Skip to main content

Novel Positron-Emitting Radiopharmaceuticals

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Nuclear Oncology

Abstract

In recent decades, radiopharmaceuticals – particularly those for PET imaging – have become vital clinical tools in oncology. In this chapter, we seek to provide a bird’s-eye view of the current landscape of emergent PET radiopharmaceuticals, specifically those that have been the subject of multiple clinical trials but have yet to be approved by regulatory agencies for routine use. We will begin with a brief discussion of the fundamental anatomy of radiopharmaceuticals and then embark upon detailed examinations of several agents designed to facilitate the imaging of the aberrant amino acid transport, cellular metabolism, lipid biosynthesis, and cell surface receptors of malignant tissues. Particular focus will be dedicated to the early phase clinical trials in which these radiopharmaceuticals have been employed. This chapter will conclude with an examination of a particularly exciting recent trend in nuclear medicine: the advent of radiotheranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AACD:

Aromatic amino acid decarboxylase

AR:

Androgen receptor

ASCT:

Alanine-serine-cysteine transporter

BB2:

Bombesin receptor subtype-2

BB2r:

Bombesin receptor subtype-2

ChoK:

Choline kinase

CNS:

Central nervous system

COMT:

Catechol-o-methyl transferase

CT:

X-ray computed tomography

64Cu-ATSM:

64Cu-diacetyl-bis(N4-methylsemicarbazone)

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

DTPA:

Diethylenetriaminepentaacetic acid

ER:

Estrogen receptor

FAS:

Fatty acid synthase

[18F]DCFBC:

N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine

[18F]FACBC:

anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid

[18F]FDG:

2-[18F]fluoro-2-deoxyglucose

[18F]FDHT:

16ß-[18F]fluoro-5-dihydrotestosterone

[18F]FDOPA:

L-3,4-dihydroxy-6-[18F]fluorophenylalanine

[18F]FES:

16a-[18F]fluoro-17ß-estradiol

[18F]FET:

O-(2-18F-fluoroethyl)-L-tyrosine

[18F]FGln:

4-[18F]-(2S,4R)fluoroglutamine

[18F]FLT:

3′-deoxy-3′-[18F]fluorothymidine

[18F]FMISO:

[18F]-fluoromisonidazole, 1-fluoro-3-(2-nitroimidazol-1-yl)-propan-2-ol

[18F]RGD-K5:

[18F]flotegatide-RGD

18F-AH111585:

[18F]fluciclatide

18F-alfatide II:

[18F]AlF-NOTA-E[PEG4-c(RGDfk)]2

68Ga-PSMA-ligand:

Glu-urea-Lys-(Ahx)-[68Ga(HBED-CC)]

GRPr:

Gastrin-releasing peptide receptor

[123I]MIBG:

[123I]-meta-iodobenzylguanidine

IMRT:

Intensity-modulated radiation therapy

LAT1:

L-type amino acid transporter 1

MRI:

Magnetic resonance imaging

MTC:

Medullary thyroid cancer

mTOR:

Mammalian target of rapamycin

NET:

Neuroendocrine tumor

NSCLC:

Non-small cell lung cancer

OC:

Octreotide

PEG:

Polyethylene glycol

PET:

Positron emission tomography

PET/MRI:

Positron emission tomography/magnetic resonance imaging

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

RGD:

Arginine-glycine-aspartic acid

SHBG:

Steroid hormone-binding globulin

SPECT:

Single photon emission computed tomography

SSR:

Somatostatin receptor

SST:

Somatostatin

SSTr:

Somatostatin receptor

SUV:

Standardized uptake value

TATE:

Octreotate

TCA:

Tricarboxylic acid

TK:

Thymidine kinase

TOC:

Tyr3-octreotide

TTPmin:

Minimum time to peak

References

  1. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009;121(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  2. Huang C, McConathy J. Radiolabeled amino acids for oncologic imaging. J Nucl Med. 2013;54(7):1007–10.

    Article  CAS  PubMed  Google Scholar 

  3. Nakanishi T, Tamai I. Solute carrier transporters as targets for drug delivery and pharmacological intervention for chemotherapy. J Pharm Sci. 2011;100(9):3731–50.

    Article  CAS  PubMed  Google Scholar 

  4. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15(4):254–66.

    Article  CAS  PubMed  Google Scholar 

  5. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104(49):19345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Långström B, Antoni G, Gullberg P, Halldin C, Malmborg P, Någren K, et al. Synthesis of L- and D-[methyl-11C]methionine. J Nucl Med. 1987;28(6):1037–40.

    PubMed  Google Scholar 

  7. Okubo S, Zhen H-N, Kawai N, Nishiyama Y, Haba R, Tamiya T. Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J Neuro-Oncol. 2010;99(2):217–25.

    Article  CAS  Google Scholar 

  8. Harris SM, Davis JC, Snyder SE, Butch ER, Vavere AL, Kocak M, et al. Evaluation of the biodistribution of 11C-methionine in children and young adults. J Nucl Med. 2013;54:1902–8.

    Article  CAS  PubMed  Google Scholar 

  9. Deloar HM, Fujiwara T, Nakamura T, Itoh M, Imai D, Miyake M, et al. Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med. 1998;25(6):629–33.

    Article  CAS  PubMed  Google Scholar 

  10. Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.

    Article  CAS  PubMed  Google Scholar 

  11. Jung JH, Ahn BC. Current radiopharmaceuticals for positron emission tomography of brain tumors. Brain Tumor Res Treat. 2018;6(2):47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Drake LR, Hillmer AT, Cai Z. Approaches to PET imaging of glioblastoma. Molecules. 2020;25(3):568.

    Article  CAS  PubMed Central  Google Scholar 

  13. Zhao C, Zhang Y, Wang J. A meta-analysis on the diagnostic performance of 18F-FDG and 11C-methionine PET for differentiating brain tumors. Am J Neuroradiol. 2014;35(6):1058–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Falk Delgado A, Falk DA. Discrimination between primary low-grade and high-grade glioma with 11C-methionine PET: a bivariate diagnostic test accuracy meta-analysis. Br J Radiol. 2018;91(1082):20170426.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, et al. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017;44(7):1155–64.

    Article  CAS  PubMed  Google Scholar 

  16. Lucas JT Jr, Serrano N, Kim H, Li X, Snyder SE, Hwang S, et al. 11C-methionine positron emission tomography delineates non-contrast enhancing tumor regions at high risk for recurrence in pediatric high-grade glioma. J Neuro-Oncol. 2017;132(1):163–70.

    Google Scholar 

  17. Grosu AL, Weber WA, Riedel E, Jeremic B, Nieder C, Franz M, et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(1):64–74.

    Article  CAS  PubMed  Google Scholar 

  18. Galldiks N, Kracht LW, Burghaus L, Thomas A, Jacobs AH, Heiss WD, et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging. 2006;33(5):516–24.

    Article  CAS  PubMed  Google Scholar 

  19. Herholz K, Kracht LW, Heiss WD. Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET. J Neuroimaging. 2003;13(3):269–71.

