Skip to main content

Radionuclide Therapy of Thyroid Tumors

  • Reference work entry
  • First Online:
Nuclear Oncology

Abstract

When indicated, ablation of postsurgical thyroid remnants with 131I-iodide constitutes a unicum with surgery as the primary form of treatment for differentiated thyroid cancer (DTC) derived from the follicular epithelium. According to the most recent guidelines, thyroid remnant ablation is indicated in DTC patients with a moderate to high risk of recurrence. Patients are prepared with low-iodine diet and with either withdrawal of replacement therapy with L-thyroxine (l-T4) for a period sufficient to achieve serum TSH levels >30 μIU/mL (usually within 4–6 weeks) or administration of exogenous human recombinant (rhTSH). Administered activities of 131I-iodide vary considerably between 1.11 and 3.7 GBq (30–100 mCi), according to the estimated risk of recurrence. A whole-body scan (131I-WBS, preferably completed with SPECT/CT acquisitions at selected sites) is performed 4–7 days after 131I-iodide administration, as it can detect lymph node involvement or unexpected metastases. Therapy with 131I-iodide causes in some instances side effects that are usually mild, transient, and well manageable. More important side effects (e.g., a radiation-induced second malignancy) can be expected only after repeated administrations of radioiodide for therapy of recurrent metastatic disease and for very high cumulative doses.

The major diagnostic modalities employed to follow patients with DTC treated with remnant ablation are measurement of serum Tg, 131I-WBS, and neck US. Additional diagnostic imaging (e.g., CT, MRI) is applicable in selected circumstances; in fact, although CT and MRI can in principle localize very small lesions in the neck, chest, and bones, the features of such lesions are rarely specific for recurrent/metastatic DTC.

If lymph node metastasis is suspected on the basis of imaging findings, a FNAC should be performed, also assaying Tg in the needle washing. Serum Tg levels that become detectable or show an increasing trend during follow-up indicate the need for further evaluation, possibly with additional 131I-iodide therapy in case of small metastatic lesions (<1 cm in size) with a relatively high radioiodine uptake. In case of bigger lymph node metastasis, surgery is preferable – possibly followed by adjuvant radioiodine therapy. External beam radiation therapy (EBRT) has little role in treatment of recurrent/metastatic DTC, except in case of tumors exhibiting a trend to dedifferentiation. Patients with recurrent DTC may develop poorly differentiated lesions that cannot concentrate radioiodide. In these patients [18F]FDG PET/CT has an important prognostic role and is useful to determine the sites and extent of these metastases. When DTC becomes refractory to 131I-iodide therapy, metastatic and progressive lesions can be treated with tyrosine kinase inhibitors (TKI) such as sorafenib and lenvatinib.

Radionuclide therapy has no role in the treatment of anaplastic or poorly differentiated thyroid cancers, because these tumors cannot concentrate radioiodide; in these patients therapy is based on surgery (whenever possible – also with simple debulking/palliative purposes), chemotherapy, and EBRT. Prognosis of these patients is very poor.

Surgery is the first-choice option for the treatment of patients with medullary thyroid cancer (MTC). Follow-up is based on monitoring of biochemical tumor recurrence (rising serum calcitonin and/or CEA levels) and on diagnostic imaging with radiopharmaceuticals that are commonly used for the whole spectrum of neuroendocrine tumors: 123I-MIBG, radiolabeled somatostatin analogs (111In-DTPA-pentetreotide, 68Ga-DOTA-NOC/TATE) in addition to the overall tumor-imaging agent [18F]FDG. Radionuclide therapy of recurrent/metastatic DTC can include 131I-MIBG and 90Y- or 177Lu-DOTA-TOC/NOC/TATE. As in the case of radioiodide-refractory DTC, treatment of advanced recurrent/metastatic MTC can include novel targeted therapies such as TKIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

123I-MIBG:

123I-meta-Iodobenzylguanidine

131I-MIBG:

131I-meta-Iodobenzylguanidine

131I-WBS:

Whole-body scintigraphy with 131I-iodide

18F-DOPA:

2-18F-Fluoro-l-3,4-dihydroxyphenylalanine

AJCC:

American Joint Committee on Cancer

APUD:

Amine precursor uptake and decarboxylation

ATA:

American Thyroid Association

ATC:

Anaplastic thyroid cancer

BRAF:

Gene encoding for the B-Raf protein, a serine/threonine-protein kinase; the gene is also known as the proto-oncogene B-Raf and v-Raf murine sarcoma viral oncogene homolog B

CCK-BR:

Gastrin/cholecystokinin B receptor

CEA:

Carcinoembryonic antigen, a tumor-associated serum marker

CP:

Chemotherapy based on carboplatinum and plaxitaxel

Ct:

Calcitonin

CT:

X-ray computed tomography

DMSA:

Dimercaptosuccinic acid, a metal-chelating agent

DOTA-NOC:

DOTA-1-Nal3-octreotide

DOTA-TATE:

DOTA-Tyr3-octreotate

DOTA-TOC:

DOTA-octreotide

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DTC:

Well-differentiated thyroid cancer

DTPA:

Diethylenetriaminepentaacetic acid, a metal-chelating agent

EBRT:

External beam radiation therapy

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor; the mutated form EGFRvIII plays a prominent role in tumorigenesis and proangiogenic signalling

EMA:

European Medicines Agency

FDA:

United States Food and Drug Administration

FNAC:

Fine-needle aspiration cytology

FT3:

Free circulating form of the thyroid hormone triiodothyronine

FT4:

Free circulating form of the thyroid hormone tetraiodothyronine

FTC:

Follicular thyroid tumor

Gy:

Gray unit (ionizing radiation dose in the International System of Units, corresponding to the absorption of one joule of radiation energy per kilogram of matter)

l-T4:

Levo-thyroxine (or tetra-iodothyronine)

M:

Metastasis status according to the AJCC/UICC TNM staging system

MEK:

Mitogen-activated protein kinase

MEN:

Multiple endocrine neoplasia

MIBG:

meta-Iodobenzylguanidine

MRI:

Magnetic resonance imaging

MTC:

Medullary thyroid cancer

N:

Lymph node status according to the AJCC/UICC TNM staging system

NIS:

Na+/I symporter

ORR:

Overall response rate

PDGFRα:

Platelet-derived growth factor receptor α

PDTC:

Poorly differentiated thyroid cancer

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PFS:

Progression-free survival

PTC:

Papillary thyroid tumor

RECIST:

Response evaluation criteria in solid tumors

RET:

A proto-oncogene encoding for a receptor tyrosine kinase for extracellular signalling molecules (from “rearranged during transfection”)

rhTSH:

Recombinant human TSH

RT-PCR:

Reverse transcriptase polymerase chain reaction

SPECT:

Single-photon emission tomography

SPECT/CT:

Single-photon emission tomography/Computed tomography

T:

Tumor status according to the AJCC/UICC TNM staging system

T3:

Triiodothyronine

Tg:

Thyroglobulin

TgAb:

Anti-Tg autoantibodies

TKI:

Thymidine kinase inhibitor

TNM:

AJCC/UICC staging system based on parameters “T” (tumor status), “N” (lymph node status), and “M” (distant metastasis status)

TSH:

Thyroid stimulating hormone, or thyrotropin

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

US:

Ultrasonography

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

WBS:

Whole-body scintigraphy

References

  1. Bilimoria KY, Bentrem DJ, Ko CY, Stewart AK, Winchester DP, Talamonti MS, Sturgeon C. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg. 2007;246:375–81.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leboulleux S, Girard E, Rose M, et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92:3590–4.

    Article  CAS  PubMed  Google Scholar 

  4. Sywak M, Cornford L, Roach P, et al. Routine ipsilateral level VI lymphadenectomy reduces postoperative thyroglobulin levels in papillary thyroid cancer. Surgery. 2006;140:1000–5.

    Google Scholar 

  5. Ywata de Carvalho A, Chulam TC, Kowalski LP. Long-term results of observation vs prophylactic selective level VI neck dissection for papillary thyroid carcinoma at a cancer center. JAMA Otolaryngol Head Neck Surg. 2015;141:599–606.

    Article  PubMed  Google Scholar 

  6. Nixon IJ, Wang LY, Ganly I, et al. Outcomes for patients with papillary thyroid cancer who do not undergo prophylactic central neck dissection. Br J Surg. 2016;103:218–25.

    Google Scholar 

  7. Palazzo FF, Gosnell J, Savio R, et al. Lymphadenectomy for papillary cancer: changes in practice over four decades. Eur J Surg Oncol. 2006;32:340–4.

    Google Scholar 

  8. Carty SE, Cooper DS, Doherty GM, et al. Consensus statement on the terminology and classification of central neck dissection for thyroid cancer. Thyroid. 2009;19:1153–8.

    Google Scholar 

  9. Maxon 3rd HR, Englaro EE, Thomas SR, et al. Radioiodine-131 therapy for well-differentiated thyroid cancer – a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med. 1992;33:1132–6.

