Skip to main content

Comparative Genomics and Evolutionary Modularity of Prokaryotes

  • Chapter
Prokaryotic Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 883))

Abstract

The soaring number of high-quality genomic sequences has ushered in the era of post-genomic research where our understanding of organisms has dramatically shifted towards defining the function of genes within their larger biological contexts. As a result, novel high-throughput experimental technologies are being increasingly employed to uncover physical and functional associations of genes and proteins in complex biological processes. Through the construction and analysis of physical, genetic and metabolic networks generated for the model organisms, such as Escherichia coli, organizational principles of the genome have been deduced, such as modularity, which has important implications toward understanding prokaryotic evolution and adaptation to novel lifestyles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al (2008) Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 12:137–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C et al (2006) Large-scale identification of protein–protein interactions of Escherichia coli K-12. Genome Res 16:686–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armean IM, Lilley KS, Trotter MWB (2013) Popular computational methods to assess multiprotein complexes derived from label-free affinity purification and mass spectrometry (AP-MS) experiments. Mol Cell Proteomics 12:1–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Babu M, Butland G, Pogoutse O, Li J, Greenblatt JF, Emili A (2009) Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli. Methods Mol Biol 564:373–400

    Article  CAS  PubMed  Google Scholar 

  • Babu M, Gagarinova A, Emili A (2011) Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli. Methods Mol Biol 781:99–126

    Article  CAS  PubMed  Google Scholar 

  • Babu M, Arnold R, Bundalovic-Torma C, Gagarinova A, Wong KS et al (2014) Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli. PLoS Genet 10

    Google Scholar 

  • Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4

    Google Scholar 

  • Bader GD, Betel D, Hogue CWV (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31:248–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G et al (2009) From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 155:1758–1775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernhardt TG, de Boer PA (2004) Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. Mol Microbiol 52:1244–1269

    Article  Google Scholar 

  • Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8:437–449

    Article  CAS  PubMed  Google Scholar 

  • Brohee S, van Helden J (2006) Evaluation of clustering algorithms for protein–protein interaction networks. BMC Bioinformatics 7:488–506

    Article  PubMed Central  PubMed  Google Scholar 

  • Buchanan G, Sargent F, Berks BC, Palmer T (2001) A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Arch Microbiol 177:107–112

    Article  CAS  PubMed  Google Scholar 

  • Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X et al (2004) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:431–437

    Google Scholar 

  • Butland G, Babu M, Diaz-Mejia JJ, Bohdana F, Phanse S et al (2008) eSGA: E. coli synthetic array analysis. Nat Methods 5:789–795

    Article  CAS  PubMed  Google Scholar 

  • Caspi R, Altman T, Billington R, Dreher K, Foerster H et al (2013) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 42:D459–D471

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen F, Mackey AJ, Stoeckert CJ, Roos DS (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34:D363–D368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS et al (1998) SGD: Saccharomyces Genome Database. Nucleic Acids Res 26:73–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke P, Vuiv PO, O’Connell M (2005) Novel mobilizable prokaryotic two-hybrid system vectors for high-throughput protein interaction mapping in Escherichia coli by bacterial conjugation. Nucleic Acids Res 33:e18

    Article  PubMed Central  PubMed  Google Scholar 

  • Claudel-Renard C, Chevalet C, Faraut T, Kahn D (2003) Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 15:6633–6639

    Article  Google Scholar 

  • Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. TIBS 23:325–328

    Google Scholar 

  • Diaz-Mejia JJ, Babu M, Emili A (2008) Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev 33:66–97

    Article  PubMed Central  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Enault F, Suhre K, Abergel C, Poirot O, Claverie J-M (2003) Annotation of bacterial genomes using improved phylogenomic profiles. Bioinformatics 19:i105–i107

    Article  PubMed  Google Scholar 

  • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3

    Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M et al (2013) STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315:972–976

    Article  CAS  PubMed  Google Scholar 

  • Fulton DL, Li YY, Laird MR, Horsman BG, Roche FM, Brinkman FS (2006) Improving the specificity of high-throughput ortholog prediction. BMC Bioinformatics 7:270–285