    Article  CAS  PubMed  Google Scholar 

  20. Salber D, Stoffels G, Pauleit D, Oros-Peusquens AM, Shah NJ, Klauth P, et al. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J Nucl Med. 2007;48(12):2056–62.

    Article  CAS  PubMed  Google Scholar 

  21. Szyszko TA, Yip C, Szlosarek P, Goh V, Cook GJ. The role of new PET tracers for lung cancer. Lung Cancer. 2016;94:7–14.

    Article  PubMed  Google Scholar 

  22. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49(5):694–9.

    Article  PubMed  Google Scholar 

  23. Shiiba M, Ishihara K, Kimura G, Kuwako T, Yoshihara H, Sato H, et al. Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. Ann Nucl Med. 2012;26(2):138–45.

    Article  PubMed  Google Scholar 

  24. Nuñez R, Macapinlac HA, Yeung HW, Akhurst T, Cai S, Osman I, et al. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med. 2002;43(1):46–55.

    PubMed  Google Scholar 

  25. Tóth G, Lengyel Z, Balkay L, Salah MA, Trón L, Tóth C. Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol. 2005;173(1):66–9.

    Article  PubMed  Google Scholar 

  26. Kertels O, Mihovilovic MI, Linsenmann T, Kessler AF, Tran-Gia J, Kircher M, et al. Clinical utility of different approaches for detection of late pseudoprogression in glioblastoma with O-(2-[18F]fluoroethyl)-L-tyrosine PET. Clin Nucl Med. 2019;44(9):695–701.

    Article  PubMed  Google Scholar 

  27. Lapa C, Garcia-Velloso MJ, Lückerath K, Samnick S, Schreder M, Otero PR, et al. 11C-methionine-PET in multiple myeloma: a combined study from two different institutions. Theranostics. 2017;7(11):2956–64.

    Google Scholar 

  28. Hsieh HJ, Lin SH, Lin KH, Lee CY, Chang CP, Wang SJ. The feasibility of 11C-methionine-PET in diagnosis of solitary lung nodules/masses when compared with 18F-FDG-PET. Ann Nucl Med. 2008;22(6):533–8.

    Article  PubMed  Google Scholar 

  29. Lindholm P, Lapela M, Någren K, Lehikoinen P, Minn H, Jyrkkiö S. Preliminary study of carbon-11 methionine PET in the evaluation of early response to therapy in advanced breast cancer. Nucl Med Commun. 2009;30(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  30. Maccora D, Caldarella C, Leombroni M, De Stefano V, Leccisotti L. Incidental finding of an ovarian carcinoid on 11C-methionine PET/CT. Clin Nucl Med. 2020;45(11):e483–e5.

    Article  PubMed  Google Scholar 

  31. Lapela M, Leskinen-Kallio S, Varpula M, Grénman S, Salmi T, Alanen K, et al. Metabolic imaging of ovarian tumors with carbon-11-methionine: a PET study. J Nucl Med. 1995;36(12):2196–200.

    CAS  PubMed  Google Scholar 

  32. Heiss P, Mayer S, Herz M, Wester H-J, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med. 1999;40(8):1367–73.

    CAS  PubMed  Google Scholar 

  33. Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-(2-[18F]fluoroethyl)-l-tyrosine. Appl Radiat Isot. 2002;57(6):853–6.

    Article  CAS  PubMed  Google Scholar 

  34. Werner JM, Lohmann P, Fink GR, Langen KJ, Galldiks N. Current landscape and emerging fields of PET imaging in patients with brain tumors. Molecules. 2020;25(6):1471.

    Article  CAS  PubMed Central  Google Scholar 

  35. Stegmayr C, Stoffels G, Filß C, Heinzel A, Lohmann P, Willuweit A, et al. Current trends in the use of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) in neurooncology. Nucl Med Biol. 2021;92:78–84.

    Article  CAS  PubMed  Google Scholar 

  36. Galldiks N, Lohmann P, Albert NL, Tonn JC, Langen KJ. Current status of PET imaging in neuro-oncology. Neurooncol Adv. 2019;1(1):vdz010.

    PubMed  PubMed Central  Google Scholar 

  37. Hutterer M, Nowosielski M, Putzer D, Jansen NL, Seiz M, Schocke M, et al. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro-Oncology. 2013;15(3):341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pöpperl G, Kreth F, Mehrkens J, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34(12):1933–42.

    Article  PubMed  Google Scholar 

  39. Galldiks N, Stoffels G, Filss C, Rapp M, Blau T, Tscherpel C, et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-Oncology. 2015;17(9):1293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pyka T, Hiob D, Preibisch C, Gempt J, Wiestler B, Schlegel J, et al. Diagnosis of glioma recurrence using multiparametric dynamic 18F-fluoroethyl-tyrosine PET-MRI. Eur J Radiol. 2018;103:32–7.

    Article  PubMed  Google Scholar 

  41. Roelcke U, Wyss MT, Nowosielski M, Rudà R, Roth P, Hofer S, et al. Amino acid positron emission tomography to monitor chemotherapy response and predict seizure control and progression-free survival in WHO grade II gliomas. Neuro-Oncology. 2016;18(5):744–51.

    Article  CAS  PubMed  Google Scholar 

  42. Suchorska B, Unterrainer M, Biczok A, Sosnova M, Forbrig R, Bartenstein P, et al. 18F-FET-PET as a biomarker for therapy response in non-contrast enhancing glioma following chemotherapy. J Neuro-Oncol. 2018;139(3):721–30.

    Google Scholar 

  43. Unterrainer M, Galldiks N, Suchorska B, Kowalew LC, Wenter V, Schmid-Tannwald C, et al. 18F-FET PET uptake characteristics in patients with newly diagnosed and untreated brain metastasis. J Nucl Med. 2017;58(4):584–9.

    Google Scholar 

  44. Romagna A, Unterrainer M, Schmid-Tannwald C, Brendel M, Tonn JC, Nachbichler SB, et al. Suspected recurrence of brain metastases after focused high dose radiotherapy: can [18F]FET- PET overcome diagnostic uncertainties? Radiat Oncol J. 2016;11(1):139.

    Article  CAS  Google Scholar 

  45. Ceccon G, Lohmann P, Stoffels G, Judov N, Filss CP, Rapp M, et al. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-Oncology. 2017;19(2):281–8.

    CAS  PubMed  Google Scholar 

  46. Abdulla DSY, Scheffler M, Brandes V, Ruge M, Kunze S, Merkelbach-Bruse S, et al. Monitoring treatment response to erlotinib in EGFR-mutated non-small-cell lung cancer brain metastases using serial O-(2-[18F]fluoroethyl)-L-tyrosine PET. Clin Lung Cancer. 2019;20(2):e148–e51.

    Article  CAS  PubMed  Google Scholar 

  47. Galldiks N, Langen KJ, Albert NL, Chamberlain M, Soffietti R, Kim MM, et al. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro-Oncology. 2019;21(5):585–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Garnett ES, Firnau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature. 1983;305(5930):137–8.