    Google Scholar 

  10. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    Article  CAS  PubMed  Google Scholar 

  11. Van Nostrand D. The benefits and risks of I-131 therapy in patients with well-differentiated thyroid cancer. Thyroid. 2009;19:1381–91.

    Article  PubMed  CAS  Google Scholar 

  12. DeGroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab. 1990;71:414–24.

    Article  CAS  PubMed  Google Scholar 

  13. Tubiana M, Schlumberger M, Rougier P, et al. Long-term results and prognostic factors in patients with differentiated thyroid carcinoma. Cancer. 1985;55:794–804.

    Article  CAS  PubMed  Google Scholar 

  14. Baudin E, Travagli JP, Ropers J, et al. Microcarcinoma of the thyroid gland: the Gustave-Roussy Institute experience. Cancer. 1998;83:553–9.

    Article  CAS  PubMed  Google Scholar 

  15. Simpson WJ, Panzarella T, Carruthers JS, et al. Papillary and follicular thyroid cancer: impact of treatment in 1578 patients. Int J Radiat Oncol Biol Phys. 1988;14:1063–75.

    Google Scholar 

  16. Grebe SK, Hay ID. Follicular cell-derived thyroid carcinomas. Cancer Treat Res. 1997;89:91–140.

    Article  CAS  PubMed  Google Scholar 

  17. Ruel E, Thomas S, Dinan M, et al. Adjuvant radioactive iodine therapy is associated with improved survival for patients with intermediate-risk papillary thyroid cancer. J Clin Endocrinol Metab. 2015;100:1529–36.

    Google Scholar 

  18. Elisei R, Agate L, Viola D, et al. How to manage patients with differentiated thyroid cancer and a rising serum thyroglobulin level. Endocrinol Metab Clin North Am. 2014;43:331–44.

    Google Scholar 

  19. Wang LY, Roman BR, Palmer FL, et al. Effectiveness of routine ultrasonographic surveillance of patients with low-risk papillary carcinoma of the thyroid. Surgery. 2016;159:1390–5.

    Article  PubMed  Google Scholar 

  20. Remy H, Borget I, Leboulleux S, et al. 131I effective half-life and dosimetry in thyroid cancer patients. J Nucl Med. 2008;49:1445–50.

    Article  CAS  PubMed  Google Scholar 

  21. Mazzaferri EL, Kloos RT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86:1447–63.

    Article  CAS  PubMed  Google Scholar 

  22. Sgouros G, Song H, Ladenson PW, Wahl RL. Lung toxicity in radioiodine therapy of thyroid carcinoma: development of a dose-rate method and dosimetric implications of the 80-mCi rule. J Nucl Med. 2006;47:1977–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bolch WE, Bouchet LG, Robertson JS, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions – radionuclide S values at the voxel level. J Nucl Med. 1999;40(Suppl):11S–36.

    CAS  PubMed  Google Scholar 

  24. Haugen BR, Pacini F, Reiners C, et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab. 1999;84:3877–85.

    CAS  PubMed  Google Scholar 

  25. Pacini F, Ladenson PW, Schlumberger M, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab. 2006;91:926–32.

    Article  CAS  PubMed  Google Scholar 

  26. Schlumberger M, Catargi B, Borget I, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366:1663–73.

    Article  CAS  PubMed  Google Scholar 

  27. Mallick U, Harmer C, Yap B, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366:1674–85.

    Article  CAS  PubMed  Google Scholar 

  28. Silberstein EB, Alavi A, Balon HR, et al. Procedure guideline for therapy of thyroid disease with iodine-131. J Nucl Med. 2002;43:856–61.

    PubMed  Google Scholar 

  29. Park II JT, Hennessey JV. Two-week low iodine diet is necessary for adequate outpatient preparation for radioiodine rhTSH scanning in patients taking levothyroxine. Thyroid. 2004;14:57–63.

    Article  CAS  PubMed  Google Scholar 

  30. Regalbuto C, Gullo D, Vigneri R, Pezzino V. Measurement of iodine before 131I in thyroid cancer. Lancet. 1994;344:1501–2.

    Article  CAS  PubMed  Google Scholar 

  31. Rawson RW, Rall JE, Peacock W. Limitations in the treatment of cancer of the thyroid with radioactive iodine. Trans Assoc Am Physicians. 1951;64:179–98.

    CAS  PubMed  Google Scholar 

  32. Bajén MT, Mañé S, Muñoz A, Ramòn GJ. Effect of diagnostic dose of 185 MBq 131I on postsurgical thyroid remnants. J Nucl Med. 2000;41:2038–42.

    PubMed  Google Scholar 

  33. McDougall IR, Iagaru A. Thyroid stunning: fact or fiction? Semin Nucl Med. 2011;41:105–12.

    Article  PubMed  Google Scholar 

  34. Park HM. Stunned thyroid after high dose 131I imaging. Clin Nucl Med. 1992;17:501–2.

    Article  CAS  PubMed  Google Scholar 

  35. Sisson JC, Avram AM, Lawson SA, et al. The so-called stunning of thyroid tissue. J Nucl Med. 2006;47:1406–12.

    Google Scholar 

  36. Park HM, Perkins OW, Edmondson JW, Schnute RB, Manatunga A. Influence of diagnostic radioiodines on the uptake of ablative dose of iodine-131. Thyroid. 1994;4:49–54.

    Article  CAS  PubMed  Google Scholar 

  37. Muratet JP, Giraud P, Daver A, et al. Predicting the efficacy of first iodine-131 treatment in differentiated thyroid carcinoma. J Nucl Med. 1997;38:1362–8.

    Google Scholar 

  38. McDougall IR. 74 MBq radioiodine 131I does not prevent uptake of therapeutic doses of 131I (i.e. it does not cause stunning) in differentiated thyroid cancer. Nucl Med Commun. 1997;18:505–12.

    Article  CAS  PubMed  Google Scholar 

  39. Cholewinski SP, Yoo KS, Klieger PS, O’Mara RE. Absence of thyroid stunning after diagnostic whole-body scanning with 185 MBq 131I. J Nucl Med. 2000;41:1198–202.

    CAS  PubMed  Google Scholar 

  40. Nordén MM, Larsson F, Tedelind S, et al. Down-regulation of the sodium/iodide symporter explains 131I-induced thyroid stunning. Cancer Res. 2007;6:7512–7.

    Google Scholar 

  41. Medvedec M. Thyroid stunning in vivo and in vitro. Nucl Med Commun. 2005;26:731–5.

    Article  PubMed  Google Scholar 

  42. Caudill CM, Zhu Z, Ciampi R, et al. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J Clin Endocrinol Metab. 2005;90:2364–9.

    Article  CAS  PubMed  Google Scholar 

  43. de Geus-Oei LF, Oei HY, Hennemann G, Krenning EP. Sensitivity of 123I whole-body scan and thyroglobulin in the detection of metastases or recurrent differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2002;29:768–74.

    Article  PubMed  CAS  Google Scholar 

  44. Sherman SI, Tielens ET, Sostre S, et al. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab. 1994;78:629–34.

    Google Scholar 

  45. Fatourechi V, Hay ID, Mullan BP, et al. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid. 2000;10:573–7.

    Google Scholar 

  46. Chen L, Luo Q, Shen Y, et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med. 2008;49:1952–7.

    Google Scholar 

  47. Wong KK, Zarzhevsky N, Cahill JM, et al. Incremental value of diagnostic 131I SPECT/CT fusion imaging in the evaluation of differentiated thyroid carcinoma. AJR Am J Roentgenol. 2008;191:1785–94.

    Google Scholar 

  48. Aide N, Heutte N, Rame JP, et al. Clinical relevance of single-photon emission computed tomography/computed tomography of the neck and thorax in postablation 131I scintigraphy for thyroid cancer. J Clin Endocrinol Metab. 2009;94:2075–84.

    Google Scholar 

  49. Schmidt D, Szikszai A, Linke R, et al. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med. 2009;50:18–23.

    Google Scholar 

  50. Spanu A, Solinas ME, Chessa F, et al. 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med. 2009;50:184–90.

    Google Scholar 

  51. Kohlfuerst S, Igerc I, Lobnig M, et al. Posttherapeutic 131I SPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. Eur J Nucl Med Mol Imaging. 2009;36:886–93.

    Article  CAS  PubMed  Google Scholar 

  52. Akram K, Parker JA, Donohoe K, Kolodny G. Role of single photon emission computed tomography/computed tomography in localization of ectopic parathyroid adenoma: a pictorial case series and review of the current literature. Clin Nucl Med. 2009;34:500–2.

    Article  PubMed  Google Scholar 

  53. Barwick T, Murray I, Megadmi H, et al. Single photon emission computed tomography (SPECT)/computed tomography using Iodine-123 in patients with differentiated thyroid cancer: additional value over whole body planar imaging and SPECT. Eur J Endocrinol. 2010;162:1131–9.

    Article  CAS  PubMed  Google Scholar 

  54. Mustafa M, Kuwert T, Weber K, et al. Regional lymph node involvement in T1 papillary thyroid carcinoma: a bicentric prospective SPECT/CT study. Eur J Nucl Med Mol Imaging. 2010;37:1462–6.

