Skip to main content

Diagnostic Applications of Nuclear Medicine: Pediatric Cancers

Nuclear Oncology

Abstract

Pediatric cancers are defined as cancers occurring before the age of 15 years and account for only 2% of all cancers. Intracranial tumors are the most common solid neoplasms in children. Although [18F]FDG uptake is associated with more malignant and aggressive tumor types, [18F]FDG-PET is not routinely used for the clinical management of pediatric brain tumors. PET/MRI coregistration/image fusion improves localization of the lesion. [18F]FDG-PET is also helpful to differentiate indolent and active components of the lesion and to improve the diagnostic yield of stereotactic biopsies and the accuracy of the radiosurgical dosimetry planning.

Lymphomas account for 10–15% of all childhood malignancies and are the third most common cause of cancer. Non-Hodgkin’s lymphoma is more frequent. Staging of Hodgkin’s lymphoma (HL) is performed according to the Cotswold revision of the Ann Arbor classification. Non-Hodgkin’s lymphoma in childhood is significantly different from adults. The predominant subtypes are Burkitt’s lymphoma, large B-cell lymphoma, and primary mediastinal B-cell lymphomas, followed by lymphoblastic lymphoma and anaplastic large-cell lymphoma. Most cases are extensive at diagnosis, corresponding to stages 3 and 4 of the St. Jude Children’s Research Hospital classification (Murphy staging). Contrast-enhanced diagnostic CT (ce-CT) or MRI together with thoracic CT remains mandatory at least at diagnosis (performed either simultaneously with [18F]FDG-PET by using hybrid PET/CT or PET/MRI scanners or separately). Diagnostic CT reliably detects enlarged lymph nodes, and contrast media are required to accurately distinguish lymphadenopathy. Diagnostic CT also allows detailed evaluation of the pulmonary parenchyma, pleura, and pericardium. Ultrasonography has a definite role in both initial evaluation and follow-up of superficial lymph nodes and is an effective method to detect testicular infiltration and to explore the liver and spleen. Chest radiography remains useful in HL to classify disease as “bulky” or “nonbulky.” MRI is superior to ce-CT for evaluation of the bone marrow, liver, soft tissue, and central nervous system.

67Ga-citrate scintigraphy and bone scintigraphy have been replaced by [18F]FDG-PET/CT or PET/MRI, which depicts nodal and extranodal disease as well as focal bone marrow disease. The role of [18F]FDG-PET is well established to stage HL before treatment. Early response assessment can be evaluated by interim PET in HL. When interim PET is negative, no other examination needs to be performed at the end of therapy in the absence of clinical signs. Systematic [18F]FDG-PET is not indicated during follow-up.

In non-Hodgkin’s lymphoma, [18F]FDG avidity is high for Burkitt’s lymphoma, large B-cell lymphoma, lymphoblastic lymphoma, and anaplastic large-cell lymphoma. The main indications for [18F]FDG-PET in children with non-Hodgkin’s lymphoma are inconclusive. However, [18F]FDG-PET appears to be a useful tool for characterization of residual masses, as no reliable CT or MRI criteria are available for distinguishing residual disease from fibrosis or necrosis.

Wilms’ tumor is the most common renal malignancy in childhood. The diagnostic workup includes a CT or MRI scan of the abdomen and pelvis, lymph nodes, and intra-abdominal or pelvic tumor deposits. A Doppler ultrasound is recommended to evaluate if there is a tumoral thrombus in the renal vein and inferior vena cava. For the detection of bilateral disease and the assessment of nephroblastomatosis representing premalignant lesions, MRI is the imaging modality of choice. 123I-MIBG scintigraphy can be very helpful for the differentiation of neuroblastoma from Wilms’ tumor. There is no major role for [18F]FDG-PET in these patients.

Neuroblastoma accounts for about 8% of pediatric malignancies and is responsible for 15% of cancer deaths in children. It arises from the neural crest cells, and the tumor is usually situated in the adrenal gland or anywhere else along the sympathetic nervous system chain. Staging is crucial in order to choose the appropriate treatment. Imaging of neuroblastoma consists of ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), and 123I-MIBG scintigraphy. 123I-MIBG is sensitive and specific for the detection of neuroblastoma involvement. [18F]FDG-PET is less sensitive than 123I-MIBG scintigraphy in neuroblastoma patients. However, in any case of a discrepancy between 123I-MIBG scintigraphy and morphological imaging (CT and/or MRI), [18F]FDG-PET should be considered for further tumor evaluation.

Sarcomas are a heterogeneous group of neoplasms with different tumor biology, malignancy, and therapeutic options. The two major groups of primary bone tumors in children and adolescents are osteosarcomas and the Ewing family of tumors. As regards soft-tissue sarcomas, the most common histologic entities in children and adolescents are rhabdomyosarcoma, extraosseous Ewing sarcoma and peripheral neuroectodermal tumor, synovial sarcoma, neurofibrosarcoma, fibrosarcoma, and leiomyosarcoma. Langerhans cell histiocytosis (LCH) is a proliferation of Langerhans-type histiocytes. Despite its clonal origin, there is no definitive proof of malignancy. Primary bone tumors are best classified using a conventional planar x-ray. Local CT and MRI supply further information on tumor localization and extension. Bone scintigraphy is very sensitive in the detection of osseous metastases of osteosarcoma, and even soft-tissue metastases are often visible on the bone scan. [18F]FDG-PET has a high accuracy in detecting primary sarcomas and its metastases, with the exception of pulmonary metastases. Therefore, a thoracic CT is additionally necessary for staging sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACCIS:

European Automated Childhood Cancer Information System

ce-CT:

Contrast-enhanced diagnostic CT

CNS:

Central nervous system

CT:

X-ray computed tomography

DOTA:

2-(4-Isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (macrocyclic coupling agent to label compounds of biological interest with metal radionuclides)

EGFR:

Epidermal growth factor receptor

18F-DOPA:

2-18F-Fluoro-L-3,4-dihydroxyphenylalanine

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

18F-FET:

O-(2-18F-Fluoroethyl)-L-Tyrosine, a tyrosine analog

68Ga-DOTA-TOC:

68Ga-DOTA-Tyr3-octreotide

GCSF:

Granulocyte colony-stimulating factor

Gy:

Gray unit (ionizing radiation dose in the International System of Units, corresponding to the absorption of one joule of radiation energy per kilogram of matter)

[11C]HED:

[11C]Hydroxyephedrine

HL:

Hodgkin’s lymphoma

LCH:

Langerhans cell histiocytosis

LGAs:

Low-grade astrocytomas

MIBG:

meta-iodobenzylguanidine

[11C]MET:

[11C]Methionine

MRI:

Magnetic resonance imaging

NE:

Norepinephrine

NHL:

Non-Hodgkin’s lymphoma

PD:

Progressive disease

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PET/MRI:

Positron emission tomography/Magnetic resonance imaging system

PNET:

Peripheral neuroectodermal tumor

RECIST:

Response evaluation criteria in solid tumors

SEER:

Surveillance, epidemiology and end results

153Sm-EDTMP:

153Sm-ethylenediaminetetramethylene phosphonic acid

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/Computed tomography

SUV:

Standardized uptake values

99mTc-MDP:

99mTc-methyldiphosphonate

WHO:

World Health Organization

References

  1. Connolly LP, Drubach LA, Ted TS. Applications of nuclear medicine in pediatric oncology. Clin Nucl Med. 2002;27:117–25.