    Article  CAS  PubMed  Google Scholar 

  49. Vallabhajosula S. 18F-Labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med. 2007;37(6):400–19.

    Google Scholar 

  50. Balogova S, Talbot J-N, Nataf V, Michaud L, Huchet V, Kerrou K, et al. 18F-fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging. 2013;40(6):943–66.

    Google Scholar 

  51. Minn H, Kemppainen J, Kauhanen S, Forsback S, Seppänen M. 18F-fluorodihydroxyphenylalanine in the diagnosis of neuroendocrine tumors. PET Clinics. 2014;9(1):27–36.

    Google Scholar 

  52. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35(8):1431–8.

    Article  CAS  PubMed  Google Scholar 

  53. Veenstra EB, de Groot DJA, Brouwers AH, Walenkamp AME, Noordzij W. Comparison of 18F-DOPA versus 68Ga-DOTATOC as preferred PET imaging tracer in well-differentiated neuroendocrine neoplasms. Clin Nucl Med. 2021;46(3):195–200.

    Article  PubMed  Google Scholar 

  54. Haug A, Auernhammer C, Wängler B, Tiling R, Schmidt G, Göke B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36(5):765–70.

    Article  CAS  PubMed  Google Scholar 

  55. Castinetti F, Taïeb D. Positron emission tomography imaging in medullary thyroid carcinoma: time for reappraisal? Thyroid. 2020;31(2):151–5.

    Article  PubMed  Google Scholar 

  56. Lapa C, Linsenmann T, Monoranu CM, Samnick S, Buck AK, Bluemel C, et al. Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med. 2014;55(10):1611–6.

    Article  CAS  PubMed  Google Scholar 

  57. Youland RS, Pafundi DH, Brinkmann DH, Lowe VJ, Morris JM, Kemp BJ, et al. Prospective trial evaluating the sensitivity and specificity of 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-DOPA) PET and MRI in patients with recurrent gliomas. J Neuro-Oncol. 2018;137(3):583–91.

    Article  CAS  Google Scholar 

  58. Li H, Deng L, Bai HX, Sun J, Cao Y, Tao Y, et al. Diagnostic accuracy of amino acid and FDG-PET in differentiating brain metastasis recurrence from radionecrosis after radiotherapy: a systematic review and meta-analysis. Am J Neuroradiol. 2018;39(2):280–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cicone F, Carideo L, Villani V, Scaringi C, Bozzao A, Scopinaro F, et al. Metabolic evolution of brain metastasis after stereotactic radiosurgery: mismatch between F-DOPA and FDG PET. Clin Nucl Med. 2020;45(7):557–8.

    Article  PubMed  Google Scholar 

  60. Krys D, Mattingly S, Glubrecht D, Wuest M, Wuest F. PET Imaging of L-type amino acid transporter (LAT1) and cystine-glutamate antiporter (xc) with [18F]FDOPA and [18F]FSPG in breast cancer models. Mol Imaging Biol. 2020;22(6):1562–71.

    Article  CAS  PubMed  Google Scholar 

  61. Pretze M, Wängler C, Wängler B. 6-[18F]Fluoro-L-DOPA: a well-established neurotracer with expanding application spectrum and strongly improved radiosyntheses. Biomed Res Int. 2014;2014:674063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Libert LC, Franci X, Plenevaux AR, Ooi T, Maruoka K, Luxen AJ, et al. Production at the Curie level of no-carrier-added 6-18F-fluoro-L-DOPA. J Nucl Med. 2013;54(7):1154–61.

    Article  CAS  PubMed  Google Scholar 

  63. Mossine AV, Tanzey SS, Brooks AF, Makaravage KJ, Ichiishi N, Miller JM, et al. One-pot synthesis of high molar activity 6-[18F]fluoro-l-DOPA by Cu-mediated fluorination of a BPin precursor. Org Biomol Chem. 2019;17(38):8701–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rajagopalan KN, DeBerardinis RJ. Role of glutamine in cancer: therapeutic and imaging implications. J Nucl Med. 2011;52(7):1005–8.

    Article  CAS  PubMed  Google Scholar 

  65. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015;7(274):274ra17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wu Z, Zha Z, Li G, Lieberman BP, Choi SR, Ploessl K, et al. [18F](2S,4S)-4-(3-fluoropropyl)glutamine as a tumor imaging agent. Mol Pharm. 2014;11(11):3852–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen J, Li C, Hong H, Liu H, Wang C, Xu M, et al. Side chain optimization remarkably enhances the in vivo stability of (18)F-labeled glutamine for tumor imaging. Mol Pharm. 2019;16(12):5035–41.

    Article  CAS  PubMed  Google Scholar 

  68. Dunphy MPS, Harding JJ, Venneti S, Zhang H, Burnazi EM, Bromberg J, et al. In vivo PET assay of tumor glutamine flux and metabolism: in-human trial of 18F-(2S,4R)-4-fluoroglutamine. Radiology. 2018;287(2):667–75.

    Article  PubMed  Google Scholar 

  69. Grkovski M, Goel R, Krebs S, Staton KD, Harding JJ, Mellinghoff IK, et al. Pharmacokinetic assessment of 18F-(2S,4R)-4-fluoroglutamine in patients with cancer. J Nucl Med. 2020;61(3):357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vāvere AL, Kridel SJ, Wheeler FB, Lewis JS. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med. 2008;49(2):327–34.

    Article  PubMed  CAS  Google Scholar 

  71. Chirala SS, Wakil SJ. Structure and function of animal fatty acid synthase. Lipids. 2004;39(11):1045–53.

    Article  CAS  PubMed  Google Scholar 

  72. Mullen GE, Yet L. Progress in the development of fatty acid synthase inhibitors as anticancer targets. Bioorg Med Chem Lett. 2015;25(20):4363–9.

    Article  CAS  PubMed  Google Scholar 

  73. Leisser A, Pruscha K, Ubl P, Wadsak W, Mayerhöfer M, Mitterhauser M, et al. Evaluation of fatty acid synthase in prostate cancer recurrence: SUV of [11C]acetate PET as a prognostic marker. Prostate. 2015;75(15):1760–7.

    Article  CAS  PubMed  Google Scholar 

  74. Mena E, Turkbey B, Mani H, Adler S, Valera VA, Bernardo M, et al. 11C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. J Nucl Med. 2012;53:538–45.

    Google Scholar 

  75. Sandblom G, Sörensen J, Lundin N, Häggman M, Malmström P-U. Positron emission tomography with 11C-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology. 2006;67(5):996–1000.

    Article  PubMed  Google Scholar 

  76. Haseebuddin M, Dehdashti F, Siegel BA, Liu J, Roth EB, Nepple KG, et al. [11C]Acetate PET/CT before radical prostatectomy: nodal staging and treatment failure prediction. J Nucl Med. 2013;54(5):699–706.

    Article  CAS  PubMed  Google Scholar 

  77. Salminen A, Jambor I, Merisaari H, Ettala O, Virtanen J, Koskinen I, et al. 11C-acetate PET/MRI in bladder cancer staging and treatment response evaluation to neoadjuvant chemotherapy: a prospective multicenter study (ACEBIB trial). Cancer Imaging. 2018;18(1):25.