    Article  CAS  PubMed  Google Scholar 

  55. Grewal RK, Tuttle RM, Fox J, et al. The effect of posttherapy 131I SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med. 2010;51:1361–7.

    Article  CAS  PubMed  Google Scholar 

  56. Wong KK, Sisson JC, Koral KF, et al. Staging of differentiated thyroid carcinoma using diagnostic 131I SPECT/CT. AJR Am J Roentgenol. 2010;195:730–6.

    Google Scholar 

  57. Avram AM. Radioiodine scintigraphy with SPECT/CT: an important diagnostic tool for thyroid cancer staging and risk stratification. J Nucl Med Technol. 2014;42:170–80.

    Article  PubMed  Google Scholar 

  58. Al Balooshi B, Vinjamuri S. Should all patients with differentiated thyroid carcinoma undergo 131I SPECT-CT scanning rather than 131I whole-body scanning? Nucl Med Commun. 2015;36:540–52.

    Article  Google Scholar 

  59. Allweiss P, Braunstein GD, Katz A, Waxman A. Sialadenitis following I-131 therapy for thyroid carcinoma: concise communication. J Nucl Med. 1984;25:755–8.

    CAS  PubMed  Google Scholar 

  60. Alexander C, Bader JB, Schaefer A, et al. Intermediate and long-term side effects of high-dose radioiodine therapy for thyroid carcinoma. J Nucl Med. 1998;39:1551–4.

    CAS  PubMed  Google Scholar 

  61. de Vathaire F, Schlumberger M, Delisle MJ, et al. Leukaemias and cancers following iodine-131 administration for thyroid cancer. Br J Cancer. 1997;75:734–9.

    Google Scholar 

  62. Rubino C, de Vathaire F, Dottorini ME, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89:1638–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de Vathaire F. The carcinogenic effects of radioiodine therapy for thyroid carcinoma. Nat Clin Pract Endocrinol Metab. 2008;4:180–1.

    Article  PubMed  CAS  Google Scholar 

  64. Bhattacharyya N, Chien W. Risk of second primary malignancy after radioactive iodine treatment for differentiated thyroid carcinoma. Ann Otol Rhinol Laryngol. 2006;115:607–10.

    Article  PubMed  Google Scholar 

  65. Sawka AM, Thabane L, Parlea L, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19:451–7.

    Google Scholar 

  66. Verkooijen RB, Smit JW, Romijn JA, Stokkel M. The incidence of second primary tumors in thyroid cancer patients is increased, but not related to treatment of thyroid cancer. Eur J Endocrinol. 2006;155:801–6.

    Article  CAS  PubMed  Google Scholar 

  67. Subramanian S, Goldstein DP, et al. Second primary malignancy risk in thyroid cancer survivors: a systematic review and metaanalysis. Thyroid. 2007;17:1277–88.

    Article  PubMed  Google Scholar 

  68. Garsi J-P, Schlumberger M, Rubino C, et al. Therapeutic administration of 131I for differentiated thyroid cancer: radiation dose to ovaries and outcome of pregnancies. J Nucl Med. 2008;49:845–52.

    Article  PubMed  Google Scholar 

  69. Wichers M, Benz E, Palmedo H, et al. Testicular function after radioiodine therapy for thyroid carcinoma. Eur J Nucl Med. 2000;27:503–7.

    Google Scholar 

  70. Rosário PW, Barroso AL, Rezende LL, et al. Testicular function after radioiodine therapy in patients with thyroid cancer. Thyroid. 2006;16:667–70.

    Google Scholar 

  71. Pacini F, Gasperi M, Fugazzola L, et al. Testicular function in patients with differentiated thyroid carcinoma treated with radioiodine. J Nucl Med. 1994;35:1418–22.

    CAS  PubMed  Google Scholar 

  72. Hyer S, Vini L, O’Connell M, et al. Testicular dose and fertility in men following I131 therapy for thyroid cancer. Clin Endocrinol (Oxf). 2002;56:755–8.

    Google Scholar 

  73. Krassas GE, Pontikides N. Male reproductive function in relation with thyroid alterations. Best Pract Res Clin Endocrinol Metab. 2004;18:183–95.

    Article  CAS  PubMed  Google Scholar 

  74. Hebestreit H, Biko J, Drozd V, et al. Pulmonary fibrosis in youth treated with radioiodine for juvenile thyroid cancer and lung metastases after Chernobyl. Eur J Nucl Med Mol Imaging. 2011;38:1683–90.

    Google Scholar 

  75. Reiners C, Biko J, Haenscheid H, et al. Twenty-five years after Chernobyl: outcome of radioiodine treatment in children and adolescents with very high-risk radiation-induced differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2013;98:3039–48.

    Google Scholar 

  76. Pilli T, Brianzoni E, Capoccetti F, et al. A comparison of 1850 (50 mCi) and 3700 MBq (100 mCi) 131-iodine administered doses for recombinant thyrotropin-stimulated postoperative thyroid remnant ablation in differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92:3542–6.

    Article  CAS  PubMed  Google Scholar 

  77. Bianchi R, Mariani G, Molea N, et al. Peripheral metabolism of thyroid hormones in man. I. Direct measurement of the conversion rate of thyroxine to 3,5,3′-triiodothyronine. J Clin Endocrinol Metab. 1983;56:1152–63.

    Article  CAS  PubMed  Google Scholar 

  78. Bianchi R, Pilo A, Mariani G, Molea N, Cazzuola F, Ferdeghini M, Bertelli P. Comparison of plasma and urinary methods for the direct measurement of thyroxine to 3,5,3′-triiodothyronine conversion in man. J Clin Endocrinol Metab. 1984;58:993–1002.

    Article  CAS  PubMed  Google Scholar 

  79. Pilo A, Iervasi G, Vitek F, Ferdeghini M, Cazzuola F, Bianchi R. Thyroidal and peripheral production of 3,5,3′-triiodothyronine in humans by multicompartmental analysis. Am J Physiol. 1990;258:E715–26.

    CAS  PubMed  Google Scholar 

  80. Bartalena L, Martino E, Pacchiarotti A, et al. Factors affecting suppression of endogenous thyrotropin secretion by thyroxine treatment: retrospective analysis in athyreotic and goitrous patients. J Clin Endocrinol Metab. 1987;64:849–55.

    Article  CAS  PubMed  Google Scholar 

  81. Santini F, Pinchera A, Marsili A, et al. Lean body mass is a major determinant of levothyroxine dosage in the treatment of thyroid diseases. J Clin Endocrinol Metab. 2005;90:124–7.

    Article  CAS  PubMed  Google Scholar 

  82. Sawin CT, Geller A, Hershman JM, Castelli W, Bacharach P. The aging thyroid. The use of thyroid hormone in older persons. JAMA. 1989;261:2653–5.

    Article  CAS  PubMed  Google Scholar 

  83. Hays MT, Hsu L, Kohatsu S. Transport of the thyroid hormones across the feline gut wall. Thyroid. 1992;2:45–56.

    Article  CAS  PubMed  Google Scholar 

  84. Vita R, Saraceno G, Trimarchi F, Benvenga S. A novel formulation of L-thyroxine (L-T4) reduces the problem of L-T4 malabsorption by coffee observed with traditional tablet formulations. Endocrine. 2013;43:154–60.

    Article  CAS  PubMed  Google Scholar 

  85. Cappelli C, Pirola I, Daffini L, et al. A double-blind placebo-controlled trial of liquid thyroxine ingested at breakfast: results of the TICO study. Thyroid. 2016;26:197–202.

    Article  CAS  PubMed  Google Scholar 

  86. Uzzan B, Nicolas P, Perret G, Vassy R, Tod M, Petitjean O. Effects of troleandomycin and josamycin on thyroid hormone and steroid serum levels, liver function tests and microsomal monooxygenases in healthy volunteers: a double blind placebo-controlled study. Fundam Clin Pharmacol. 1991;5:513–26.

    Article  CAS  PubMed  Google Scholar 

  87. Liwanpo L, Hershman JM. Conditions and drugs interfering with thyroxine absorption. Best Pract Res Clin Endocrinol Metab. 2009;23:781–92.

    Article  CAS  PubMed  Google Scholar 

  88. Centanni M, Gargano L, Canettieri G, et al. Thyroxine in goiter, Helicobacter pylori infection, and chronic gastritis. N Engl J Med. 2006;354:1787–95.

    Google Scholar 

  89. Checchi S, Montanaro A, Pasqui L, et al. l-Thyroxine requirement in patients with autoimmune hypothyroidism and parietal cell antibodies. J Clin Endocrinol Metab. 2008;93:465–9.

    Google Scholar 

  90. Marcocci C, Golia F, Bruno-Bossio G, et al. Carefully monitored levothyroxine suppressive therapy is not associated with bone loss in premenopausal women. J Clin Endocrinol Metab. 1994;78:818–23.