    Article  PubMed  Google Scholar 

  2. Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36:277–85.

    Article  PubMed  Google Scholar 

  3. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  4. McCarville MB. PET-CT imaging in pediatric oncology. Cancer Imaging. 2009;9:35–43.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yeung HW, Schöder H, Gonen M, Larson SM. Clinical value of combined positron emission tomography/computed tomography imaging in the interpretation of 2-deoxy-2-[F-18]fluoro-d-glucose–positron emission tomography studies in cancer patients. Mol Imaging Biol. 2005;7:229–35.

    Article  PubMed  Google Scholar 

  6. Kleis M, Heike Daldrup-Link H, Matthay K, et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging. 2009;36:23–36.

    Article  PubMed  Google Scholar 

  7. Schwenzer NF, Pfannenberg C, Reischl G, et al. Application of MR/PET in oncologic imaging. Rofo. 2012;184:780–7.

    CAS  PubMed  Google Scholar 

  8. Hirsch FW, Sattler B, Sorge I, et al. PET/MR in children: initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43:860–75.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aghighi M, Pisani LJ, Sun Z, Klenk C, Madnawat H, Fineman SL, Advani R, Von Eyben R, Owen D, Quon A, Moseley M, Daldrup-Link HE. Speeding up PET/MR for cancer staging of children and young adults. Eur Radiol. 2016;26:4239–48.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sher AC, Seghers V, Paldino MJ, et al. Assessment of sequential PET/MRI in comparison with PET/CT of Pediatric lymphoma: a prospective study. AJR Am J Roentgenol. 2016;206:623–31.

    Article  PubMed  Google Scholar 

  11. Ponisio MR, McConathy J, Laforest R, Khanna G. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol. 2016;46:1258–68.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eiber M, Takei T, Souvatzoglou M, et al. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med. 2014;55:191–7.

    Article  PubMed  Google Scholar 

  13. Schäfer JF, Gatidis S, Schmidt H, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273:220–31.

    Article  PubMed  Google Scholar 

  14. Purz S, Sabri O, Viehweger A, et al. Potential pediatric applications of PET/MR. J Nucl Med. 2014;55(Suppl 2):32S–9.

    Article  CAS  PubMed  Google Scholar 

  15. Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2,300 patients. J Nucl Med. 2016;57:420–430.

    Google Scholar 

  16. Jadvar H, Connolly LP, Fahey FH, Shulkin BL. PET and PET/CT in pediatric oncology. Semin Nucl Med. 2007;37:316–31.

    Article  PubMed  Google Scholar 

  17. Packer RJ. Childhood brain tumors: accomplishments and ongoing challenges. J Child Neurol. 2008;23:1122–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Packer RJ, Vezina G. Management of and prognosis with medulloblastoma: therapy at a crossroads. Arch Neurol. 2008;65:1419–24.

    Article  PubMed  Google Scholar 

  19. Chiaravalloti A, Filippi L, Ricci M, Cimini A, Schillaci O. Molecular imaging in pediatric brain tumors. Cancers (Basel). 2019;11(12):1853.

    Article  CAS  Google Scholar 

  20. Mabray MC, Barajas Jr RF, Cha S. Modern brain tumor imaging. Brain Tumor Res Treat. 2015;3:8–23.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fangusaro J, Witt O, Hernaiz Driever P, et al. Response assessment in paediatric low-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) Working Group. Lancet Oncol. 2020;21:e305–16.

    Article  PubMed  Google Scholar 

  22. Erker C, Tamrazi B, Poussaint TY, et al. Response assessment in paediatric high-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) Working Group. Lancet Oncol. 2020;21:e317–29.

    Article  CAS  PubMed  Google Scholar 

  23. Cooney TM, Cohen KJ, Guimaraes CV, et al. Response assessment in diffuse intrinsic pontine glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) Working Group. Lancet Oncol. 2020;21:e330–6.

    Article  PubMed  Google Scholar 

  24. Schelbert HR, Hoh CK, Royal HD, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine. J Nucl Med. 1998;39:1302–5.

    CAS  PubMed  Google Scholar 

  25. Stauss J, Franzius C, Pfluger T, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35:1581–8.

    Article  CAS  PubMed  Google Scholar 

  26. Hoffman JM, Hanson MW, Friedman HS, et al. FDG-PET in pediatric posterior fossa brain tumors. J Comput Assist Tomogr. 1992;16:62–8.

    Article  CAS  PubMed  Google Scholar 

  27. Borgwardt L, Hojgaard L, Carstensen H, et al. Increased fluorine-18 2-fluoro-2-deoxy-d-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol. 2005;23:3030–7.

    Article  PubMed  Google Scholar 

  28. Pirotte B, Acerbi F, Lubansu A, Goldman S, Brotchi J, Levivier M. PET imaging in the surgical management of pediatric brain tumors. Childs Nerv Syst. 2007;23:739–51.

    Article  PubMed  Google Scholar 

  29. Utriainen M, Metsahonkala L, Salmi TT, et al. Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer. 2002;95:1376–86.

    Article  PubMed  Google Scholar 

  30. Kruer MC, Kaplan AM, Etzl Jr MM, et al. The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood. J Neuro-Oncol. 2009;95:239–45.

    Article  Google Scholar 

  31. Galldiks N, Kracht LW, Berthold F, et al. [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neuro-Oncol. 2010;96:231–9.

    Article  Google Scholar 

  32. Okochi Y, Nihashi T, Fujii M, et al. Clinical use of 11C-methionine and 18F-FDG-PET for germinoma in central nervous system. Ann Nucl Med. 2014;28:94–102.

    Article  CAS  PubMed  Google Scholar 

  33. O’Tuama LA, Phillips PC, Strauss LC, et al. Two-phase [11C]L-methionine PET in childhood brain tumors. Pediatr Neurol. 1990;6:163–70.

    Article  PubMed  Google Scholar 

  34. Uslu L, Donig J, Link M, et al. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med. 2015;56:274–86.

    Article  PubMed  CAS  Google Scholar 

  35. Morana G, Piccardo A, Milanaccio C, et al. Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study. J Nucl Med. 2014;55:718–23.

    Article  CAS  PubMed  Google Scholar 

  36. Morana G, Piccardo A, Garrè ML, et al. Multimodal magnetic resonance imaging and 18F-L-dihydroxyphenylalanine positron emission tomography in early characterization of pseudoresponse and nonenhancing tumor progression in a pediatric patient with malignant transformation of ganglioglioma treated with bevacizumab. J Clin Oncol. 2013;31:e1–5.

    Article  PubMed  Google Scholar 

  37. Piccardo A, Puntoni M, Lopci E, et al. Prognostic value of 18F-DOPA PET/CT at the time of recurrence in patients affected by neuroblastoma. Eur J Nucl Med Mol Imaging. 2014;41:1046–56.

    Article  PubMed  Google Scholar 

  38. Piccardo A, Morana G, Massollo M, et al. Brain metastasis from neuroblastoma depicted by 18F-DOPA PET/CT. Nucl Med Mol Imaging. 2015;49:241–2.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ribeiro MJ, De Lonlay P, Delzescaux T, et al. Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-l-DOPA. J Nucl Med. 2005;46:560–6.

    PubMed  Google Scholar 

  40. Dunkl V, Cleff C, Stoffels G, et al. The usefulness of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the clinical evaluation of brain tumors in children and adolescents. J Nucl Med. 2015;56:88–92.

    Article  CAS  PubMed  Google Scholar 

  41. Misch M, Guggemos A, Driever PH, et al. 18F-FET-PET guided surgical biopsy and resection in children and adolescence with brain tumors. Childs Nerv Syst. 2015;31:261–267.

    Google Scholar 

  42. Marner L, Nysom K, Sehested A, et al. Early postoperative 18F-FET PET/MRI for pediatric brain and spinal cord tumors. J Nucl Med. 2019;60:1053–18.

    Article  CAS  PubMed  Google Scholar 

  43. Pastore G, Magnani C, Verdecchia A, et al. Survival of childhood lymphomas in Europe, 1978–1992: a report from the EUROCARE study. Eur J Cancer. 2001;37:703–10.

    Article  CAS  PubMed  Google Scholar 

  44. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weihrauch MR, Re D, Scheidhauer K, et al. Thoracic positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual mediastinal Hodgkin disease. Blood. 2001;98:2930–4.

    Article  CAS  PubMed  Google Scholar 

  46. Brisse H, Pacquement H, Burdairon E, Plancher C, Neuenschwander S. Outcome of residual mediastinal masses of thoracic lymphomas in children: impact on management and radiological follow-up strategy. Pediatr Radiol. 1998;28:444–50.

    Article  CAS  PubMed  Google Scholar 

  47. Oberlin O. Present and future strategies of treatment in childhood Hodgkin’s lymphomas. Ann Oncol. 1996;7(Suppl 4):73–8.

    Article  PubMed  Google Scholar 

  48. Schwartz CL. The management of Hodgkin disease in the young child. Curr Opin Pediatr. 2003;15:10–6.

    Article  PubMed  Google Scholar 

  49. Landman-Parker J, Pacquement H, Leblanc T, et al. Localized childhood Hodgkin’s disease: response-adapted chemotherapy with etoposide, bleomycin, vinblastine, and prednisone before low-dose radiation therapy-results of the French Society of Pediatric Oncology Study MDH90. J Clin Oncol. 2000;18:1500–7.

    Article  CAS  PubMed  Google Scholar 

  50. Yeh JM, Diller L. Pediatric Hodgkin lymphoma: trade-offs between short- and long-term mortality risks. Blood. 2012;120:2195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hay AE, Meyer RM. Balancing risks and benefits of therapy for patients with favorable-risk limited-stage Hodgkin lymphoma: the role of doxorubicin, bleomycin, vinblastine, and dacarbazine chemotherapy alone. Hematol Oncol Clin North Am. 2014;28:49–63.

    Article  PubMed  Google Scholar 

  52. Mann G, Attarbaschi A, Burkhardt B, et al. Clinical characteristics and treatment outcome of infants with non-Hodgkin lymphoma. Br J Haematol. 2007;139:443–9.

    CAS  PubMed  Google Scholar 

  53. Reiter A. Diagnosis and treatment of childhood non-Hodgkin lymphoma. Hematology ASH Education Book. 2007;1:285–96.

    Google Scholar 

  54. Murphy SB, Fairclough DL, Hutchison RE, Berard CW. Non-Hodgkin’s lymphomas of childhood: an analysis of the histology, staging, and response to treatment of 338 cases at a single institution. J Clin Oncol. 1989;7:186–93.

    Article  CAS  PubMed  Google Scholar 

  55. Patte C. Non-Hodgkin’s lymphoma. Eur J Cancer. 1998;34:359–62. discussion 62–3.

    Article  CAS  PubMed  Google Scholar 

  56. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109:2773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cairo MS, Gerrard M, Sposto R, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109:2736–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grenzebach J, Schrappe M, Ludwig WD, et al. Favorable outcome for children and adolescents with T-cell lymphoblastic lymphoma with an intensive ALL-type therapy without local radiotherapy. Ann Hematol. 2001;80(Suppl 3):B73–6.

    Article  CAS  PubMed  Google Scholar 

  59. Brugieres L, Le Deley MC, Rosolen A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27:897–903.

    Article  CAS  PubMed  Google Scholar 

  60. Mody RJ, Bui C, Hutchinson RJ, Frey KA, Shulkin BL. Comparison of 18F Flurodeoxyglucose PET with Ga-67 scintigraphy and conventional imaging modalities in pediatric lymphoma. Leuk Lymphoma. 2007;48:699–707.

    Article  CAS  PubMed  Google Scholar 

  61. Shankar A, Fiumara F, Pinkerton R. Role of FDG PET in the management of childhood lymphomas-case proven or is the jury still out? Eur J Cancer. 2008;44:663–73.

    Article  PubMed  Google Scholar 

  62. Shulkin BL, Goodin GS, McCarville MB, et al. Bone and [18F]fluorodeoxyglucose positron-emission tomography/computed tomography scanning for the assessment of osseous involvement in Hodgkin lymphoma in children and young adults. Leuk Lymphoma. 2009;50:1794–802.

    Article  PubMed  Google Scholar 

  63. Allen-Auerbach M, Quon A, Weber WA, et al. Comparison between 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma. Mol Imaging Biol. 2004;6:411–6.

    Article  PubMed  Google Scholar 

  64. Toma P, Granata C, Rossi A, Garaventa A. Multimodality imaging of Hodgkin disease and non-Hodgkin lymphomas in children. Radiographics. 2007;27:1335–54.

    Article  PubMed  Google Scholar 

  65. Rahmouni A, Montazel JL, Divine M, et al. Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology. 2003;229:710–7.

    Article  PubMed  Google Scholar 

  66. Haque S, Law M, Abrey LE, Young RJ. Imaging of lymphoma of the central nervous system, spine, and orbit. Radiol Clin N Am. 2008;46:339–61.

    Article  PubMed  Google Scholar 

  67. Punwani S, Taylor SA, Bainbridge A, et al. Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology. 2010;255:182–90.