    Article  PubMed Central  PubMed  Google Scholar 

  • Gabaldon T, Koonin EV (2013) Functional and evolutionary implications of gene orthology. Nat Rev Genet 14:360–366

    Article  CAS  PubMed  Google Scholar 

  • Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  CAS  PubMed  Google Scholar 

  • Hakes L, Robertson DL, Oliver SG, Lovell SC (2007) Protein interactions from complexes: a structural perspective. Comp Funct Genomics 2007

    Google Scholar 

  • Hu P, Janga SC, Babu M, Diaz-Mejia JJ, Butland G et al (2009) Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol 7:e97

    Google Scholar 

  • Hung SS, Wasmuth J, Sanford C, Parkinson J (2010) DETECT—a density estimation tool for enzyme classification and its application to Plasmodium falciparum. Bioinformatics 26:1690–1698

    Article  CAS  PubMed  Google Scholar 

  • iRefScape (2011) A cytoscape plug-in for visualization and data mining of protein interaction data from iRefIndex. BMC Bioinformatics 12:388

    Google Scholar 

  • Jiang X, Fares MA (2011) Functional diversification of the twin-arginine translocation pathway mediates the emergence of novel ecological adaptations. Mol Biol Evol 28:3183–3193

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Brown PJ, Ducret A, Brun YV (2014) Sequential evolution of bacterial morphology by co-option of a developmental regulator. Nature 506:489–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joung JK, Ramm EI, Pabo CO (2000) A bacterial two-hybrid selection system for studying protein–DNA and protein–protein interactions. Proc Natl Acad Sci U S A 97:7382–7387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM et al (2009) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 2:40–79

    Google Scholar 

  • Kerrien S, Orchard S, Montecchi-Palazzi L, Aranda B, Quinn AF et al (2007) Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol 5:44

    Google Scholar 

  • Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:D334–D337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Killcoyne S, Carter GW, Smith J, Boyle J (2009) Cytoscape: a community-based framework for network modeling. Methods Mol Biol 563:219–239

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742

    Article  CAS  PubMed  Google Scholar 

  • Korbel JO, Jensen LJ, von Mering C, Bork P (2004) Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nat Biotechnol 22:911–917

    Article  CAS  PubMed  Google Scholar 

  • Kuzniar A, van Ham RC, Pongor S, Leunissen JA (2008) The quest for orthologs: finding the corresponding gene across genomes. Trends Genet 24:539–551

    Article  CAS  PubMed  Google Scholar 

  • Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M et al (2011) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857–D861

    Article  PubMed Central  PubMed  Google Scholar 

  • Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein–protein interactions from genome sequences. Science 285:751–753

    Article  CAS  PubMed  Google Scholar 

  • Mewes HW, Frishman D, Guldener U, Mannhaupt G, Mayer K et al (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30:31–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  CAS  PubMed  Google Scholar 

  • Monti M, Orru S, Pagnozzi D, Picci P (2005) Interaction proteomics. Biosci Rep 25:45–56

    Article  CAS  PubMed  Google Scholar 

  • Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Bader GD, Ferrin TE (2011) clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics 12: 436–449

    Google Scholar 

  • Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282:28791–28799

    Article  CAS  PubMed  Google Scholar 

  • Omelchenko MV, Makarova KS, Wolf YI, Rogozin IB, Koonin EV (2003) Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol 4

    Google Scholar 

  • Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96:2896–2901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pagani I, Liolios K, Jansson J, Chen I-MA, Smirnova T, Nosrat B, Markowitz M, Kyrpides NC (2011) The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40:D571–D579

    Article  PubMed Central  PubMed  Google Scholar 

  • Pardo M, Choudhary JS (2012) Assignment of protein interactions from affinity purification/mass spectrometry data. J Proteome Res 11:1462–1474

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg MJ, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96:4285–4288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peregrin-Alvarez JM, Xiong X, Su C, Parkinson J (2009a) The modular organization of protein interactions in Escherichia coli. PLoS Comp Biol 5

    Google Scholar 

  • Peregrin-Alvarez JM, Sanford C, Parkinson J (2009b) The conservation and evolutionary modularity of metabolism. Genome Biol 10