    Google Scholar 

  78. Tsuchiya J, Yamamoto M, Bae H, Oshima T, Yoneyama T, Miura O, et al. Tumor identification of less aggressive or indolent lymphoma with whole-body 11C-acetate PET/CT. Clin Nucl Med. 2019;44(4):276–81.

    Article  PubMed  Google Scholar 

  79. Li S, Peck-Radosavljevic M, Ubl P, Wadsak W, Mitterhauser M, Rainer E, et al. The value of [11C]-acetate PET and [18F]-FDG PET in hepatocellular carcinoma before and after treatment with transarterial chemoembolization and bevacizumab. Eur J Nucl Med Mol Imaging. 2017;44(10):1732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS. Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol. 2011;12(8):1101–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Carroll V, Demoin DW, Hoffman TJ, Jurisson SS. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions. Radiochim Acta. 2012;100(8–9):653–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984;309(5963):30–3.

    Article  CAS  PubMed  Google Scholar 

  83. Haubner R, Maschauer S, Prante O. PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. Biomed Res Int. 2014;2014:871609.

    PubMed  PubMed Central  Google Scholar 

  84. Stott Reynolds TJ, Smith CJ, Lewis MR. Peptide-based radiopharmaceuticals for molecular imaging of prostate cancer. Adv Exp Med Biol. 2018;1096:135–58.

    Article  PubMed  CAS  Google Scholar 

  85. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem. 2004;15(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  86. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med. 2005;2:0244–52.

    Article  CAS  Google Scholar 

  87. Doss M, Kolb HC, Zhang JJ, Bélanger MJ, Stubbs JB, Stabin MG, et al. Biodistribution and radiation dosimetry of the integrin marker 18F-RGD-K5 determined from whole-body PET/CT in monkeys and humans. J Nucl Med. 2012;53(5):787–95.

    Article  PubMed  Google Scholar 

  88. Cho HJ, Lee JD, Park JY, Yun M, Kang WJ, Walsh JC, et al. First in human evaluation of a newly developed integrin binding PET tracer, 18F-RGD-K5 in patients with breast cancer: comparison with 18F-FDG uptake pattern and microvessel density. J Nucl Med. 2009;50(Suppl 2):1910.

    CAS  Google Scholar 

  89. Ambrosini V, Fani M, Fanti S, Forrer F, Maecke HR. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52(Suppl 2):42S–55S.

    Article  CAS  PubMed  Google Scholar 

  90. Dumont RA, Deininger F, Haubner R, Maecke HR, Weber WA, Fani M. Novel 64Cu- and 68Ga-labeled RGD conjugates show improved PET imaging of ανβ3 integrin expression and facile radiosynthesis. J Nucl Med. 2011;52(8):1276–84.

    Article  CAS  PubMed  Google Scholar 

  91. Eder M, Schäfer M, Bauder-Wüst U, Haberkorn U, Eisenhut M, Kopka K. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate. 2014;74(6):659–68.

    Article  CAS  PubMed  Google Scholar 

  92. Bandari RP, Jiang Z, Reynolds TS, Bernskoetter NE, Szczodroski AF, Bassuner KJ, et al. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7–14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer. Nucl Med Biol. 2014;41(4):355–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yan Y, Chen X. Peptide heterodimers for molecular imaging. Amino Acids. 2011;41(5):1081–92.

    Article  CAS  PubMed  Google Scholar 

  94. Gao S, Wu H, Li W, Zhao S, Teng X, Lu H, et al. A pilot study imaging integrin αvβ3 with RGD PET/CT in suspected lung cancer patients. Eur J Nucl Med Mol Imaging. 2015;42:2029–37.

    Article  CAS  PubMed  Google Scholar 

  95. Yu C, Pan D, Mi B, Xu Y, Lang L, Niu G, et al. 18F-alfatide II PET/CT in healthy human volunteers and patients with brain metastases. Eur J Nucl Med Mol Imaging. 2015;42(13):2021–8.

    Google Scholar 

  96. Wu J, Wang SH, Zhang XZ, Teng ZG, Wang JJ, Yung BC, et al. F-18-alfatide II PET/CT for identification of breast cancer: a preliminary clinical study. J Nucl Med. 2018;59(12):1809–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Minamimoto R, Jamali M, Barkhodari A, Mosci C, Mittra E, Shen B, et al. Biodistribution of the 18F-FPPRGD2 PET radiopharmaceutical in cancer patients: an atlas of SUV measurements. Eur J Nucl Med Mol Imaging. 2015;42:1850–8.

    Article  CAS  PubMed  Google Scholar 

  98. Iagaru A, Mosci C, Shen B, Chin FT, Mittra E, Telli ML, et al. 18F-FPPRGD2 PET/CT: pilot phase evaluation of breast cancer patients. Radiology. 2014;273(2):549–59.

    Google Scholar 

  99. Toriihara A, Duan HY, Thompson HM, Park S, Hatami N, Baratto L, et al. F-18-FPPRGD2 PET/CT in patients with metastatic renal cell cancer. Eur J Nucl Med Mol Imaging. 2019;46(7):1518–23.

    Article  PubMed  Google Scholar 

  100. Zhang JJ, Niu G, Lang LX, Li F, Fan XR, Yang XF, et al. Clinical translation of a dual integrin alphavbeta3- and gastrin-releasing peptide receptor-targeting PET radiotracer, Ga-68-BBN-RGD. J Nucl Med. 2017;58(2):228–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roesch S, Lindner T, Sauter M, Loktev A, Flechsig P, Muller M, et al. Comparison of the RGD motif-containing alphavbeta6 integrin-binding peptides SFLAP3 and SFITGv6 for diagnostic application in HNSCC. J Nucl Med. 2018;59(11):1679–85.

    Article  CAS  PubMed  Google Scholar 

  102. Hausner SH, Bold RJ, Cheuy LY, Chew HK, Daly ME, Davis RA, et al. Preclinical development and first-in-human imaging of the integrin alpha(v)beta(6) with F-18 alpha(v)beta(6)-binding peptide in metastatic carcinoma. Clin Cancer Res. 2019;25(4):1206–15.

    Article  CAS  PubMed  Google Scholar 

  103. Foster CC, Davis RA, Hausner SH, Sutcliffe JL. Alphavbeta6-targeted molecular PET/CT imaging of the lungs after SARS-CoV-2 infection. J Nucl Med. 2020;61(12):1717–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Coy DH. Short-chain pseudopeptide bombesin receptor antagonists with enhanced binding affinities for pancreatic acinar and Swiss 3T3 cells display strong antimitotic activity. J Biol Chem. 1989;264:14691–7.

    Article  CAS  PubMed  Google Scholar 

  105. Baratto L, Duan H, Mäcke H, Iagaru A. Imaging the distribution of gastrin-releasing peptide receptors in cancer. J Nucl Med. 2020;61(6):792–8.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang J, Li D, Lang L, Zhu Z, Wang L, Wu P, et al. 68Ga-NOTA-Aca-BBN(7–14) PET/CT in healthy volunteers and glioma patients. J Nucl Med. 2016;57(1):9–14.

    Google Scholar 

  107. Zhang J, Tian Y, Li D, Niu G, Lang L, Li F, et al. 68Ga-NOTA-Aca-BBN(7–14) PET imaging of GRPR in children with optic pathway glioma. Eur J Nucl Med Mol Imaging. 2019;46(10):2152–62.

    Google Scholar 

  108. Li D, Zhang J, Chi C, Xiao X, Wang J, Lang L, et al. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN. Theranostics. 2018;8(9):2508–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fassbender TF, Schiller F, Mix M, Maecke HR, Kiefer S, Drendel V, et al. Accuracy of [68Ga]Ga-RM2-PET/CT for diagnosis of primary prostate cancer compared to histopathology. Nucl Med Biol. 2019;70:32–8.

    Article  CAS  PubMed  Google Scholar 

  110. Roivainen A, Kähkönen E, Luoto P, Borkowski S, Hofmann B, Jambor I, et al. Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist BAY 86-7548 in healthy men. J Nucl Med. 2013;54(6):867–72.

    Article  CAS  PubMed  Google Scholar 

  111. Kähkönen E, Jambor I, Kemppainen J, Lehtiö K, Grönroos TJ, Kuisma A, et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res. 2013;19(19):5434–43.

    Article  PubMed  CAS  Google Scholar 

  112. Touijer KA, Michaud L, Alvarez HAV, Gopalan A, Kossatz S, Gonen M, et al. Prospective study of the radiolabeled GRPR antagonist BAY86-7548 for positron emission tomography/computed tomography imaging of newly diagnosed prostate cancer. Eur Urol Oncol. 2019;2(2):166–73.

    Article  PubMed  Google Scholar 

  113. Minamimoto R, Sonni I, Hancock S, Vasanawala S, Andras Loening A, Sanjiv S Gambhir SS, Iagaru A. Prospective evaluation of [68Ga]Ga-RM2 PET/MRI in patients with biochemical recurrence of prostate cancer and negative findings on conventional imaging. J Nucl Med. 2018;59(5):803–8.

    Google Scholar 

  114. Stoykow C, Erbes T, Maecke HR, Bulla S, Bartholomä M, Mayer S, et al. Gastrin-releasing peptide receptor imaging in breast cancer using the receptor antagonist 68Ga-RM2 and PET. Theranostics. 2016;6(10):1641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang J, Niu G, Fan X, Lang L, Hou G, Chen L, et al. PET using a GRPR antagonist 68Ga-RM26 in healthy volunteers and prostate cancer patients. J Nucl Med. 2018;59(6):922–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zang J, Mao F, Wang H, Zhang J, Liu Q, Peng L, et al. 68Ga-NOTA-RM26 PET/CT in the evaluation of breast cancer: a pilot prospective study. Clin Nucl Med. 2018;43(9):663–9.

    Google Scholar 

  117. Nock BA, Kaloudi A, Lymperis E, Giarika A, Kulkarni HR, Klette I, et al. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results. J Nucl Med. 2017;58(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  118. Maina T, Bergsma H, Kulkarni HR, Mueller D, Charalambidis D, Krenning EP, et al. Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [68Ga]SB3 and PET/CT. Eur J Nucl Med Mol Imaging. 2016;43(5):964–73.

    Article  CAS  PubMed  Google Scholar 

  119. Gnesin S, Cicone F, Mitsakis P, Van der Gucht A, Baechler S, Miralbell R, et al. First in-human radiation dosimetry of the gastrin-releasing peptide (GRP) receptor antagonist 68Ga-NODAGA-MJ9. EJNMMI Res. 2018;8(1):108.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with 89Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  121. Zeglis BM, Houghton JL, Evans MJ, Viola-Villegas N, Lewis JS. Underscoring the influence of inorganic chemistry on nuclear imaging with radiometals. Inorg Chem. 2014;53(4):1880–99.

    Article  CAS  PubMed  Google Scholar 

  122. Meijs WE, Haisma HJ, Klok RP, van Gog FB, Kievit E, Pinedo HM, et al. Zirconium-labeled monoclonal antibodies and their distribution in tumor-bearing nude mice. J Nucl Med. 1997;38(1):112–8.

    CAS  PubMed  Google Scholar 

  123. Börjesson PK, Jauw YW, Boellaard R, de Bree R, Comans EF, Roos JC, et al. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res. 2006;12(7 Pt 1):2133–40.

    Article  PubMed  Google Scholar 

  124. Jauw YW, Zijlstra JM, de Jong D, Vugts DJ, Zweegman S, Hoekstra OS, et al. Performance of 89Zr-labeled-rituximab-PET as an imaging biomarker to assess CD20 targeting: a pilot study in patients with relapsed/refractory diffuse large B cell lymphoma. PLoS One. 2017;12(1):e0169828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Vugts DJ, Heuveling DA, Stigter-van Walsum M, Weigand S, Bergstrom M, van Dongen GA, et al. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: prelude to phase 1 clinical studies. MAbs. 2014;6(2):567–75.

    Article  PubMed  Google Scholar 

  126. Tavaré R, McCracken MN, Zettlitz KA, Salazar FB, Olafsen T, Witte ON, et al. Immuno-PET of murine T cell reconstitution postadoptive stem cell transplantation using anti-CD4 and anti-CD8 cys-diabodies. J Nucl Med. 2015;56(8):1258–64.

    Article  PubMed  Google Scholar 

  127. Houghton JL, Zeglis BM, Abdel-Atti D, Aggeler R, Sawada R, Agnew BJ, et al. Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proc Natl Acad Sci U S A. 2015;112(52):15850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gross ME, Shazer RL, Agus DB. Targeting the HER-kinase axis in cancer. Semin Oncol. 2004;31(1 Suppl 3):9–20.

    Article  CAS  PubMed  Google Scholar 

  129. Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87(5):586–92.

    Article  CAS  PubMed  Google Scholar 

  130. Gaykema SB, Schröder CP, Vitfell-Rasmussen J, Chua S, Oude Munnink TH, Brouwers AH, et al. 89Zr-trastuzumab and 89Zr-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin Cancer Res. 2014;20(15):3945–54.

    Google Scholar 

  131. Gebhart G, Lamberts LE, Wimana Z, Garcia C, Emonts P, Ameye L, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann Oncol. 2016;27(4):619–24.

    Article  CAS  PubMed  Google Scholar 

  132. Ulaner GA, Hyman DM, Lyashchenko SK, Lewis JS, Carrasquillo JA. 89Zr-trastuzumab PET/CT for detection of human epidermal growth factor receptor 2-positive metastases in patients with human epidermal growth factor receptor 2-negative primary breast cancer. Clin Nucl Med. 2017;42(12):912–7.

    Google Scholar 

  133. Ulaner GA, Hyman DM, Ross DS, Corben A, Chandarlapaty S, Goldfarb S, et al. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-trastuzumab PET/CT. J Nucl Med. 2016;57(10):1523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bensch F, Brouwers AH, Lub-de Hooge MN, de Jong JR, van der Vegt B, Sleijfer S, et al. 89Zr-trastuzumab PET supports clinical decision making in breast cancer patients, when HER2 status cannot be determined by standard work up. Eur J Nucl Med Mol Imaging. 2018;45(13):2300–6.

    Google Scholar 

  135. O’Donoghue JA, Lewis JS, Pandit-Taskar N, Fleming SE, Schöder H, Larson SM, et al. Pharmacokinetics, biodistribution, and radiation dosimetry for 89Zr-trastuzumab in patients with esophagogastric cancer. J Nucl Med. 2018;59(1):161–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ulaner GA, Lyashchenko SK, Riedl C, Ruan S, Zanzonico PB, Lake D, et al. First-in-human human epidermal growth factor receptor 2-targeted imaging using 89Zr-pertuzumab PET/CT: dosimetry and clinical application in patients with breast cancer. J Nucl Med. 2018;59(6):900–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ulaner GA, Carrasquillo JA, Riedl CC, Yeh R, Hatzoglou V, Ross DS, et al. Identification of HER2-positive metastases in patients with HER2-negative primary breast cancer by using HER2-targeted 89Zr-pertuzumab PET/CT. Radiology. 2020;296(2):370–8.

    Article  PubMed  Google Scholar 

  138. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3–20.

    Article  PubMed  Google Scholar 

  139. Menke-van der Houven van Oordt CW, Gootjes EC, Huisman MC, Vugts DJ, Roth C, Luik AM, et al. 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget. 2015;6(30):30384–93.

    Google Scholar 

  140. van Loon J, Even AJG, Aerts H, Öllers M, Hoebers F, van Elmpt W, et al. PET imaging of zirconium-89 labelled cetuximab: a phase I trial in patients with head and neck and lung cancer. Radiother Oncol. 2017;122(2):267–73.

    Article  PubMed  CAS  Google Scholar 

  141. van Helden EJ, Elias SG, Gerritse SL, van Es SC, Boon E, Huisman MC, et al. [89Zr]Zr-cetuximab PET/CT as biomarker for cetuximab monotherapy in patients with RAS wild-type advanced colorectal cancer. Eur J Nucl Med Mol Imaging. 2020;47(4):849–59.

    Article  PubMed  CAS  Google Scholar 

  142. Chekol R, Solomon VR, Alizadeh E, Bernhard W, Fisher D, Hill W, et al. 89Zr-nimotuzumab for immunoPET imaging of epidermal growth factor receptor I. Oncotarget. 2018;9(24):17117–32.

    Google Scholar 

  143. Chang AJ, De Silva RA, Lapi SE. Development and characterization of 89Zr-labeled panitumumab for immuno-positron emission tomographic imaging of the epidermal growth factor receptor. Mol Imaging. 2013;12(1):17–27.

    CAS  PubMed  Google Scholar 

  144. Lindenberg L, Adler S, Turkbey IB, Mertan F, Ton A, Do K, et al. Dosimetry and first human experience with 89Zr-panitumumab. Am J Nucl Med Mol Imaging. 2017;7(4):195–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Burley TA, Da Pieve C, Martins CD, Ciobota DM, Allott L, Oyen WJG, et al. Affibody-based PET imaging to guide EGFR-targeted cancer therapy in head and neck squamous cell cancer models. J Nucl Med. 2019;60(3):353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76.

    Article  CAS  PubMed  Google Scholar 

  147. Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res. 2016;22(8):1865–74.

    Article  CAS  PubMed  Google Scholar 

  148. Heskamp S, Hobo W, Molkenboer-Kuenen JD, Olive D, Oyen WJ, Dolstra H, et al. Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti-PD-L1 antibodies. Cancer Res. 2015;75(14):2928–36.

    Article  CAS  PubMed  Google Scholar 

  149. Li W, Wang Y, Rubins D, Bennacef I, Holahan M, Haley H, et al. PET/CT imaging of 89Zr-N-sucDf-pembrolizumab in healthy cynomolgus monkeys. Mol Imaging Biol. 2020;23:250–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. England CG, Jiang D, Ehlerding EB, Rekoske BT, Ellison PA, Hernandez R, et al. 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging. 2018;45(1):110–20.

    Google Scholar 

  151. Kikuchi M, Clump DA, Srivastava RM, Sun L, Zeng D, Diaz-Perez JA, et al. Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma. Oncoimmunology. 2017;6(7):e1329071.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Christensen C, Kristensen LK, Alfsen MZ, Nielsen CH, Kjaer A. Quantitative PET imaging of PD-L1 expression in xenograft and syngeneic tumour models using a site-specifically labelled PD-L1 antibody. Eur J Nucl Med Mol Imaging. 2020;47(5):1302–13.

    Article  CAS  PubMed  Google Scholar 

  153. Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, et al. Imaging PD-L1 expression with immunoPET. Bioconjug Chem. 2018;29(1):96–103.

    Article  CAS  PubMed  Google Scholar 

  154. Kelly MP, Makonnen S, Hickey C, Arnold TC, Giurleo JT, Tavaré R, et al. Preclinical PET imaging with the novel human antibody 89Zr-DFO-REGN3504 sensitively detects PD-L1 expression in tumors and normal tissues. J Immunother Cancer. 2021;9(1):e002025.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bridgwater C, Geller A, Hu X, Burlison JA, Zhang HG, Yan J, et al. 89Zr-labeled anti-PD-L1 antibody fragment for evaluating in vivo PD-L1 levels in melanoma mouse model. Cancer Biother Radiopharm. 2020;35(8):549–57.

    Google Scholar 

  156. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852–8.

    Google Scholar 

  157. Koukourakis MI, Giatromanolaki A, Sivridis E, Fezoulidis I. Cancer vascularization: implications in radiotherapy? Int J Radiat Oncol Biol Phys. 2000;48(2):545–53.

    Article  CAS  PubMed  Google Scholar 

  158. Wyatt LC, Lewis JS, Andreev OA, Reshetnyak YK, Engelman DM. Applications of pHLIP technology for cancer imaging and therapy. Trends Biotechnol. 2017;35(7):653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pastorekova S, Gillies RJ. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 2019;38(1–2):65–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30(5):695–704.

    Article  CAS  PubMed  Google Scholar 

  161. Rajendran JG, Krohn KA. F-18 fluoromisonidazole for imaging tumor hypoxia: imaging the microenvironment for personalized cancer therapy. Semin Nucl Med. 2015;45:151–62.

    Google Scholar 

  162. Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2015;112(2):238–50.

    Article  CAS  PubMed  Google Scholar 

  163. Yamamoto Y, Maeda Y, Kawai N, Kudomi N, Aga F, Ono Y, et al. Hypoxia assessed by 18F-fluoromisonidazole positron emission tomography in newly diagnosed gliomas. Nucl Med Commun. 2012;33(6):621–5.

    Article  CAS  PubMed  Google Scholar 

  164. Hendrickson K, Phillips M, Smith W, Peterson L, Krohn K, Rajendran J. Hypoxia imaging with [F-18] FMISO-PET in head and neck cancer: potential for guiding intensity modulated radiation therapy in overcoming hypoxia-induced treatment resistance. Radiother Oncol. 2011;101(3):369–75.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wiedenmann NE, Bucher S, Hentschel M, Mix M, Vach W, Bittner MI, et al. Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother Oncol. 2015;117(1):113–7.

    Article  PubMed  Google Scholar 

  166. Eschmann S-M, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005;46(2):253–60.

    PubMed  Google Scholar 

  167. Mainta IC, Zilli T, Tille JC, De Perrot T, Vallee JP, Buchegger F, et al. The effect of neoadjuvant androgen deprivation therapy on tumor hypoxia in high-grade prostate cancer: an 18F-MISO PET-MRI study. Int J Radiat Oncol Biol Phys. 2018;102(4):1210–8.

    Article  CAS  PubMed  Google Scholar 

  168. Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA. An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med. 2008;49(7):1177–82.

    Article  PubMed  Google Scholar 

  169. Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ. Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem. 2002;7(3):249–59.

    Article  CAS  PubMed  Google Scholar 

  170. Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ. Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med. 1999;40(1):177–83.

    CAS  PubMed  Google Scholar 

  171. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging. 2003;30(6):844–50.

    Article  CAS  PubMed  Google Scholar 

  172. Lewis JS, Laforest R, Buettner TL, Song S-K, Fujibayashi Y, Connett JM, et al. Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci U S A. 2001;98(3):1206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yoshii Y, Matsumoto H, Yoshimoto M, Zhang MR, Oe Y, Kurihara H, et al. Multiple administrations of 64Cu-ATSM as a novel therapeutic option for glioblastoma: a translational study using mice with xenografts. Transl Oncol. 2018;11(1):24–30.

    Article  PubMed  Google Scholar 

  174. Holland JP, Barnard PJ, Collison D, Dilworth JR, Edge R, Green JC, et al. Spectroelectrochemical and computational studies on the mechanism of hypoxia selectivity of copper radiopharmaceuticals. Chem Eur J. 2008;14(19):5890–907.

    Article  CAS  PubMed  Google Scholar 

  175. Viola-Villegas NT, Carlin SD, Ackerstaff E, Sevak KK, Divilov V, Serganova I, et al. Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer. Proc Natl Acad Sci U S A. 2014;111(20):7254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vavere AL, Biddlecombe GB, Spees WM, Garbow JR, Wijesinghe D, Andreev OA, et al. A novel technology for the imaging of acidic prostate tumors by positron emission tomography. Cancer Res. 2009;69(10):4510–6.

    Article  CAS  PubMed  Google Scholar 

  177. Demoin DW, Wyatt LC, Edwards KJ, Abdel-Atti D, Sarparanta M, Pourat J, et al. PET Imaging of extracellular pH in tumors with 64Cu- and 18F-labeled pHLIP peptides: a structure-activity optimization study. Bioconjug Chem. 2016;27(9):2014–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Onyango JO, Chung MS, Eng CH, Klees LM, Langenbacher R, Yao L, et al. Noncanonical amino acids to improve the pH response of pHLIP insertion at tumor acidity. Angew Chem Int Ed. 2015;54(12):3658–63.

    Article  CAS  Google Scholar 

  179. Westerfield J, Gupta C, Scott HL, Ye Y, Cameron A, Mertz B, et al. Ions modulate key interactions between pHLIP and lipid membranes. Biophys J. 2019;117(5):920–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Scott HL, Westerfield JM, Barrera FN. Determination of the membrane translocation pK of the pH-low insertion peptide. Biophys J. 2017;113(4):869–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 2020;21(3):e146–e56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cimini A, Ricci M, Chiaravalloti A, Filippi L, Schillaci O. Theragnostic aspects and radioimmunotherapy in pediatric tumors. Int J Mol Sci. 2020;21(11):3849.

    Article  CAS  PubMed Central  Google Scholar 

  183. Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm. 2011;4(4):306–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mittra ES. Neuroendocrine tumor therapy: 177Lu-DOTATATE. AJR Am J Roentgenol. 2018;211(2):278–85.

    Article  PubMed  Google Scholar 

  185. Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv Drug Deliv Rev. 2017;109:102–18.

    Article  CAS  PubMed  Google Scholar 

  186. McElroy KM, Binkovitz LA, Trout AT, Czachowski MR, Seghers VJ, Lteif AN, et al. Pediatric applications of Dotatate: early diagnostic and therapeutic experience. Pediatr Radiol. 2020;50(7):882–97.

    Article  PubMed  Google Scholar 

  187. Velikyan I. (Radio)Theranostic patient management in oncology exemplified by neuroendocrine neoplasms, prostate cancer, and breast cancer. Pharmaceuticals (Basel). 2020;13(3):39.

    Article  CAS  Google Scholar 

  188. Desai H, Borges-Neto S, Wong TZ. Molecular imaging and therapy for neuroendocrine tumors. Curr Treat Options in Oncol. 2019;20(10):78.

    Article  Google Scholar 

  189. Bodei L, Kidd M, Paganelli G, Grana CM, Drozdov I, Cremonesi M, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  190. Sharma R, Wang WM, Yusuf S, Evans J, Ramaswami R, Wernig F, et al. 68Ga-DOTATATE PET/CT parameters predict response to peptide receptor radionuclide therapy in neuroendocrine tumours. Radiother Oncol. 2019;141:108–15.

    Google Scholar 

  191. Walker RC, Smith GT, Liu E, Moore B, Clanton J, Stabin M. Measured human dosimetry of 68Ga-DOTATATE. J Nucl Med. 2013;54(6):855–60.

    Article  CAS  PubMed  Google Scholar 

  192. Krenning EP, Bakker WH, Kooij PP, Breeman WA, Oei HY, de Jong M, et al. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med. 1992;33(5):652–8.

    CAS  PubMed  Google Scholar 

  193. Caplin ME, Mielcarek W, Buscombe JR, Jones AL, Croasdale PL, Cooper MS, et al. Toxicity of high-activity 111In-octreotide therapy in patients with disseminated neuroendocrine tumours. Nucl Med Commun. 2000;21(1):97–102.

    Article  CAS  PubMed  Google Scholar 

  194. Parghane RV, Naik C, Talole S, Desmukh A, Chaukar D, Banerjee S, Basu S. Clinical utility of 177Lu-DOTATATE PRRT in somatostatin receptor-positive metastatic medullary carcinoma of thyroid patients with assessment of efficacy, survival analysis, prognostic variables, and toxicity. Head Neck. 2020;42(3):401–16.

    Google Scholar 

  195. Ballal S, Yadav MP, Bal C, Sahoo RK, Tripathi M. Broadening horizons with 225Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to 177Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety. Eur J Nucl Med Mol Imaging. 2020;47(4):934–46.

    Article  CAS  PubMed  Google Scholar 

  196. Kratochwil C, Giesel FL, Bruchertseifer F, Mier W, Apostolidis C, Boll R, et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 2014;41(11):2106–19.

