Skip to main content

Sequential Peptide Affinity Purification System for the Systematic Isolation and Identification of Protein Complexes from Escherichia coli

  • Protocol
  • First Online:
Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 564))

Summary

Biochemical purification of affinity-tagged proteins in combination with mass spectrometry methods is increasingly seen as a cornerstone of systems biology, as it allows for the systematic genome-scale characterization of macromolecular protein complexes, representing demarcated sets of stably interacting protein partners. Accurate and sensitive identification of both the specific and shared polypeptide components of distinct complexes requires purification to near homogeneity. To this end, a sequential peptide affinity (SPA) purification system was developed to enable the rapid and efficient isolation of native Escherichia coli protein complexes (J Proteome Res 3:463–468, 2004). SPA purification makes use of a dual-affinity tag, consisting of three modified FLAG sequences (3X FLAG) and a calmodulin binding peptide (CBP), spaced by a cleavage site for tobacco etch virus (TEV) protease (J Proteome Res 3:463-468, 2004). Using the λ-phage Red homologous recombination system (PNAS 97:5978-5983, 2000), a DNA cassette, encoding the SPA-tag and a selectable marker flanked by gene-specific targeting sequences, is introduced into a selected locus in the E. coli chromosome so as to create a C-terminal fusion with the protein of interest. This procedure aims for near-endogenous levels of tagged protein production in the recombinant bacteria to avoid spurious, non-specific protein associations (J Proteome Res 3:463–468, 2004). In this chapter, we describe a detailed, optimized protocol for the tagging, purification, and subsequent mass spectrometry-based identification of the subunits of even low-abundance bacterial protein complexes isolated as part of an ongoing large-scale proteomic study in E. coli (Nature 433:531–537, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98, 4569–4574.

    Article  PubMed  CAS  Google Scholar 

  2. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., and Rothberg, J.M. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.

    Article  PubMed  CAS  Google Scholar 

  3. Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dumpelfeld, B., Edelmann, A., Heurtier, M.A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A.M., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G., Rick, J.M., Kuster, B., Bork, P., Russell, R.B., and Superti-Furga, G. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636.

    Article  PubMed  CAS  Google Scholar 

  4. Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A.P., Punna, T., Peregrin-Alvarez, J.M., Shales, M., Zhang, X., Davey, M., Robinson, M.D., Paccanaro, A., Bray, J.E., Sheung, A., Beattie, B., Richards, D.P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M.M., Vlasblom, J., Wu, S., Orsi, C., Collins, S.R., Chandran, S., Haw, R., Rilstone, J.J., Gandi, K., Thompson, N.J., Musso, G., St Onge, P., Ghanny, S., Lam, M.H., Butland, G., Altaf-Ul, A.M., Kanaya, S., Shilatifard, A., O’Shea, E.,Weissman, J.S., Ingles, C.J., Hughes, T.R., Parkinson, J., Gerstein, M., Wodak, S.J., Emili, A., and Greenblatt, J.F. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643.

    Article  PubMed  CAS  Google Scholar 

  5. Veraksa, A., Bauer, A., and Tsakonas, S.A. (2005) Analyzing protein complexes in Drosophila with tandem affinity purification-mass spectrometry. Dev Dynam 232, 827–834.

    Article  CAS  Google Scholar 

  6. Polanowska, J., Martin, J.S., Fisher, R., Scopa, T., Rae, I., and Boulton, S.J. (2004) Tandem immunoaffinity purification of protein complexes from Caenorhabditis elegans. Biotechniques 36, 778–780.

    PubMed  CAS  Google Scholar 

  7. Tsai, A., and Carstens, R.P. (2006) An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach. Nat Protoc 1, 2820–2827.

    Article  PubMed  CAS  Google Scholar 

  8. Knuesel, M., Wan, Y., Xiao, Z., Holinger, E., Lowe, N., Wang, W., and Liu, X. (2003) Identification of novel protein-protein interactions using a versatile mammalian tandem affinity purification expression system. Mol Cell Proteomics 2, 1225–1233.

    Article  PubMed  CAS  Google Scholar 

  9. Zeghouf, M., Li, J., Butland, G., Borkowska, A., Canadien, V., Richards, D., Beattie, B., Emili, A., and Greenblatt, J.F. (2004) Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J Proteome Res 3, 463–468.

    Article  PubMed  CAS  Google Scholar 

  10. Butland, G., Peregrı’n-Alvarez, J.M., Li, J., Yang, W., Yang, X., Canadien, V., Starostine, A., Richards, D., Beattie, B., Krogan, N., Davey, M., Parkinson, J., Greenblatt, J., and Emili, A. (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537.

    Article  Google Scholar 

  11. Hu, P., Janga, S.C., Babu, M., Dı´az-Mejı´a, J.J., Butland, G., Yang, W., Pogoutse, O., Guo, X., Phanse, S., Wong, P., Chandran, S., Christopoulos, C., Armavil1, A.N., Nasseri, N.K., Musso, G., Ali, M., Nazemof, N., Eroukova, V., Golshani, A., Paccanaro, A., Greenblatt, J.F., Hagelsieb, G.M., and Emili, A. (2009) Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins. PLoS Biol, In Press.

    Google Scholar 

  12. Hernan, R., Heuermann, K., and Brizzard, B. (2000) Multiple epitope tagging of expressed proteins for enhanced detection. Biotechniques 28, 789–793.

    PubMed  CAS  Google Scholar 

  13. Yu, D., Ellis, H.M., Lee, E.C., Jenkins, N.A., Copeland, N.G., and Court, D.L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. PNAS 97, 5978–5983.

    Article  PubMed  CAS  Google Scholar 

  14. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotech 17, 1030–1032.

    Article  CAS  Google Scholar 

  15. Datsenko, K.A. and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  16. Eng, J.K., McCormack, A.L., and Yates, I.I.I.J.R. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectr 5, 976–989.

    Article  CAS  Google Scholar 

  17. Kisliger, T., Rahman, K., Radulovic, D., Cox, B., Rossant, J., and Emili, A. (2003) PRISM, a generic large scale proteomic investigation strategy for mammals. Mol Cell Proteomics 2, 96–106.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Wenhong Yang, and Xinghua Guo for tagging and purifying the E. coli bait proteins and Shamanta Chandran, Michael Davey, Peter Wong, and Constantine Christopoulos for assisting with mass spectrometry. This work was supported by funds from the Ontario Research and Development Challenge Fund and Genome Canada to A.E. and J.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Emili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Babu, M., Butl, G., Pogoutse, O., Li, J., Greenblatt, J.F., Emili, A. (2009). Sequential Peptide Affinity Purification System for the Systematic Isolation and Identification of Protein Complexes from Escherichia coli . In: Reinders, J., Sickmann, A. (eds) Proteomics. Methods in Molecular Biology™, vol 564. Humana Press. https://doi.org/10.1007/978-1-60761-157-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-157-8_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-156-1

  • Online ISBN: 978-1-60761-157-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics