhysarum by laser Doppier spectroscopy. Protoplasma 91: 351–367

    Google Scholar 

  • Niemuth J, Wolf R (1995) Developmental asynchrony caused by steep temperature gradients does not impair pattern formation in the wasp,Pimpla turionellae. Wilhelm Rouxs Arch Dev Biol 204: 444–452

    Google Scholar 

  • Sachsenmaier W, Blessing J (1973) Protoplasmic streaming inPhysarum polycephalum. Observations of spontaneous and induced changes of the oscillatory pattern by photometric and fluorimetric techniques. Protoplasma 77: 381–396

    Google Scholar 

  • Sauer HW (1982) Developmental biology ofPhysarum, Cambridge University Press, Cambridge (Developmental and cell biology series 11)

    Google Scholar 

  • Stockem W, Brix C (1994) Analysis of microfilament organization and contractile activities inPhysarum. Int Rev Cytol 149: 145–215

    Google Scholar 

  • Tso WW, Mansour TE (1975) Thermotaxis in a slime mold,Physarum polycephalum. J Behav Biol 14: 449–504

    Google Scholar 

  • Wohlfarth-Bottermann KE (1977) Oscillating contractions in protoplasmic strands ofPhysarum: simultaneous tensiometry of longitudinal and radial rhythms, periodicity analysis and temperature dependence. J Exp Biol 67: 49–59

    PubMed  Google Scholar 

  • Wolf R (1976) Indirekte Streifen-Mikrokymographie zur Analyse und Dokumentation kinematisch registrierter Bewegungsprozesse (Begleitpublikation zum Kurzfilm “Aufzeichnung von Plasmabewegungen im Schlupfwespen-Ei”). Research Film 9/2: 122–124

    Google Scholar 

  • — (1985) Migration and division of cleavage nuclei in the gall midge,Wachtliella persicariae. III. Pattern of anaphase-triggering waves altered by temperature gradients and locally impaired gas exchange. Wilhelm Rouxs Arch Dev Biol 194: 257–271

    Google Scholar 

  • —, Nuss E (1976) Artificial rearrangements of insect ooplasm caused by fixation, and their microkymographic registration. Wilhelm Rouxs Arch Dev Biol 179: 197–202

    Google Scholar 

  • - Sauer HW (1978) Intranuclear mitosis in macroplasmodia of the slime mold,Physarum polycephalum. Silent film 6.5 min, Wuerzburg, available from the authors

  • — — (1982) Time-lapse analysis of mitosis in vivo in macroplasmodia ofPhysarum polycephalum. In: Aldrich H, Daniel J (eds) Cell biology ofPhysarum andDidymium, vol II. Academic Press, New York, pp 261–264

    Google Scholar 

  • —, Wolf D (1974) Aufbau und Aufrechterhaltung steiler Temperaturgradienten in entwicklungsbiologischen Objekten bei gleichzeitiger lichtmikroskopischer Filmregistrierung. Wilhelm Rouxs Arch Dev Biol 175: 249–252

    Google Scholar 

  • —, Wick R, Sauer HW (1979) Mitosis inPhysarum polycephalum: analysis of time-lapse films and DNA replication of normal and heat-shocked macroplasmodia. Cytologie 19: 49–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, R., Niemuth, J. & Sauer, H. Thermotaxis and protoplasmic oscillations inPhysarum plasmodia analysed in a novel device generating stable linear temperature gradients. Protoplasma 197, 121–131 (1997). https://doi.org/10.1007/BF01279890

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279890

Keywords

Navigation