    Google Scholar 

  197. O’Keefe DS, Bacich DJ, Huang SS, Heston WDW. A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies. J Nucl Med. 2018;59(7):1007–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Van de Wiele C, Sathekge M, de Spiegeleer B, de Jonghe PJ, Beels L, Maes A. PSMA-targeting positron emission agents for imaging solid tumors other than non-prostate carcinoma: a systematic review. Int J Mol Sci. 2019;20(19):4886.

    Article  PubMed Central  CAS  Google Scholar 

  199. Maresca KP, Hillier SM, Femia FJ, Keith D, Barone C, Joyal JL, et al. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem. 2009;52(2):347–57.

    Article  CAS  PubMed  Google Scholar 

  200. Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41(7):1280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Marcu L, Bezak E, Allen BJ. Global comparison of targeted alpha vs targeted beta therapy for cancer: in vitro, in vivo and clinical trials. Crit Rev Oncol Hematol. 2018;123:7–20.

    Article  PubMed  Google Scholar 

  202. Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. 68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2017;44(6):1014–24.

    Google Scholar 

  203. Inubushi M, Miura H, Kuji I, Ito K, Minamimoto R. Current status of radioligand therapy and positron-emission tomography with prostate-specific membrane antigen. Ann Nucl Med. 2020;34(12):879–83.

    Article  PubMed  PubMed Central  Google Scholar 

  204. O’Dwyer E, Bodei L, Morris MJ. The role of theranostics in prostate cancer. Semin Radiat Oncol. 2021;31(1):71–82.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Pandit-Taskar N, O’Donoghue JA, Beylergil V, Lyashchenko S, Ruan S, Solomon SB, et al. 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41(11):2093–105.

    Google Scholar 

  206. Pandit-Taskar N, O’Donoghue JA, Ruan S, Lyashchenko SK, Carrasquillo JA, Heller G, et al. First-in-human imaging with 89Zr-Df-IAB2M anti-PSMA minibody in patients with metastatic prostate cancer: pharmacokinetics, biodistribution, dosimetry, and lesion uptake. J Nucl Med. 2016;57(12):1858–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Afshar-Oromieh A, Holland-Letz T, Giesel FL, Kratochwil C, Mier W, Haufe S, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging. 2017;44(8):1258–68.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Benesova M, Schafer M, Bauder-Wust U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56(6):914–20.

    Article  CAS  PubMed  Google Scholar 

  209. Afshar-Oromieh A, Hetzheim H, Kratochwil C, Benesova M, Eder M, Neels OC, et al. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med. 2015;56(11):1697–705.

    Article  CAS  PubMed  Google Scholar 

  210. Brauer A, Grubert LS, Roll W, Schrader AJ, Schafers M, Bogemann M, et al. 177Lu-PSMA-617 radioligand therapy and outcome in patients with metastasized castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44(10):1663–70.

    Google Scholar 

  211. Khreish F, Kochems N, Rosar F, Sabet A, Ries M, Maus S, et al. Response and outcome of liver metastases in patients with metastatic castration-resistant prostate cancer (mCRPC) undergoing 177Lu-PSMA-617 radioligand therapy. Eur J Nucl Med Mol Imaging. 2020;48:103–12.

    Article  PubMed  CAS  Google Scholar 

  212. Sathekge M, Bruchertseifer F, Knoesen O, Reyneke F, Lawal I, Lengana T, et al. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2019;46(1):129–38.

    Google Scholar 

  213. Vatsa R, Sood A, Vadi SK, Das CK, Kaur K, Parmar M, et al. 225Ac-PSMA-617 radioligand posttherapy imaging in metastatic castrate-resistant prostate cancer patient using 3 photopeaks. Clin Nucl Med. 2020;45(6):437–8.

    Google Scholar 

  214. Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, et al. Targeted alpha therapy of mCRPC with 225actinium-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor-control. J Nucl Med. 2018;59:795–802.

    Article  CAS  PubMed  Google Scholar 

  215. Khreish F, Ebert N, Ries M, Maus S, Rosar F, Bohnenberger H, et al. 225Ac-PSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: pilot experience. Eur J Nucl Med Mol Imaging. 2020;47(3):721–8.

    Google Scholar 

  216. Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53(12):1883–91.

    Article  CAS  PubMed  Google Scholar 

  217. Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, et al. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17(4):565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, et al. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pen tanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res. 2011;17(24):7645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomacker K, et al. Comparison of [18F]DCFPyL and [68Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol. 2015;17(4):575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Cardinale J, Schafer M, Benesova M, Bauder-Wust U, Leotta K, Eder M, et al. Preclinical evaluation of 18F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging. J Nucl Med. 2017;58(3):425–31.

    Article  CAS  PubMed  Google Scholar 

  221. Giesel FL, Cardinale J, Schäfer M, Neels O, Benešová M, Mier W, et al. 18F-labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur J Nucl Med Mol Imaging. 2016;43(10):1929–30.

    Google Scholar 

  222. Giesel FL, Will L, Lawal I, Lengana T, Kratochwil C, Vorster M, et al. Intraindividual comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the prospective evaluation of patients with newly diagnosed prostate carcinoma: a pilot study. J Nucl Med. 2018;59(7):1076–80.

    Article  CAS  PubMed  Google Scholar 

  223. Bailly C, Cléry P-F, Faivre-Chauvet A, Bourgeois M, Guérard F, Haddad F, et al. Immuno-PET for clinical theranostic approaches. Int J Mol Sci. 2016;18(1):57.

    Article  PubMed Central  CAS  Google Scholar 

  224. Moek KL, Giesen D, Kok IC, de Groot DJA, Jalving M, Fehrmann RSN, et al. Theranostics using antibodies and antibody-related therapeutics. J Nucl Med. 2017;58(Suppl 2):83s–90s.

    Article  CAS  PubMed  Google Scholar 

  225. Rizvi SNF, Visser OJ, Vosjan MJWD, van Lingen A, Hoekstra OS, Zijlstra JM, et al. Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin’s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur J Nucl Med Mol Imaging. 2012;39(3):512–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Modak S, Zanzonico P, Grkovski M, Slotkin EK, Carrasquillo JA, Lyashchenko SK, et al. B7H3-directed intraperitoneal radioimmunotherapy with radioiodinated omburtamab for desmoplastic small round cell tumor and other peritoneal tumors: results of a phase I study. J Clin Oncol. 2020;38:4283–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Zeglis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Keinänen, O., Nash, A.G., Sarrett, S.M., Sarparanta, M., Lewis, J.S., Zeglis, B.M. (2022). Novel Positron-Emitting Radiopharmaceuticals. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_87-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_87-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Novel Positron-Emitting Radiopharmaceuticals
    Published:
    16 July 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_87-3

  2. Novel Positron Emitting Radiopharmaceuticals
    Published:
    23 November 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_87-2

  3. Original

    Emerging Radiopharmaceuticals in Clinical Oncology
    Published:
    12 September 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_87-1