    Article  PubMed  Google Scholar 

  68. Spijkers S, Littooij AS, Kwee TC, et al. Whole-body MRI versus an FDG-PET/CT-based reference standard for staging of paediatric Hodgkin lymphoma: a prospective multicentre study. Eur Radiol. 2021;31:1494–504.

    Article  PubMed  Google Scholar 

  69. Gillman J, States LJ, Servaes S. PET in pediatric lymphoma. PET Clin. 2020;15:299–307.

    Article  PubMed  Google Scholar 

  70. Moog F, Bangerter M, Diederichs CG, et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology. 1998;206:475–81.

    Article  CAS  PubMed  Google Scholar 

  71. Carr R, Barrington SF, Madan B, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood. 1998;91:3340–6.

    Article  CAS  PubMed  Google Scholar 

  72. Agrawal K, Rai Mittal B, Bansal D, Varma N, et al. Role of F-18 FDG PET/CT in assessing bone marrow involvement in pediatric Hodgkin’s lymphoma. Ann Nucl Med. 2013;27:146–51.

    Article  CAS  PubMed  Google Scholar 

  73. Montravers F, McNamara D, Landman-Parker J, et al. [18F]FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging. 2002;29:1155–65.

    Article  CAS  PubMed  Google Scholar 

  74. Hermann S, Wormanns D, Pixberg M, et al. Staging in childhood lymphoma: differences between FDG-PET and CT. Nuklearmedizin. 2005;44:1–7.

    Article  CAS  PubMed  Google Scholar 

  75. Furth C, Denecke T, Steffen I, et al. Correlative imaging strategies implementing CT, MRI, and PET for staging of childhood Hodgkin disease. J Pediatr Hematol Oncol. 2006;28:501–12.

    Article  PubMed  Google Scholar 

  76. Kabickova E, Sumerauer D, Cumlivska E, et al. Comparison of 18F-FDG-PET and standard procedures for the pretreatment staging of children and adolescents with Hodgkin’s disease. Eur J Nucl Med Mol Imaging. 2006;33:1025–31.

    Article  PubMed  Google Scholar 

  77. Hassan A, Siddique M, Bashir H, et al. 18F-FDG PET-CT imaging versus bone marrow biopsy in pediatric Hodgkin’s lymphoma: a quantitative assessment of marrow uptake and novel insights into clinical implications of marrow involvement. Eur J Nucl Med Mol Imaging. 2017;44:1198–1206.

    Google Scholar 

  78. Cistaro A, Cassalia L, Ferrara C, et al. Italian multicenter study on accuracy of 18F-FDG PET/CT in assessing bone marrow involvement in pediatric Hodgkin lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18:e267–73.

    Article  PubMed  Google Scholar 

  79. Purz S, Mauz-Körholz C, Körholz D, et al. [18F]Fluorodeoxyglucose positron emission tomography for detection of bone marrow involvement in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol. 2011;29:3523–8.

    Article  PubMed  Google Scholar 

  80. Wickmann L, Luders H, Dorffel W. 18-FDG-PET-findings in children and adolescents with Hodgkin’s disease: retrospective evaluation of the correlation to other imaging procedures in initial staging and to the predictive value of follow up examinations. Klin Padiatr. 2003;215:146–50.

    CAS  PubMed  Google Scholar 

  81. Furth C, Steffen IG, Amthauer H, et al. Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol. 2009;27:4385–91.

    Article  PubMed  Google Scholar 

  82. Lopci E, Burnelli R, Ambrosini V, et al. 18F-FDG PET in pediatric lymphomas: a comparison with conventional imaging. Cancer Biother Radiopharm. 2008;23:681–690.

    Google Scholar 

  83. Miller E, Metser U, Avrahami G, et al. Role of 18F-FDG PET/CT in staging and follow-up of lymphoma in pediatric and young adult patients. J Comput Assist Tomogr. 2006;30:689–94.

    Article  PubMed  Google Scholar 

  84. Riad R, Omar W, Kotb M, et al. Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging. 2010;37:319–29.

    Article  PubMed  Google Scholar 

  85. Depas G, De Barsy C, Jerusalem G, et al. 18F-FDG PET in children with lymphomas. Eur J Nucl Med Mol Imaging. 2005;32:31–38.

    Google Scholar 

  86. Hernandez-Pampaloni M, Takalkar A, Yu JQ, et al. F-18 FDG-PET imaging and correlation with CT in staging and follow-up of pediatric lymphomas. Pediatr Radiol. 2006;36:524–31.

    Article  PubMed  Google Scholar 

  87. Amthauer H, Furth C, Denecke T, et al. FDG-PET in 10 children with non-Hodgkin’s lymphoma: initial experience in staging and follow-up. Klin Padiatr. 2005;217:327–33.

    Article  CAS  PubMed  Google Scholar 

  88. Rhodes MM, Delbeke D, Whitlock JA, et al. Utility of FDG-PET/CT in follow-up of children treated for Hodgkin and non-Hodgkin lymphoma. J Pediatr Hematol Oncol. 2006;28:300–6.

    Article  PubMed  Google Scholar 

  89. Bakhshi S, Radhakrishnan V, Sharma P, et al. Pediatric nonlymphoblastic non-Hodgkin lymphoma: baseline, interim, and posttreatment PET/CT versus contrast-enhanced CT for evaluation – a prospective study. Radiology. 2012;262:956–68.

    Article  PubMed  Google Scholar 

  90. Ilivitzki A, Radan L, Ben-Arush M, et al. Early interim FDGPET/CT prediction of treatment response and prognosis in pediatric Hodgkin disease: added value of low-dose CT. Pediatr Radiol. 2013;43:86–92.

    Article  PubMed  Google Scholar 

  91. Korholz D, Kluge R, Wickmann L, et al. Importance of F18-fluorodeoxy-d-2-glucose positron emission tomography (FDG-PET) for staging and therapy control of Hodgkin’s lymphoma in childhood and adolescence – consequences for the GPOH-HD 2003 protocol. Onkologie. 2003;26:489–93.

    CAS  PubMed  Google Scholar 

  92. Hudson MM, Krasin MJ, Kaste SC. PET imaging in pediatric Hodgkin’s lymphoma. Pediatr Radiol. 2004;34:190–8.

    Article  PubMed  Google Scholar 

  93. Kluge R, Kurch L, Montravers F, Mauz-Körholz C. FDG PET/CT in children and adolescents with lymphoma. Pediatr Radiol. 2013;43:406–17.

    Article  PubMed  Google Scholar 

  94. London K, Cross S, Onikul E, et al. 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging. 2011;38:274–284.

    Google Scholar 

  95. Kluge R, Kurch L, Georgi T, Metzger M. Current role of FDG-PET in pediatric Hodgkin’s lymphoma. Semin Nucl Med. 2017;47:242–57.

    Article  PubMed  Google Scholar 

  96. Weiler-Sagie M, Bushelev O, Epelbaum R, et al. 18F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51:25–30.

    Google Scholar 

  97. Tsukamoto N, Kojima M, Hasegawa M, et al. The usefulness of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and a comparison of 18F-FDG-PET with 67gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer. 2007;110:652–9.