    Google Scholar 

  91. Jennings PE, O’Malley BP, Griffin KE, Northover B, Rosenthal FD. Relevance of increased serum thyroxine concentrations associated with normal serum triiodothyronine values in hypothyroid patients receiving thyroxine: a case for “tissue thyrotoxicosis”. Br Med J (Clin Res Ed). 1984;289:1645–7.

    Article  CAS  Google Scholar 

  92. Ross DS. Monitoring l-thyroxine therapy: lessons from the effects of l-thyroxine on bone density. Am J Med. 1991;91:1–4.

    Article  CAS  PubMed  Google Scholar 

  93. Do Cao C, Wémeau JL. Risk-benefit ratio for TSH- suppressive Levothyroxine therapy in differentiated thyroid cancer. Ann Endocrinol (Paris). 2015;76(1 Suppl):1S47–52.

    Article  CAS  Google Scholar 

  94. Kim CW, Hong S, Oh SH, et al. Change of bone mineral density and biochemical markers of bone turnover in patients on suppressive levothyroxine therapy for differentiated thyroid carcinoma. J Bone Metab. 2015;22:135–41.

    Google Scholar 

  95. Mendonça Monteiro de Barros G, Madeira M, Vieira Neto L, et al. Bone mineral density and bone microarchitecture after long-term suppressive levothyroxine treatment of differentiated thyroid carcinoma in young adult patients. J Bone Miner Metab. 2016;34:417–21.

    Article  PubMed  CAS  Google Scholar 

  96. Cooper DS, Specker B, Ho M, et al. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid. 1998;8:737–44.

    Article  CAS  PubMed  Google Scholar 

  97. Biondi B, Filetti S, Schlumberger M. Thyroid-hormone therapy and thyroid cancer: a reassessment. Nat Clin Pract Endocrinol Metab. 2005;1:32–40.

    Article  CAS  PubMed  Google Scholar 

  98. Mazzaferri EL, Jhiang SM. Differentiated thyroid cancer long-term impact of initial therapy. Trans Am Clin Climatol Assoc. 1995;106:151–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schlumberger M. Can iodine-131 whole-body scan be replaced by thyroglobulin measurement in the post-surgical follow-up of differentiated thyroid carcinoma? J Nucl Med. 1992;33:172–3.

    CAS  PubMed  Google Scholar 

  100. Mazzaferri EL. Changing paradigms in the follow-up of patients with differentiated thyroid cancer: an alternative to [18F]fluorodeoxyglucose positron emission tomographic scanning. Endocr Pract. 2003;9:324–6.

    Article  PubMed  Google Scholar 

  101. Van Herle AJ. Serum thyroglobulin levels in patients with differentiated thyroid carcinoma. Ann Radiol (Paris). 1977;20:743–5.

    Google Scholar 

  102. Watanabe K, Koizumi N, Ozaki O, et al. Immunohistochemical studies on thyroid peroxidase and thyroglobulin in 13 human thyroid tumors and 7 Graves’ goiters. Endocr J. 1993;40:683–90.

    Google Scholar 

  103. Elisei R, Vivaldi A, Agate L, et al. Low specificity of blood thyroglobulin messenger ribonucleic acid assay prevents its use in the follow-up of differentiated thyroid cancer patients. J Clin Endocrinol Metab. 2004;89:33–9.

    Article  CAS  PubMed  Google Scholar 

  104. Spencer CA, Lopresti JS. Measuring thyroglobulin and thyroglobulin autoantibody in patients with differentiated thyroid cancer. Nat Clin Pract Endocrinol Metab. 2008;4:223–33.

    Article  CAS  PubMed  Google Scholar 

  105. Pacini F, Mariotti S, Formica N, et al. Thyroid autoantibodies in thyroid cancer: incidence and relationship with tumour outcome. Acta Endocrinol (Copenh). 1988;119:373–80.

    Google Scholar 

  106. Pacini F, Molinaro E, Lippi F, et al. Prediction of disease status by recombinant human TSH-stimulated serum Tg in the postsurgical follow-up of differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2001;86:5686–90.

    Article  CAS  PubMed  Google Scholar 

  107. Mazzaferri EL, Robbins RJ, Spencer CA, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:1433–41.

    Article  CAS  PubMed  Google Scholar 

  108. Lamartina L, Montesano T, Trulli F, et al. Papillary thyroid carcinomas with biochemical incomplete or indeterminate responses to initial treatment: repeat stimulated thyroglobulin assay to identify disease-free patients. Endocrine. 2015, Dec 14. [Epub ahead of print].

    Google Scholar 

  109. Pacini F, Cetani F, Miccoli P, et al. Outcome of 309 patients with metastatic differentiated thyroid carcinoma treated with radioiodine. World J Surg. 1994;18:600–4.

    Article  CAS  PubMed  Google Scholar 

  110. Schlumberger M, Hitzel A, Toubert ME, et al. Comparison of seven serum thyroglobulin assays in the follow-up of papillary and follicular thyroid cancer patients. J Clin Endocrinol Metab. 2007;92:2487–95.

    Article  CAS  PubMed  Google Scholar 

  111. Chindris AM, Diehl NN, Crook JE, Fatourechi V, Smallridge RC. Undetectable sensitive serum thyroglobulin (<0.1 ng/ml) in 163 patients with follicular cell-derived thyroid cancer: results of rhTSH stimulation and neck ultrasonography and long-term biochemical and clinical follow-up. J Clin Endocrinol Metab. 2012;97:2714–23.

    Article  CAS  PubMed  Google Scholar 

  112. Pacini F, Capezzone M, Elisei R, et al. Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J Clin Endocrinol Metab. 2002;87:1499–501.

    Google Scholar 

  113. Gerard SK, Cavalieri RR. I-123 diagnostic thyroid tumor whole-body scanning with imaging at 6, 24, and 48 hours. Clin Nucl Med. 2002;27:1–8.

    Article  PubMed  Google Scholar 

  114. Yan W, Roach PJ, Bautovich GJ, et al. Timing of iodine-123 scintigraphy following use of recombinant human thyrotropin in differentiated thyroid carcinoma. Clin Nucl Med. 2007;32:375–7.

    Google Scholar 

  115. Pacini F, Lippi F, Formica N, et al. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med. 1987;28:1888–91.

    Google Scholar 

  116. Pineda JD, Lee T, Ain K, et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab. 1995;80:1488–92.

    Google Scholar 

  117. Elisei R, Pinchera A, Romei C, et al. Expression of thyrotropin receptor (TSH-R), thyroglobulin, thyroperoxidase, and calcitonin messenger ribonucleic acids in thyroid carcinomas: evidence of TSH-R gene transcript in medullary histotype. J Clin Endocrinol Metab. 1994;78:867–71.

    CAS  PubMed  Google Scholar 

  118. Arturi F, Russo D, Schlumberger M, et al. Iodide symporter gene expression in human thyroid tumors. J Clin Endocrinol Metab. 1998;83:2493–6.

    CAS  PubMed  Google Scholar 

  119. Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med. 1998;338:297–306.

    Article  CAS  PubMed  Google Scholar 

  120. Pacini F. Follow-up of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2002;29 Suppl 2:492–4966.

    Article  Google Scholar 

  121. Chiovato L, Latrofa F, Braverman LE, et al. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 2003;139:346–51.

    Article  CAS  PubMed  Google Scholar 

  122. Pacini F, Fugazzola L, Lippi F, et al. Detection of thyroglobulin in fine needle aspirates of nonthyroidal neck masses: a clue to the diagnosis of metastatic differentiated thyroid cancer. J Clin Endocrinol Metab. 1992;74:1401–4.

    CAS  PubMed  Google Scholar 

  123. Haugen BR, Lin EC. Isotope imaging for metastatic thyroid cancer. Endocrinol Metab Clin North Am. 2001;30:469–92.

    Article  CAS  PubMed  Google Scholar 

  124. Reading CC, Gorman CA. Thyroid imaging techniques. Clin Lab Med. 1993;13:711–24.

    CAS  PubMed  Google Scholar 

  125. Gross ND, Weissman JL, Talbot JM, et al. MRI detection of cervical metastasis from differentiated thyroid carcinoma. Laryngoscope. 2001;111:1905–9.

    Google Scholar 

  126. Feine U, Lietzenmayer R, Hanke JP, et al. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med. 1996;37:1468–72.

    Google Scholar 

  127. Dietlein M, Scheidhauer K, Voth E, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med. 1997;24:1342–8.

    Google Scholar 

  128. Ramos CD, Chisin R, Yeung HW, et al. Incidental focal thyroid uptake on FDG positron emission tomographic scans may represent a second primary tumor. Clin Nucl Med. 2001;26:193–7.

    Google Scholar 

  129. Are C, Hsu JF, Schoder H, et al. FDG-PET detected thyroid incidentalomas: need for further investigation? Ann Surg Oncol. 2007;14:239–47.

    Google Scholar 

  130. Salvatori M, Melis L, Castaldi P, et al. Clinical significance of focal and diffuse thyroid diseases identified by 18F-fluorodeoxyglucose positron emission tomography. Biomed Pharmacother. 2007;61:488–93.

    Google Scholar 

  131. Shie P, Cardarelli R, Sprawls K, et al. Systematic review: prevalence of malignant incidental thyroid nodules identified on fluorine-18 fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 2009;30:742–8.

    Google Scholar 

  132. Ohba K, Nishizawa S, Matsushita A, et al. High incidence of thyroid cancer in focal thyroid incidentaloma detected by 18F-fluorodexyglucose positron emission tomography in relatively young healthy subjects: results of 3-year follow-up. Endocr J. 2010;57:395–401.

    Article  CAS  PubMed  Google Scholar 

  133. Chen W, Li G, Parsons M, et al. Clinical significance of incidental focal versus diffuse thyroid uptake on FDG-PET imaging. PET Clin. 2007;2:321–9.

    Google Scholar 

  134. Nayan S, Ramakrishna J, Gupta MK. The proportion of malignancy in incidental thyroid lesions on 18-FDG PET study: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2014;151:190–200.

    Article  PubMed  Google Scholar 

  135. Agrawal K, Weaver J, Ul-Hassan F, et al. Incidence and significance of incidental focal thyroid uptake on 18F-FDG PET study in a large patient cohort: retrospective single-centre experience in the United Kingdom. Eur Thyroid J. 2015;4:115–22.

    Google Scholar 

  136. Demir Ö, Köse N, Özkan E, et al. Clinical significance of thyroid incidentalomas identified by 18F-FDG PET/CT: correlation of ultrasonograpy findings with cytology results. Nucl Med Commun. 2016;37:715–20.

    Google Scholar 

  137. Feine U, Lietzenmayer R, Hanke JP, et al. 18FDG whole-body PET in differentiated thyroid carcinoma. Flip-flop in uptake patterns of 18FDG and 131I. Nuklearmedizin. 1995;34:127–34.

    Google Scholar 

  138. Wang W, Larson SM, Fazzari M, et al. Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab. 2000;85:1107–13.

    CAS  PubMed  Google Scholar 

  139. Robbins RJ, Wan Q, Grewal RK, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy- d-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91:498–505.

    Article  CAS  PubMed  Google Scholar 

  140. Hosaka Y, Tawata M, Kurihara A, et al. The regulation of two distinct glucose transporter (GLUT1 and GLUT4) gene expressions in cultured rat thyroid cells by thyrotropin. Endocrinology. 1992;131:159–65.

    Google Scholar 

  141. Sisson JC, Ackermann RJ, Meyer MA, Wahl RL. Uptake of 18-fluoro-2-deoxy-d-glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrinol Metab. 1993;77:1090–4.

    CAS  PubMed  Google Scholar 

  142. Blaser D, Maschauer S, Kuwert T, Prante O. In vitro studies on the signal transduction of thyroidal uptake of 18F-FDG and 131I-Iodide. J Nucl Med. 2006;47:1382–8.

    PubMed  Google Scholar 

  143. Moog F, Linke R, Manthey N, et al. Influence of thyroid-stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med. 2000;41:1989–95.

    CAS  PubMed  Google Scholar 

  144. van Tol KM, Jager PL, Piers DA, et al. Better yield of 18fluorodeoxyglucose-positron emission tomography in patients with metastatic differentiated thyroid carcinoma during thyrotropin stimulation. Thyroid. 2002;12:381–7.

    Google Scholar 

  145. Petrich T, Borner AR, Otto D, et al. Influence of rhTSH on [18F]fluoro-deoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2002;29:641–7.

    Article  CAS  PubMed  Google Scholar 

  146. Chin BB, Patel P, Cohade C, et al. Recombinant human thyrotropin stimulation of fluoro-D-glucose positron emission tomography uptake in well-differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2004;89:91–5.

    Article  CAS  PubMed  Google Scholar 

  147. Leboulleux S, Schroeder PR, Busaidy NL, et al. Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab. 2009;94:1310–6.

    Google Scholar 

  148. Vera P, Kuhn-Lansoy C, Edet-Sanson A, et al. Does recombinant human thyrotropin-stimulated positron emission tomography with [18F]fluoro-2-deoxy-D-glucose improve detection of recurrence of well-differentiated thyroid carcinoma in patients with low serum thyroglobulin? Thyroid. 2010;20:15–23.

    Google Scholar 

  149. Prestwich RJ, Viner S, Gerrard G, et al. Increasing the yield of recombinant thyroid-stimulating hormone-stimulated 2-(18-fluoride)-flu-2-deoxy-D-glucose positron emission tomography-CT in patients with differentiated thyroid carcinoma. Br J Radiol. 2012;85:e805–13.

    Google Scholar 

  150. Phillips AF, Haybittle JL, Newbery GR. Use of iodine-124 for the treatment of carcinoma of the thyroid. Acta Unio Int Contra Cancrum. 1960;16:1434–8.

    CAS  PubMed  Google Scholar 

  151. Freudenberg LS, Jentzen W, Stahl A, et al. Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38(Supp 1):S48–56.

    Google Scholar 

  152. Pentlow KS, Graham MC, Lambrecht RM, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med. 1996;37:1557–62.

    CAS  PubMed  Google Scholar 

  153. Phan HT, Jager PL, Paans AM. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:958–65.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kist JW, de Keizer B, Stokkel MP, et al. Recurrent differentiated thyroid cancer: towards personalized treatment based on evaluation of tumor characteristics with PET (THYROPET Study): study protocol of a multicenter observational cohort study. BMC Cancer. 2014;14:405. doi:10.1186/1471-2407-14-405.

    Google Scholar 

  155. Binse I, Poeppel TD, Ruhlmann M, et al. Imaging with 124I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT? Eur J Nucl Med Mol Imaging. 2016;43:1011–7.

    Google Scholar 

  156. Freudenberg LS, Antoch G, Jentzen W, et al. Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol. 2004;14:2092–8.

    Article  CAS  PubMed  Google Scholar 

  157. Capoccetti F, Criscuoli B, Rossi G, et al. The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009;53:536–45.

    Google Scholar 

  158. Van Nostrand D, Moreau S, Bandaru VV, et al. 124I positron emission tomography versus 131I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20:879–83.

    Article  PubMed  Google Scholar 

  159. Freudenberg LS, Antoch G, Frilling A, et al. Combined metabolic and morphologic imaging in thyroid carcinoma patients with elevated serum thyroglobulin and negative cervical ultrasonography: role of 124I-PET/CT and FDG-PET. Eur J Nucl Med Mol Imaging. 2008;35:950–7.

    Article  CAS  PubMed  Google Scholar 

  160. Freudenberg LS, Jentzen W, Müller SP, Bockisch A. Disseminated iodine-avid lung metastases in differentiated thyroid cancer: a challenge to 124I PET. Eur J Nucl Med Mol Imaging. 2008;35:502–8.

    Article  CAS  PubMed  Google Scholar 

  161. Abdul-Fatah SB, Zamburlini M, Halders SG, et al. Identification of a shine-through artifact in the trachea with 124I PET/CT. J Nucl Med. 2009;50:909–11.

    Google Scholar 

  162. Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    Article  PubMed  Google Scholar 

  163. Al-Saif O, Farrar WB, Bloomston M, et al. Long-term efficacy of lymph node reoperation for persistent papillary thyroid cancer. J Clin Endocrinol Metab. 2010;95:2187–94.

    Google Scholar 

  164. Coburn M, Teates D, Wanebo HJ. Recurrent thyroid cancer. Role of surgery versus radioactive iodine (I131). Ann Surg. 1994;219:587–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Schlumberger M, Challeton C, De Vathaire F, et al. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med. 1996;37:598–605.

    CAS  PubMed  Google Scholar 

  166. Baudin E, Schlumberger M. Metastasis of differentiated cancers of the thyroid. Ann Endocrinol (Paris). 1997;58:326–9.

    CAS  Google Scholar 

  167. Urken ML, Milas M, Randolph GW, et al. Management of recurrent and persistent metastatic lymph nodes in well-differentiated thyroid cancer: a multifactorial decision-making guide for the Thyroid Cancer Care Collaborative. Head Neck. 2015;37:605–14.

    Article  PubMed  Google Scholar 

  168. Ozata M, Suzuki S, Miyamoto T, et al. Serum thyroglobulin in the follow-up of patients with treated differentiated thyroid cancer. J Clin Endocrinol Metab. 1994;79:98–105.

    Google Scholar 

  169. Ceccarelli C, Pacini F, Lippi F, et al. Thyroid cancer in children and adolescents. Surgery. 1988;104:1143.

    Google Scholar 

  170. Vassilopoulou-Sellin R, Klein MJ, Smith TH, et al. Pulmonary metastases in children and young adults with differentiated thyroid cancer. Cancer. 1993;71:1348–52.

    Article  CAS  PubMed  Google Scholar 

  171. Piekarski JD, Schlumberger M, Leclere J, et al. Chest computed tomography (CT) in patients with micronodular lung metastases of differentiated thyroid carcinoma. Int J Radiat Oncol Biol Phys. 1985;11:1023–7.