    Google Scholar 

  • Porcar M, Latorre A, Moya A (2013) What symbionts teach us about modularity. Front Bioeng Biotechnol 1

    Google Scholar 

  • Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A et al (2014) eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res 42:D231–D239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vasblom J et al (2014) The binary protein–protein interaction landscape of Escherichia coli. Nat Biotechnol 32:285–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Razick S, Magklaras G, Donaldson IM (2008) IRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9

    Google Scholar 

  • Remm M, Storm CE, Sonnhammer EL (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Reuter S, Connor TR, Barquist L, Walker D, Feltwell T et al (2014) Parallel independent evolution of pathogenicity within the genus Yersinia. Proc Natl Acad Sci U S A 111:6768–6773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR (1999) Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 19:3821–3835

    Article  Google Scholar 

  • Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muniz-Rascado L et al (2013) RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 41:D203–D213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saurin W, Hofnung M, Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48:22–41

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2

    Google Scholar 

  • Silva MT (2012) Classical labeling of bacterial pathogens according to their lifestyle in the host: inconsistencies and alternatives. Front Microbiol 3:71

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh AH, Wolf DM, Wang P, Arkin AP (2008) Modularity of stress response evolution. Proc Natl Acad Sci U S A 105:7500–7505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slonim DK, Yanai I (2009) Getting started in gene expression microarray analysis. PLoS Comput Biol 5

    Google Scholar 

  • Smith V, Botsteinm D, Brown PO (1995) Genetic footprinting: a genomic strategy for determining a gene’s function given its sequence. Proc Natl Acad Sci U S A 92:6479–6483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics 13:328–348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Su C, Peregrin-Alvarez JM, Butland G, Panse S, Fong V, Emili A, Parkinson J (2008) Bacteriome.org—an integrated protein interaction database for E. coli. Nucleic Acids Res 36:D632–D636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tatsuov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  Google Scholar 

  • Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    Article  CAS  PubMed  Google Scholar 

  • Toft C, Fares MA (2008) The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol Biol Evol 25:2069–2076

    Google Scholar 

  • Typas A, Nichols RJ, Siegele DA, Shales M, Collins S et al (2008) A tool-kit for high-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods 5:781–787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS et al (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  CAS  PubMed  Google Scholar 

  • Van Criekinge W, Beyaert R (1999) Yeast two-hybrid: state of the art. Biol Proced Online 2:1–38

    Article  PubMed Central  PubMed  Google Scholar 

  • van Dongen S, Abreu-Goodger C (2012) Using MCL to extract clusters from networks. Methods Mol Biol 804:281–295

    Article  PubMed  Google Scholar 

  • Vasblom J, Wodak SJ (2009) Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinformatics 10

    Google Scholar 

  • Wagner C, de Saizieu A, Schonfeld H-J, Kamber M, Lange R et al (2002) Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect Immun 70:6121–6128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wall DP, Fraser HB, Hirsh AE (2003) Detecting putative orthologs. Bioinformatics 19:1710–1711

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warsow G, Greber B, Falk SS, Harder C, Siatkowski M et al (2010) ExprEssence-revealing the essence of differential experimental data in the context of an interaction/regulation net-work. BMC Syst Bil 4:164–191

    Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E et al (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yellaboina S, Goyal K, Mande SC (2007) Inferring genome-wide functional linkages in E. coli by combining improved genome context methods: comparison with high-throughput experimental data. Genome Res 17:527–535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young KH (1998) Yeast two-hybrid: so many interactions, (in) so little time…. Biol Reprod 58:302–311

    Google Scholar 

  • Yu NY, Wagner JR, Liard MR, Melli G, Rey S et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan J, Zweers JC, van Dijl JM, Dalbey RE (2010) Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 67:179–199

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Parkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bundalovic-Torma, C., Parkinson, J. (2015). Comparative Genomics and Evolutionary Modularity of Prokaryotes. In: Krogan, PhD, N., Babu, PhD, M. (eds) Prokaryotic Systems Biology. Advances in Experimental Medicine and Biology, vol 883. Springer, Cham. https://doi.org/10.1007/978-3-319-23603-2_4

Download citation

Publish with us

Policies and ethics