    Article  PubMed  Google Scholar 

  98. Elstrom R, Guan L, Baker G, et al. Utility of FDG-PET scanning in lymphoma by WHO classification. Blood. 2003;101:3875–6.

    Article  CAS  PubMed  Google Scholar 

  99. Rigacci L, Vitolo U, Nassi L, et al. Positron emission tomography in the staging of patients with Hodgkin’s lymphoma. A prospective multicentric study by the Intergruppo Italiano Linfomi. Ann Hematol. 2007;86:897–903.

    Article  PubMed  Google Scholar 

  100. Dobert N, Menzel C, Berner U, et al. Positron emission tomography in patients with Hodgkin’s disease: correlation to histopathologic subtypes. Cancer Biother Radiopharm. 2003;18:565–71.

    Article  PubMed  Google Scholar 

  101. Rogasch JMM, Hundsdoerfer P, Hofheinz F, et al. Pretherapeutic FDG-PET total metabolic tumor volume predicts response to induction therapy in pediatric Hodgkin’s lymphoma. BMC Cancer. 2018;18(1):521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kasamon YL, Jones RJ, Wahl RL. Integrating PET and PET/CT into the risk-adapted therapy of lymphoma. J Nucl Med. 2007;48(Suppl 1):19S–27.

    CAS  PubMed  Google Scholar 

  103. Montravers F, Landman-Parker J, Grahek D, et al. FDG PET in childhood Hodgkin’s lymphoma. Reports on the false-negative, false-positive and unexpected results during a five-year experience. J Nucl Med. 2006;47:144P.

    Google Scholar 

  104. Juweid ME. Utility of positron emission tomography (PET) scanning in managing patients with Hodgkin lymphoma. Hematol Am Soc Hematol Educ Prog. 2006;259–65:510–1.

    Google Scholar 

  105. van Quarles UH, Hoekstra O, de Haas M, et al. On the added value of baseline FDG-PET in malignant lymphoma. Mol Imaging Biol. 2010;12:225–32.

    Article  Google Scholar 

  106. Hutchings M, Barrington SF. PET/CT for therapy response assessment in lymphoma. J Nucl Med. 2009;50(Suppl 1):21S–30.

    Article  CAS  PubMed  Google Scholar 

  107. Lopci E, Mascarin M, Piccardo A, et al. FDG PET in response evaluation of bulky masses in paediatric Hodgkin’s lymphoma (HL) patients enrolled in the Italian AIEOP-LH2004 trial. Eur J Nucl Med Mol Imaging. 2019;46:97–106.

    Article  CAS  PubMed  Google Scholar 

  108. Hasenclever D, Kurch L, Mauz-Körholz C, et al. qPET – a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma. Eur J Nucl Med Mol Imaging. 2014;41:1301–8.

    Article  PubMed  Google Scholar 

  109. Strobel K, Schaefer NG, Renner C, et al. Cost-effective therapy remission assessment in lymphoma patients using 2-[fluorine-18]fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography: is an end of treatment exam necessary in all patients? Ann Oncol. 2007;18:658–64.

    Article  CAS  PubMed  Google Scholar 

  110. Meany HJ, Gidvani VK, Minniti CP. Utility of PET scans to predict disease relapse in pediatric patients with Hodgkin lymphoma. Pediatr Blood Cancer. 2007;48:399–402.

    Article  PubMed  Google Scholar 

  111. Nievelstein RA, Quarles van Ufford HM, Kwee TC, et al. Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol. 2012;22:1946–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rathore N, Eissa HM, Margolin JF. Pediatric Hodgkin lymphoma: are we over-scanning our patients? Pediatr Hematol Oncol. 2012;29:415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Voss SD. Surveillance imaging in pediatric Hodgkin lymphoma. Curr Hematol Malig Rep. 2013;8:218–25.

    Article  PubMed  Google Scholar 

  114. Ozuah NW, Dahmoush HM, Grant FD, et al. Pretransplant functional imaging and outcome in pediatric patients with relapsed/refractory Hodgkin lymphoma undergoing autologous transplantation. Pediatr Blood Cancer. 2018 Jan;65(1).

    Google Scholar 

  115. Moog F, Bangerter M, Diederichs CG, et al. Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) PET in nodal staging. Radiology. 1997;203:795–800.

    Article  CAS  PubMed  Google Scholar 

  116. Montravers F, Landman-Parker J, Kerrou K, et al. Impact of FDG PET on the management of childhood non-Hodgkin lymphoma: a five-year experience. J Nucl Med. 2006;47:87P.

    Google Scholar 

  117. Sher AC, Seghers V, Paldino MJ, et al. The role of FDG-PET/CT in the evaluation of residual disease in paediatric non-Hodgkin lymphoma. Br J Haematol. 2015;168:845–53.

    Article  CAS  Google Scholar 

  118. Riad R, Omar W, Sidhom I, et al. False-positive F-18 FDG uptake in PET/CT studies in pediatric patients with abdominal Burkitt’s lymphoma. Nucl Med Commun. 2010;31:232–8.

    Article  PubMed  Google Scholar 

  119. Palestro CJ, Rini JN, Tomas MB. Lymphoma. In: Charron M, editor. Practical pediatric PET imaging. New York: Springer; 2006. p. 220–42.

    Chapter  Google Scholar 

  120. Abdel Rahman H, Sedky M, Hamoda A, et al. Role of FDG-PET scan in the management of pediatric mature B cell non-Hodgkin’s lymphoma. CCHE experience. J Egypt Natl Canc Inst. 2016;28:95–9.

    Article  PubMed  Google Scholar 

  121. Bailly C, Eugène T, Couec ML, et al. Prognostic value and clinical impact of 18FDG-PET in the management of children with Burkitt lymphoma after induction chemotherapy. Front Med (Lausanne). 2014 Dec;16(1):54.

    Google Scholar 

  122. Kaste SC, Howard SC, McCarville EB, et al. 18F-FDG-avid sites mimicking active disease in pediatric Hodgkin’s. Pediatr Radiol 2005;35:141–154.

    Google Scholar 

  123. Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;29:1467–86.

    Article  PubMed  Google Scholar 

  124. Kamoto Y, Sadato N, Yonekura Y, et al. Visualization of the cervical spinal cord with FDG and high-resolution PET. J Comput Assist Tomogr. 1998;22:487–91.

    Article  CAS  PubMed  Google Scholar 

  125. Saggese D, Ceroni Compadretti G, Cartaroni C. Cervical ectopic thymus: a case report and review of the literature. Int J Pediatr Otorhinolaryngol. 2002;66:77–80.

    Article  PubMed  Google Scholar 

  126. Soderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging. 2007;34:1018–22.

    Article  PubMed  CAS  Google Scholar 

  127. Lustberg MB, Aras O, Meisenberg BR. FDG PET/CT findings in acute adult mononucleosis mimicking malignant lymphoma. Eur J Haematol. 2008;81:154–6.

    Article  PubMed  Google Scholar 

  128. Panagiotidis E, Exarhos D, Housianakou I, et al. FDG uptake in axillary lymph nodes after vaccination against pandemic (H1N1). Eur Radiol. 2010;20:1251–3.

    Article  PubMed  Google Scholar 

  129. Okuyama C, Matsushima S, Nishimura M, Yamada K. Increased 18F-FDG accumulation in the tonsils after chemotherapy for pediatric lymphoma: a common physiological phenomenon. Ann Nucl Med. 2019;33:368–73.

    Article  CAS  PubMed  Google Scholar 

  130. Kurch L, Mauz-Körholz C, Bertling S, et al. The EuroNet paediatric Hodgkin network – modern imaging data management for real time central review in multicentre trials. Klin Padiatr. 2013;225:357–61.

    Article  CAS  PubMed  Google Scholar 

  131. Mauz-Körholz C, Landman-Parker J, Balwierz W, et al. Response-adapted omission of radiotherapy and comparison of consolidation chemotherapy in children and adolescents with intermediate-stage and advanced-stage classical Hodgkin lymphoma (EuroNet-PHL-C1): a titration study with an open-label, embedded, multinational, non-inferiority, randomised controlled trial. Lancet Oncol. 2022;23:125–137.

    Google Scholar 

  132. Bhojwani D, McCarville MB, Choi JK, et al. The role of FDG-PET/CT in the evaluation of residual disease in paediatric non-Hodgkin lymphoma. Br J Haematol. 2015;168:845–53.

    Article  CAS  PubMed  Google Scholar 

  133. Moinul Hossain AK, Shulkin BL, et al. FDG positron emission tomography/computed tomography studies of Wilms’ tumor. Eur J Nucl Med Mol Imaging. 2010;37:1300–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Smith MA, Seibel NL, Altekruse SF, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28:2625–34.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pfluger T, Leinsinger G, Sander A, et al. Magnetic resonance imaging of benign and premalignant tumors in childhood. Radiologe. 1999;39:685–94.

    Google Scholar 

  136. Misch D, Steffen IG, Schonberger S, et al. Use of positron emission tomography for staging, preoperative response assessment and posttherapeutic evaluation in children with Wilms tumour. Eur J Nucl Med Mol Imaging. 2008;35:1642–50.

    Article  PubMed  Google Scholar 

  137. Shulkin BL, Chang E, Strouse PJ, et al. PET FDG studies of Wilms tumors. J Pediatr Hematol Oncol. 1997;19:334–8.

    Article  CAS  PubMed  Google Scholar 

  138. Belgaumi AF, Kauffman WM, Jenkins JJ, et al. Blindness in children with neuroblastoma. Cancer. 1997;80:1997–2004.

    Article  CAS  PubMed  Google Scholar 

  139. Kropp J, Hofmann M, Bihl H. Comparison of MIBG and pentetreotide scintigraphy in children with neuroblastoma. Is the expression of somatostatin receptors a prognostic factor? Anticancer Res. 1997;17:1583–8.

    CAS  PubMed  Google Scholar 

  140. Schmidt M, Simon T, Hero B, Schicha H, Berthold F. The prognostic impact of functional imaging with 123I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: results of the German Neuroblastoma Trial NB97. Eur J Cancer. 2008;44:1552–8.

    Article  PubMed  Google Scholar 

  141. Taggart D, Dubois S, Matthay KK. Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. Q J Nucl Med Mol Imaging. 2008;52:403–18.

    CAS  PubMed  Google Scholar 

  142. Custodio CM, Semelka RC, Balci NC, et al. Adrenal neuroblastoma in an adult with tumor thrombus in the inferior vena cava. J Magn Reson Imaging. 1999;9:621–3.

    Article  CAS  PubMed  Google Scholar 

  143. DuBois SG, Matthay KK. Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl Med Biol. 2008;35(Suppl 1):S35–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Boubaker A, Bischof Delaloye A, Bischof DA. Nuclear medicine procedures and neuroblastoma in childhood. Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med. 2003;47:31–40.

    CAS  PubMed  Google Scholar 

  145. Parisi MT, Greene MK, Dykes TM, et al. Efficacy of metaiodobenzylguanidine as a scintigraphic agent for the detection of neuroblastoma. Investig Radiol. 1992;27:768–73.

    Article  CAS  Google Scholar 

  146. de Kraker J, Hoefnagel KA, Verschuur AC, et al. Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur J Cancer. 2008;44:551–6.

    Article  PubMed  CAS  Google Scholar 

  147. Hugosson C, Nyman R, Jorulf H, et al. Imaging of abdominal neuroblastoma in children. Acta Radiol. 1999;40:534–42.

    Article  CAS  PubMed  Google Scholar 

  148. Sofka CM, Semelka RC, Kelekis NL, et al. Magnetic resonance imaging of neuroblastoma using current techniques. Magn Reson Imaging. 1999;17:193–8.

    Article  CAS  PubMed  Google Scholar 

  149. Valk TW, Frager MS, Gross MD, et al. Spectrum of pheochromocytoma in multiple endocrine neoplasia. A scintigraphic portrayal using 131I-metaiodobenzylguanidine. Ann Intern Med. 1981;94:762–7.

    Article  CAS  PubMed  Google Scholar 

  150. Wieland DM, Brown LE, Tobes MC, et al. Imaging the primate adrenal medulla with [123I] and [131I] meta-iodobenzylguanidine: concise communication. J Nucl Med. 1981;22:358–64.

    CAS  PubMed  Google Scholar 

  151. Sisson JC, Wieland DM. Radiolabeled meta-iodobenzylguanidine: pharmacology and clinical studies. Am J Physiol Imaging. 1986;1:96–103.

    CAS  PubMed  Google Scholar 

  152. Guilloteau D, Chalon S, Baulieu JL, et al. Comparison of MIBG and monoamines uptake mechanisms: pharmacological animal and blood platelets studies. Eur J Nucl Med. 1988;14:341–4.

    CAS  PubMed  Google Scholar 

  153. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36:228–47.

    Article  PubMed  Google Scholar 

  154. Howman-Giles R, Shaw PJ, Uren RF, Chung DK. Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2007;37:286–302.

    Article  PubMed  Google Scholar 

  155. Biasotti S, Garaventa A, Villavecchia GP, et al. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol. 2000;35:153–5.

    Article  CAS  PubMed  Google Scholar 

  156. Piccardo A, Lopci E, Conte M, et al. PET/CT imaging in neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57:29–39.

    CAS  PubMed  Google Scholar 

  157. Sharp SE, Parisi MT, Gelfand MJ, et al. Functional-metabolic imaging of neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57:6–20.

    CAS  PubMed  Google Scholar 

  158. Troncone L, Rufini V, Montemaggi P, et al. The diagnostic and therapeutic utility of radioiodinated metaiodobenzylguanidine (MIBG). 5 years of experience. Eur J Nucl Med. 1990;16:325–35.