    Google Scholar 

  172. Schlumberger M, Arcangioli O, Piekarski JD, et al. Detection and treatment of lung metastases of differentiated thyroid carcinoma in patients with normal chest X-rays. J Nucl Med. 1988;29:1790–4.

    Google Scholar 

  173. Sumimura J, Nakagawa K, Kawamura J, et al. Thyroid cancer metastasis to the lumbar spine successfully treated by embolization and radioiodine. A case report. Nippon Geka Gakkai Zasshi. 1990;91:910–3.

    Google Scholar 

  174. Court C, Noun Z, Gagey O, Nordin JY. Surgical treatment of metastases from thyroid cancer in the axial skeleton. A retrospective study of 18 cases. Acta Orthop Belg. 2000;66:345–52.

    CAS  PubMed  Google Scholar 

  175. Smit JW, Links TP, Hew JM, et al. Embolization of skeletal metastases in patients with differentiated thyroid carcinoma. Ned Tijdschr Geneeskd. 2000;144:1406–10.

    Google Scholar 

  176. Van Tol KM, Hew JM, Jager PL, et al. Embolization in combination with radioiodine therapy for bone metastases from differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 2000;52:653–9.

    Google Scholar 

  177. van Tol KM, Hew JM, Links TP. Images in thyroidology. Embolization of a bone metastasis of follicular thyroid carcinoma. Thyroid. 2000;10:621–2.

    Article  PubMed  Google Scholar 

  178. Marcocci C, Pacini F, Elisei R, et al. Clinical and biologic behavior of bone metastases from differentiated thyroid carcinoma. Surgery. 1989;106:960–6.

    CAS  PubMed  Google Scholar 

  179. Coleman R, Cook R, Hirsh V, et al. Zoledronic acid use in cancer patients: more than just supportive care? Cancer. 2011;117:11–23.

    Google Scholar 

  180. Klain M, Ricard M, Leboulleux S, et al. Radioiodine therapy for papillary and follicular thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2002;29:479–85.

    Google Scholar 

  181. Franzius C, Dietlein M, Biermann M, et al. Procedure guideline for radioiodine therapy and 131 iodine whole-body scintigraphy in paediatric patients with differentiated thyroid cancer. Nuklearmedizin. 2007;46:224–2231.

    CAS  PubMed  Google Scholar 

  182. Jarzab B, Handkiewicz-Junak D, Wloch J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 2005;12:773–803.

    Article  CAS  PubMed  Google Scholar 

  183. Van Nostrand D, Wartofsky L. Radioiodine in the treatment of thyroid cancer. Endocrinol Metab Clin North Am. 2007;36:807–22.

    Article  PubMed  Google Scholar 

  184. Benua RS, Leeper RD. A method and rationale for treating metastatic thyroid carcinoma with the largest safe dose of I-131. In: Medeiros-Neto G, Gaitan G, editors. Frontiers in thyroidology. New York: Plenum; 1986. p. 1317–21.

    Google Scholar 

  185. Traino AC, Ferrari M, Cremonesi M, Stabin MG. Influence of total-body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry. Phys Med Biol. 2007;52:5231–48.

    Article  CAS  PubMed  Google Scholar 

  186. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91:2892.

    Article  CAS  PubMed  Google Scholar 

  187. Lippi F, Capezzone M, Angelini F, et al. Radioiodine treatment of metastatic differentiated thyroid cancer in patients on l-thyroxine, using recombinant human TSH. Eur J Endocrinol. 2001;144:5–11.

    Google Scholar 

  188. Jarzab B, Handkiewicz-Junak D, Roskosz J, et al. Recombinant human TSH-aided radioiodine treatment of advanced differentiated thyroid carcinoma: a single-centre study of 54 patients. Eur J Nucl Med Mol Imaging. 2003;30:1077–86.

    Article  CAS  PubMed  Google Scholar 

  189. Luster M, Lippi F, Jarzab B, et al. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer. 2005;12:49–64.

    Google Scholar 

  190. Taïeb D, Sebag F, Farman-Ara B, Portal T, Baumstarck-Barrau K, Fortanier C, et al. Iodine biokinetics and radioiodine exposure after recombinant human thyrotropin-assisted remnant ablation in comparison with thyroid hormone withdrawal. J Clin Endocrinol Metab. 2010;95:3283–90.

    Article  PubMed  CAS  Google Scholar 

  191. Vallejo Casas JA, Mena Bares LM, Gálvez MA, et al. Treatment room length-of-stay and patient throughput with radioiodine thyroid remnant ablation in differentiated thyroid cancer: comparison of thyroid-stimulating hormone stimulation methods. Nucl Med Commun. 2011;32:840–6.

    Google Scholar 

  192. Eschmann SM, Reischl G, Bilger K, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med. 2002;29:760–7.

    Article  CAS  Google Scholar 

  193. Freudenberg LS, Jentzen W, Görges R, et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin. 2007;46:121–8.

    Google Scholar 

  194. Erdi YE, Macapinlac H, Larson SM, et al. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging. 1999;2:41–6.

    Google Scholar 

  195. Jentzen W, Weise R, Kupferschläger J, et al. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET/CT systems. Eur J Nucl Med Mol Imaging. 2008;35:611–23.

    Article  PubMed  Google Scholar 

  196. Jentzen W, Freudenberg L, Eising EG, et al. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49:1017–723.

    Google Scholar 

  197. Kolbert KS, Pentlow KS, Pearson JR, et al. Prediction of absorbed dose to normal organs in thyroid cancer patients treated with 131I by use of 124I PET and 3-dimensional internal dosimetry software. J Nucl Med. 2007;48:143–9.

    Google Scholar 

  198. Lassmann M, Hänscheid H, Verburg FA, Luster M. The use of dosimetry in the treatment of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2011;55:107–15.

    CAS  PubMed  Google Scholar 

  199. Jentzen W, Verschure F, van Zon A, et al. PET assessment of response of bone metastases to initial radioiodine treatment of differentiated thyroid cancer. J Nucl Med. 2016;57:1499–1504.

    Google Scholar 

  200. Schlumberger M, Brose M, Elisei R, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol. 2014;2:356–8.

    Article  PubMed  Google Scholar 

  201. Sanz MA, Lo-Coco F. Modern approaches to treating acute promyelocytic leukemia. J Clin Oncol. 2011;29:495–503.

    Article  PubMed  Google Scholar 

  202. Schmutzler C, Schmitt TL, Glaser F, et al. The promoter of the human sodium/iodide-symporter gene responds to retinoic acid. Mol Cell Endocrinol. 2002;189:145–55.

    Google Scholar 

  203. Schmutzler C, Köhrle J. Retinoic acid redifferentiation therapy for thyroid cancer. Thyroid. 2000;10:393–406.

    Article  CAS  PubMed  Google Scholar 

  204. Simon D, Körber C, Krausch M, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. Eur J Nucl Med Mol Imaging. 2002;29:775–82.

    Article  CAS  PubMed  Google Scholar 

  205. Coelho SM, Corbo R, Buescu A, et al. Retinoic acid in patients with radioiodine non-responsive thyroid carcinoma. J Endocrinol Invest. 2004;27:334–9.

    Google Scholar 

  206. Courbon F, Zerdoud S, Bastie D, et al. Defective efficacy of retinoic acid treatment in patients with metastatic thyroid carcinoma. Thyroid. 2006;16:1025–31.

    Google Scholar 

  207. Zhang Y, Jia S, Liu Y, et al. A clinical study of all-trans-retinoid-induced differentiation therapy of advanced thyroid cancer. Nucl Med Commun. 2007;28:251–5.

    Google Scholar 

  208. Fernández CA, Puig-Domingo M, Lomeña F, et al. Effectiveness of retinoic acid treatment for redifferentiation of thyroid cancer in relation to recovery of radioiodine uptake. J Endocrinol Invest. 2009;32:228–33.

    Article  PubMed  Google Scholar 

  209. Handkiewicz-Junak D, Roskosz J, Hasse-Lazar K, et al. 13-cisretinoic acid re-differentiation therapy and recombinant human thyrotropin-aided radioiodine treatment of non-functional metastatic thyroid cancer: a single-center, 53-patient phase 2 study. Thyroid Res. 2009;2:8. doi:10.1186/1756-6614-2-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368:623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Samaan NA, Schultz PN, Hickey RC, et al. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1599 patients. J Clin Endocrinol Metab. 1992;75:714–20.

    Google Scholar 

  212. Matuszczyk A, Petersenn S, Bockisch A, et al. Chemotherapy with doxorubicin in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm Metab Res. 2008;40:210–3.

    Google Scholar 

  213. Sherman SI. Cytotoxic chemotherapy for differentiated thyroid carcinoma. Clin Oncol (R Coll Radiol). 2010;22:464–8.

    Article  CAS  Google Scholar 

  214. Shimaoka K, Schoenfeld DA, DeWys WD, et al. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985;56:2155–60.

    Google Scholar 

  215. Williams SD, Birch R, Einhorn LH. Phase II evaluation of doxorubicin plus cisplatin in advanced thyroid cancer: a Southeastern Cancer Study Group Trial. Cancer Treat Rep. 1986;70:405–7.

    CAS  PubMed  Google Scholar 

  216. Santini F, Bottici V, Elisei R, et al. Cytotoxic effects of carboplatinum and epirubicin in the setting of an elevated serum thyrotropin for advanced poorly differentiated thyroid cancer. J Clin Endocrinol Metab. 2002;87:4160.

    Article  CAS  PubMed  Google Scholar 

  217. Sherman SI. Early clinical studies of novel therapies for thyroid cancers. Endocrinol Metab Clin North Am. 2008;37:511–24.

    Article  CAS  PubMed  Google Scholar 

  218. Sherman SI, Wirth LJ, Droz JP, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359:31–42.

    Article  CAS  PubMed  Google Scholar 

  219. Schlumberger MJ, Elisei R, Bastholt L, et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol. 2009;27:3794–801.

    Article  CAS  PubMed  Google Scholar 

  220. Chau NG, Haddad RI. Vandetanib for the treatment of medullary thyroid cancer. Clin Cancer Res. 2013;19:524–9.

    Article  CAS  PubMed  Google Scholar 

  221. Elisei R, Schlumberger MJ, Muller SP, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31:3639–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Viola D, Cappagli V, Elisei R. Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer. Future Oncol. 2013;9:1083–92.

    Article  CAS  PubMed  Google Scholar 

  223. Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. You YN, Lakhani V, Wells Jr SA. New directions in the treatment of thyroid cancer. J Am Coll Surg. 2007;205(4 Suppl):S45–8.

    Article  PubMed  Google Scholar 

  225. Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372:621–30.

    Article  PubMed  CAS  Google Scholar 

  226. Brose MS, Frenette CT, Keefe SM, Stein SM. Management of sorafenib-related adverse events: a clinician’s perspective. Semin Oncol. 2014;41 Suppl 2:S1–16.

    Article  PubMed  Google Scholar 

  227. Kloos RT, Eng C, Evans DB, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid. 2009;19:565–612.

    Article  PubMed  Google Scholar 

  228. O’Connell ME, A’Hern RP, Harmer CL. Results of external beam radiotherapy in differentiated thyroid carcinoma: a retrospective study from the Royal Marsden Hospital. Eur J Cancer. 1994;30:733–9.

    Article  Google Scholar 

  229. Taylor T, Specker B, Robbins J, et al. Outcome after treatment of high-risk papillary and non-Hurthle-cell follicular thyroid carcinoma. Ann Intern Med. 1998;129:622–7.

    Article  CAS  PubMed  Google Scholar 

  230. Kim JH, Leeper RD. Treatment of locally advanced thyroid carcinoma with combination doxorubicin and radiation therapy. Cancer. 1987;60:2372–5.

    Article  CAS  PubMed  Google Scholar 

  231. Zackrisson B, Mercke C, Strander H, et al. A systematic overview of radiation therapy effects in head and neck cancer. Acta Oncol (Stockholm). 2003;42:443–61.

    Google Scholar 

  232. Ain KB. Anaplastic thyroid carcinoma: a therapeutic challenge. Semin Surg Oncol. 1999;16:64–9.

    Article  CAS  PubMed  Google Scholar 

  233. Chiacchio S, Lorenzoni A, Boni G, et al. Anaplastic thyroid cancer: prevalence, diagnosis and treatment. Minerva Endocrinol. 2008;33:341–57.

    Google Scholar 

  234. Haigh PI, Ituarte PH, Wu HS, et al. Completely resected anaplastic thyroid carcinoma combined with adjuvant chemotherapy and irradiation is associated with prolonged survival. Cancer. 2001;91:2335–42.

    Article  CAS  PubMed  Google Scholar 

  235. Tennvall J, Lundell G, Wahlberg P, et al. Anaplastic thyroid carcinoma: three protocols combining doxorubicin, hyperfractionated radiotherapy and surgery. Br J Cancer. 2002;86:1848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Are C, Shaha AR. Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol. 2006;13:453–64.

    Article  PubMed  Google Scholar 

  237. Biganzoli L, Gebbia V, Maiorino L, et al. Thyroid cancer: different outcomes to chemotherapy according to tumour histology. Eur J Cancer. 1995;31A:2423–4.

    Google Scholar 

  238. Heron DE, Karimpour S, Grigsby PW. Anaplastic thyroid carcinoma: comparison of conventional radiotherapy and hyperfractionation chemoradiotherapy in two groups. Am J Clin Oncol. 2002;25:442–6.

    Article  PubMed  Google Scholar 

  239. Chang HS, Nam KH, Chung WY, Park CS. Anaplastic thyroid carcinoma: a therapeutic dilemma. Yonsei Med J. 2005;46:759–64.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Blagosklonny MV, Giannakakou P, Wojtowicz M, et al. Effects of p53-expressing adenovirus on the chemosensitivity and differentiation of anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 1998;83:2516–22.

    Google Scholar 

  241. Dziba JM, Marcinek R, Venkataraman G, et al. Combretastatin A4 phosphate has primary antineoplastic activity against human anaplastic thyroid carcinoma cell lines and xenograft tumors. Thyroid. 2002;12:1063–70.

    Google Scholar 

  242. Kim S, Prichard CN, Younes MN, et al. Cetuximab and irinotecan interact synergistically to inhibit the growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Clin Cancer Res. 2006;12:600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Prichard CN, Kim S, Yazici YD, et al. Concurrent cetuximab and bevacizumab therapy in a murine orthotopic model of anaplastic thyroid carcinoma. Laryngoscope. 2007;117:674–9.

    Google Scholar 

  244. Sosa JA, Balkissoon J, Lu SP, et al. Thyroidectomy followed by fosbretabulin (CA4P) combination regimen appears to suggest improvement in patient survival in anaplastic thyroid cancer. Surgery. 2012;152:1078–87.

    Article  PubMed  Google Scholar 

  245. Tohyama O, Matsui J, Kodama K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;2014:638747. doi:10.1155/2014/638747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Elisei R, Bottici V, Luchetti F, et al. Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: experience in 10,864 patients with nodular thyroid disorders. J Clin Endocrinol Metab. 2004;89:163–8.

    Article  CAS  PubMed  Google Scholar 

  247. Boi F, Maurelli I, Pinna G, et al. Calcitonin measurement in wash-out fluid from fine needle aspiration of neck masses in patients with primary and metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92:2115–8.

    Google Scholar 

  248. Wells Jr SA, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25:567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Gharib H, McConahey WM, Tiegs RD, et al. Medullary thyroid carcinoma: clinicopathologic features and long-term follow-up of 65 patients treated during 1946 through 1970. Mayo Clin Proc. 1992;67:934–40.

    Article  CAS  PubMed  Google Scholar 

  250. Modigliani E, Cohen R, Campos JM, et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC Study Group. Groupe d’étude des tumeurs à calcitonine. Clin Endocrinol. 1998;48:265–73.

    Article  CAS  Google Scholar 

  251. Hamada S, Ishikawa N, Yoshi M, et al. Roles of circulating carcinoembryonic antigen and calcitonin in diagnosis of medullary thyroid carcinoma: a comparative study. Endocrinol Jpn. 1976;23:505–10.

    Google Scholar 

  252. Calmettes C, Moudktar MS, Milhaud G. Correlation between calcitonin and carcinoembryonic antigen levels in medullary carcinoma of the thyroid. Biomedicine. 1977;27:52–4.

    CAS  PubMed  Google Scholar 

  253. Pacini F, Fontanelli M, Fugazzola L, et al. Routine measurement of serum calcitonin in nodular thyroid diseases allows the preoperative diagnosis of unsuspected sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab. 1994;78:826–9.

    CAS  PubMed  Google Scholar 

  254. van Veelen W, de Groot JW, Acton DS, et al. Medullary thyroid carcinoma and biomarkers: past, present and future. J Intern Med. 2009;266:126–40.

    Google Scholar 

  255. Milman S, Whitney KD, Fleischer N. Metastatic medullary thyroid cancer presenting with elevated levels of CA 19-9 and CA 125. Thyroid. 2011;21:913–6.

    Article  PubMed  Google Scholar 

  256. Elisei R, Lorusso L, Romei C, et al. Medullary thyroid cancer secreting carbohydrate antigen 19-9 (Ca 19-9): a fatal case report. J Clin Endocrinol Metab. 2013;98:3550–4.

    Article  CAS  PubMed  Google Scholar 

  257. Chopra A. [99mTc]-Pentavalent dimercaptosuccinic acid. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda: National Center for Biotechnology Information (US); 2004–2010; 2011.

    Google Scholar 

  258. Clarke S, Lazarus C, Maisey M. Experience in imaging medullary thyroid carcinoma using 99mTc(V)dimercaptosuccinic acid (DMSA). Henry Ford Hosp Med J. 1989;37:167–8.

    CAS  PubMed  Google Scholar 

  259. Bozkurt MF, Ugur O, Banti E, et al. Functional nuclear medicine imaging of medullary thyroid cancer. Nucl Med Commun. 2008;29:934–42.