    Article  CAS  PubMed  Google Scholar 

  159. Gelfand MJ. Meta-iodobenzylguanidine in children. Semin Nucl Med. 1993;23:231–42.

    Article  CAS  PubMed  Google Scholar 

  160. Shulkin BL, Shapiro B, Francis IR, et al. Primary extra-adrenal pheochromocytoma: positive I-123 MIBG imaging with negative I-131 MIBG imaging. Clin Nucl Med. 1986;11:851–4.

    Article  CAS  PubMed  Google Scholar 

  161. Boubaker A, Bischof DA. MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging. 2008;52:388–402.

    CAS  PubMed  Google Scholar 

  162. Hadj-Djilani NL, Lebtahi NE, Delaloye AB, et al. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med. 1995;22:322–9.

    Article  CAS  PubMed  Google Scholar 

  163. Khafagi FA, Shapiro B, Fig LM, et al. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med. 1989;30:481–9.

    CAS  PubMed  Google Scholar 

  164. Solanki KK, Bomanji J, Moyes J, et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13:513–21.

    Article  CAS  PubMed  Google Scholar 

  165. Fendler WP, Wenter V, Thornton HI, et al. Combined scintigraphy and tumor marker analysis predicts unfavorable histopathology of neuroblastic tumors with high accuracy. PLoS One. 2015;10(7):e0132809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Fendler WP, Melzer HI, Walz C, et al. High 123I-MIBG uptake in neuroblastic tumours indicates unfavourable histopathology. Eur J Nucl Med Mol Imaging. 2013;40:1701–10.

    Article  CAS  PubMed  Google Scholar 

  167. Gordon I, Peters AM, Gutman A, et al. Skeletal assessment in neuroblastoma – the pitfalls of iodine-123-MIBG scans. J Nucl Med. 1990;31:129–34.

    CAS  PubMed  Google Scholar 

  168. Pfluger T, Schmied C, Porn U, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. AJR Am J Roentgenol. 2003;181:1115–24.

    Article  PubMed  Google Scholar 

  169. Geatti O, Shapiro B, Shulkin B, et al. Gastrointestinal iodine-131-meta-iodobenzylguanidine activity. Am J Physiol Imaging. 1988;3:188–91.

    CAS  PubMed  Google Scholar 

  170. Granata C, Carlini C, Conte M, et al. False positive MIBG scan due to accessory spleen. Med Pediatr Oncol. 2001;37:138–9.

    Article  CAS  PubMed  Google Scholar 

  171. McGarvey CK, Applegate K, Lee ND, Sokol DK. False-positive metaiodobenzylguanidine scan for neuroblastoma in a child with opsoclonus-myoclonus syndrome treated with adrenocorticotropic hormone (ACTH). J Child Neurol. 2006;21:606–10.

    Article  PubMed  Google Scholar 

  172. Moralidis E, Arsos G, Papakonstantinou E, et al. 123I-Metaiodobenzylguanidine accumulation in a urinoma and cortex of an obstructed kidney after surgical resection of an abdominal neuroblastoma. Pediatr Radiol 2008;38:118–121.

    Google Scholar 

  173. Bahar RH, Mahmoud S, Ibrahim A, al-Gazzar AH. A false positive I-131 MIBG due to dilated renal pelvis: a case report. Clin Nucl Med. 1988;13:900–2.

    Article  CAS  PubMed  Google Scholar 

  174. Bonnin F, Lumbroso J, Tenenbaum F, et al. Refining interpretation of MIBG scans in children. J Nucl Med. 1994;35:803–10.

    CAS  PubMed  Google Scholar 

  175. Pirson AS, Krug B, Tuerlinckx D, et al. Additional value of I-123 MIBG SPECT in neuroblastoma. Clin Nucl Med. 2005;30:100–1.

    Article  PubMed  Google Scholar 

  176. Rufini V, Fisher GA, Shulkin BL, et al. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med. 1996;37:1464–8.

    CAS  PubMed  Google Scholar 

  177. Gelfand MJ, Elgazzar AH, Kriss VM, et al. Iodine-123-MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med. 1994;35:1753–7.

    CAS  PubMed  Google Scholar 

  178. Shulkin BL, Shapiro B, Hutchinson RJ. Iodine-131-metaiodobenzylguanidine and bone scintigraphy for the detection of neuroblastoma. J Nucl Med. 1992;33:1735–40.

    CAS  PubMed  Google Scholar 

  179. Daldrup-Link HE, Franzius C, Link TM, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol. 2001;177:229–36.

    Article  CAS  PubMed  Google Scholar 

  180. Mentzel HJ, Kentouche K, Sauner D, et al. Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol. 2004;14:2297–302.

    Article  PubMed  Google Scholar 

  181. Lebtahi N, Gudinchet F, Nenadov-Beck M, et al. Evaluating bone marrow metastasis of neuroblastoma with iodine-123-MIBG scintigraphy and MRI. J Nucl Med. 1997;38:1389–92.

    CAS  PubMed  Google Scholar 

  182. Mueller WP, Coppenrath E, Pfluger T. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr Radiol. 2013;43:418–27.

    Article  PubMed  Google Scholar 

  183. Sharp SE, Shulkin BL, et al. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50:1237–1243.

    Google Scholar 

  184. Kushner BH, Yeung HW, Larson SM, et al. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol. 2001;19:3397–405.

    Article  CAS  PubMed  Google Scholar 

  185. Shulkin BL, Hutchinson RJ, Castle VP, et al. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology. 1996;199:743–50.

    Article  CAS  PubMed  Google Scholar 

  186. Melzer HI, Coppenrath E, Schmid I, et al. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38:1648–1658.

    Google Scholar 

  187. Rosenspire KC, Haka MS, Van Dort ME, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med. 1990;31:1328–34.

    CAS  PubMed  Google Scholar 

  188. Shulkin BL, Wieland DM, Baro ME, et al. PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med. 1996;37:16–21.

    CAS  PubMed  Google Scholar 

  189. Franzius C, Hermann K, Weckesser M, et al. Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med. 2006;47:1635–42.

    PubMed  Google Scholar 

  190. Becherer A, Szabo M, Karanikas G, et al. Imaging of advanced neuroendocrine tumors with 18F-FDOPA PET. J Nucl Med. 2004;45:1161–7.

    CAS  PubMed  Google Scholar 

  191. Hoegerle S, Nitzsche E, Altehoefer C, et al. Pheochromocytomas: detection with 18F DOPA whole body PET–initial results. Radiology. 2002;222:507–12.

    Article  PubMed  Google Scholar 

  192. Mamede M, Carrasquillo JA, Chen CC, et al. Discordant localization of 2-[18F]-fluoro-2-deoxy-d-glucose in 6-[18F]-fluorodopamine- and [123I]-metaiodobenzylguanidine-negative metastatic pheochromocytoma sites. Nucl Med Commun. 2006;27:31–6.

    Article  PubMed  Google Scholar 

  193. Piccardo A, Lopci E. Potential role of 18F-DOPA PET in neuroblastoma. Clin Transl Imaging. 2016;4:79–86.

    Google Scholar 

  194. Lu MY, Liu YL, Chang HH, et al. Characterization of neuroblastic tumors using 18F-FDOPA PET. J Nucl Med. 2013;54:42–9.

    Article  CAS  PubMed  Google Scholar 

  195. Lopci E, Piccardo A, Nanni C, et al. 18F-DOPA PET/CT in neuroblastoma: comparison of conventional imaging with CT/MR. Clin Nucl Med. 2012;37:e71–e78.

    Google Scholar 

  196. Pfluger T, Melzer HI, Mueller WP, et al. Diagnostic value of combined 18F-FDG PET/MRI for staging and restaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2012;39:1745–55.

    Article  PubMed  Google Scholar 

  197. Muller MF, Krestin GP, Willi UV. Abdominal tumors in children. A comparison between magnetic resonance tomography (MRT) and ultrasonography (US). Rofo. 1993;158:9–14.

    CAS  PubMed  Google Scholar 

  198. Daldrup HE, Link TM, Wortler K, et al. MR imaging of thoracic tumors in pediatric patients. AJR Am J Roentgenol. 1998;170:1639–44.

    Article  CAS  PubMed  Google Scholar 

  199. Kaste SC. Issues specific to implementing PET-CT for pediatric oncology: what we have learned along the way. Pediatr Radiol. 2004;34:205–13.

    Article  PubMed  Google Scholar 

  200. Bar-Sever Z, Keidar Z, Ben-Barak A, et al. The incremental value of 18F-FDG PET/CT in paediatric malignancies. Eur J Nucl Med Mol Imaging. 2007;34:630–7.

    Article  PubMed  Google Scholar 

  201. Olson PN, Everson LI, Griffiths HJ. Staging of musculoskeletal tumors. Radiol Clin N Am. 1994;32:151–62.

    Article  CAS  PubMed  Google Scholar 

  202. Silberstein EB, Saenger EL, Tofe AJ, et al. Imaging of bone metastases with 99mTc-Sn-EHDP (diphosphonate), 18F, and skeletal radiography. A comparison of sensitivity. Radiology. 1973;107:551–5.

    Article  CAS  PubMed  Google Scholar 

  203. Hahn K, Charron M, Shulkin BL. Role of MR imaging and iodine 123 MIBG scintigraphy in staging of pediatric neuroblastoma. Radiology. 2003;227:908. author reply 08-9.

    Article  PubMed  Google Scholar 

  204. Shah Syed GM, Naseer H, Usmani GN, Cheema MA. Role of iodine-131 MIBG scanning in the management of paediatric patients with neuroblastoma. Med Princ Pract. 2004;13:196–200.

    Article  CAS  PubMed  Google Scholar 

  205. Moon L, McHugh K. Advances in paediatric tumour imaging. Arch Dis Child. 2005;90:608–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Nanni C, Rubello D, Castellucci P, et al. 18F-FDG PET/CT fusion imaging in paediatric solid extracranial tumours. Biomed Pharmacother. 2006;60:593–606.

    Google Scholar 

  207. Yeung HW, Schoder H, Smith A, et al. Clinical value of combined positron emission tomography/computed tomography imaging in the interpretation of 2-deoxy-2-[F-18]fluoro-d-glucose-positron emission tomography studies in cancer patients. Mol Imaging Biol. 2005;7:229–35.

    Article  PubMed  Google Scholar 

  208. Brodeur GM, Pritchard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.

    Article  CAS  PubMed  Google Scholar 

  209. Rozovsky K, Koplewitz BZ, Krausz Y, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190:1085–90.

    Article  PubMed  Google Scholar 

  210. Erlemann R, Sciuk J, Bosse A, et al. Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology. 1990;175:791–6.

    Article  CAS  PubMed  Google Scholar 

  211. Knop J, Delling G, Heise U, Winkler K. Scintigraphic evaluation of tumor regression during preoperative chemotherapy of osteosarcoma. Skelet Radiol. 1990;19:165–72.

    Article  CAS  Google Scholar 

  212. O’Mara RE. Bone scanning in osseous metastatic disease. JAMA. 1988;229:1915–7.

    Article  Google Scholar 

  213. Algra PR, Bloem JL, Tissing H, et al. Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics. 1991;11:219–32.

    Article  CAS  PubMed  Google Scholar 

  214. Grant F, Fahey F, Packard A, et al. Skeletal PET with F-18-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.

    Article  PubMed  Google Scholar 

  215. Petersen M. Radionuclide detection of primary pulmonary osteogenic sarcoma: a case report and review of the literature. J Nucl Med. 1990;31:1110–4.

    CAS  PubMed  Google Scholar 

  216. Othman S, El-Desouki M. Bone scan appearance in aggressive osteogenic sarcoma with pleural, lung, bone, and soft-tissue metastases. Clin Nucl Med. 2003;28:926.

    Article  PubMed  Google Scholar 

  217. Anderson PM. Sm-153-EDTMP therapy with stem cell support in patients. In: Bruland OS, editor. Towards the eradication of osteosarcoma metastases. Oslo: The Norwegian Radium Hospital; 1998. p. 87–8.

    Google Scholar 

  218. Binkovitz L, Olshefski R, Adler B. Coincidence FDG-PET in the evaluation of Langerhans’ cell histiocytosis: preliminary findings. Pediatr Radiol. 2003;33:598–602.

    Article  PubMed  Google Scholar 

  219. Daldrup-Link HE, Franzius C, Rummeney EJ, et al. Whole body MRI for detection of bone marrow metastases in pediatric patients: comparison with skeletal scintigraphy and FDG-PET. Am J Roentgenol. 2001;177:229–36.

    Article  CAS  Google Scholar 

  220. Calming U, Bemstrand C, Mosskin M, Elander S, Ingvar M, Henter J. Brain F-18-FDG PET scan in central nervous system Langerhans cell histiocytosis. J Pediatr. 2002;141:435–40.

    Article  PubMed  Google Scholar 

  221. Buchler T, Cervinek L, Belohlavek O, et al. Langerhans cell histiocytosis with central nervous system involvement: follow-up by FDG-PET during treatment with cladribine. Pediatr Blood Cancer. 2005;44:286–8.

    Article  PubMed  Google Scholar 

  222. Mueller WP, Melzer HI, Schmid I, et al. The diagnostic value of 18F-FDG PET and MRI in paediatric histiocytosis. Eur J Nucl Med Mol Imaging. 2013;40:356–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Montravers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pfluger, T. et al. (2022). Diagnostic Applications of Nuclear Medicine: Pediatric Cancers. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_25-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_25-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Pediatric Cancers
    Published:
    04 May 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_25-2

  2. Original

    Diagnostic Applications of Nuclear Medicine: Pediatric Cancers
    Published:
    29 September 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_25-1