    Google Scholar 

  260. Learoyd DL, Roach PJ, Briggs GM, et al. Technetium-99m-sestamibi scanning in recurrent medullary thyroid carcinoma. J Nucl Med. 1997;38:227–30.

    Google Scholar 

  261. Papotti M, Kumar U, Volante M, et al. Immunohistochemical detection of somatostatin receptor types 1–5 in medullary carcinoma of the thyroid. Clin Endocrinol (Oxf). 2001;54:641–9.

    Google Scholar 

  262. Baudin E, Lumbroso J, Schlumberger M, et al. Comparison of octreotide scintigraphy and conventional imaging in medullary thyroid carcinoma. J Nucl Med. 1996;37:912–6.

    CAS  PubMed  Google Scholar 

  263. Behr TM, Behe M, Becker W. Diagnostic applications of radiolabeled peptides in nuclear endocrinology. Q J Nucl Med. 1999;43:268–80.

    CAS  PubMed  Google Scholar 

  264. Endo K, Shiomi K, Kasagi K, Konishi J, Torizuka K, Nakao K, Tanimura H. Imaging of medullary thyroid cancer with 131I-MIBG. Lancet. 1984;2:233.

    Article  CAS  PubMed  Google Scholar 

  265. Castellani MR, Seregni E, Maccauro M, et al. MIBG for diagnosis and therapy of medullary thyroid carcinoma: is there still a role? Q J Nucl Med Mol Imaging. 2008;52:430–40.

    Google Scholar 

  266. Rufini V, Castaldi P, Treglia G, et al. Nuclear medicine procedures in the diagnosis and therapy of medullary thyroid carcinoma. Biomed Pharmacother. 2008;62:139–46.

    Google Scholar 

  267. Gotthardt M, Behe MP, Beuter D, et al. Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2006;33:1273–9.

    Article  PubMed  Google Scholar 

  268. Behr TM, Behe MP. Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med. 2002;32:97–109.

    Article  PubMed  Google Scholar 

  269. Behe M, Behr TM. Cholecystokinin-B (CCK-B)/gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies. Biopolymers. 2002;66:399–418.

    Article  CAS  PubMed  Google Scholar 

  270. Reubi JC. CCK receptors in human neuroendocrine tumors: clinical implications. Scand J Clin Lab Invest Suppl. 2001;234:101–4.

    Article  CAS  PubMed  Google Scholar 

  271. Ocak M, Helbok A, von Guggenberg E, et al. Influence of biological assay conditions on stability assessment of radiometal-labelled peptides exemplified using a 177Lu-DOTA-minigastrin derivative. Nucl Med Biol. 2011;38:171–9.

    Google Scholar 

  272. Barbet J, Peltier P, Bardet S, et al. Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA x anti-DTPA-indium bispecific antibody. J Nucl Med. 1998;39:1172–8.

    CAS  PubMed  Google Scholar 

  273. Faggiano A, Grimaldi F, Pezzullo L, et al. Secretive and proliferative tumor profile helps to select the best imaging technique to identify postoperative persistent or relapsing medullary thyroid cancer. Endocr Relat Cancer. 2009;16:225–31.

    Article  CAS  PubMed  Google Scholar 

  274. Ong SC, Schoder H, Patel SG, et al. Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med. 2007;48:501–7.

    Article  CAS  PubMed  Google Scholar 

  275. Szakall Jr S, Esik O, Bajzik G, et al. 18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med. 2002;43:66–71.

    PubMed  Google Scholar 

  276. Conti PS, Durski JM, Bacqai F, Grafton ST, Singer PA. Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography. Thyroid. 1999;9:797–804.

    Article  CAS  PubMed  Google Scholar 

  277. Hoegerle S, Altehoefer C, Ghanem N, et al. 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med. 2001;28:64–71.

    Google Scholar 

  278. Koopmans KP, de Groot JWB, Plukker JTM, et al. 18F-Dihydroxyphenylalanine PET in patients with biochemical evidence of medullary thyroid cancer: relation to tumor differentiation. J Nucl Med. 2008;49:524–31.

    Article  CAS  PubMed  Google Scholar 

  279. Beheshti M, Pocher S, Vali R, et al. The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with 18F-FDG PET-CT. Eur Radiol. 2009;19:1425–34.

    Article  PubMed  Google Scholar 

  280. Antunes P, Ginj M, Zhang H, et al. Are radiogallium labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.

    Article  CAS  PubMed  Google Scholar 

  281. Ambrosini V, Marzola MC, Rubello D, Fanti S. 68Ga-somatostatin analogues PET and 18F-DOPA PET in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2010;37:46–8.

    Article  PubMed  Google Scholar 

  282. Schlumberger M, Carlomagno F, Baudin E, et al. New therapeutic approaches to treat medullary thyroid carcinoma. Nat Clin Pract Endocrinol Metab. 2008;4:22–32.

    Google Scholar 

  283. Modigliani E. Medullary thyroid carcinoma. Curr Ther Endocrinol Metab. 1994;5:112–7.

    CAS  PubMed  Google Scholar 

  284. Bergholm U, Bergstrom R, Ekbom A. Long-term follow-up of patients with medullary carcinoma of the thyroid. Cancer. 1997;79:132–8.

    Article  CAS  PubMed  Google Scholar 

  285. Droz JP, Schlumberger M, Rougier P, et al. Chemotherapy in metastatic nonanaplastic thyroid cancer: experience at the Institut Gustave-Roussy. Tumori. 1990;76:480–3.

    Google Scholar 

  286. Wu LT, Averbuch SD, Ball DW, et al. Treatment of advanced medullary thyroid carcinoma with a combination of cyclophosphamide, vincristine, and dacarbazine. Cancer. 1994;73:432–6.

    Google Scholar 

  287. Nocera M, Baudin E, Pellegriti G, et al. Treatment of advanced medullary thyroid cancer with an alternating combination of doxorubicin-streptozocin and 5 FU-dacarbazine. Groupe d’Etude des Tumeurs à Calcitonine (GETC). Br J Cancer. 2000;83:715–8.

    Google Scholar 

  288. Modigliani E, Cohen R, Joannidis S, et al. Results of long-term continuous subcutaneous octreotide administration in 14 patients with medullary thyroid carcinoma. Clin Endocrinol (Oxf). 1992;36:183–6.

    Article  CAS  Google Scholar 

  289. Fromigue J, De Baere T, Baudin E, et al. Chemoembolization for liver metastases from medullary thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:2496–9.

    Google Scholar 

  290. Kraeber-Bodere F, Bardet S, et al. Radioimmunotherapy in medullary thyroid cancer using bispecific antibody and iodine 131-labeled bivalent hapten: preliminary results of a phase I/II clinical trial. Clin Cancer Res. 1999;5:3190–8.

    Google Scholar 

  291. Chatal JF, Campion L, Kraeber-Bodere F, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol. 2006;24:1705–11.

    Article  CAS  PubMed  Google Scholar 

  292. Iten F, Müller B, Schindler C, et al. Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res. 2007;13:6696–702.

    Article  CAS  PubMed  Google Scholar 

  293. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.

    Google Scholar 

  294. Lapa C, Werner RA, Schmid JS, et al. Prognostic value of positron emission tomography-assessed tumor heterogeneity in patients with thyroid cancer undergoing treatment with radiopeptide therapy. Nucl Med Biol. 2015;42:349–54.

    Google Scholar 

  295. Vaisman F, de Castro PH, Lopes FP, et al. Is there a role for peptide receptor radionuclide therapy in medullary thyroid cancer? Clin Nucl Med. 2015;40:123–7.

    Google Scholar 

  296. Castellone MD, Carlomagno F, Salvatore G, Santoro M. Receptor tyrosine kinase inhibitors in thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2008;22:1023–8.

    Article  CAS  PubMed  Google Scholar 

  297. Wells Jr SA, Gosnell JE, Gagel RF, et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol. 2010;28:767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Wells Jr SA, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30:134–41.

    Article  CAS  PubMed  Google Scholar 

  299. Frank-Raue K, Fabel M, Delorme S, et al. Efficacy of imatinib mesylate in advanced medullary thyroid carcinoma. Eur J Endocrinol. 2007;157:215–20.

    Google Scholar 

  300. Mitsiades CS, McMillin D, Kotoula V, et al. Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro. J Clin Endocrinol Metab. 2006;91:4013–21.

    Article  CAS  PubMed  Google Scholar 

  301. Volterrani D, Erba PA, Mariani G. Fondamenti di Medicina Nucleare – Tecniche e Applicazioni. Milan: Springer; 2010.

    Book  Google Scholar 

  302. Mariani G, Bruselli L, Kuwert T, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37:1959–85.

    Article  PubMed  Google Scholar 

  303. Pacini F, Schlumberger M, Dralle H, et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154:787–803. Erratum in: Eur J Endocrinol. 2006;155:385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Elisei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Elisei, R. et al. (2017). Radionuclide Therapy of Thyroid Tumors. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26236-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26236-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26234-5

  • Online ISBN: 978-3-319-26236-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics