Skip to main content

Soy Isoflavones in the Breast Cancer Risk: From Preclinical Findings to Clinical Strategy

  • Chapter
Critical Dietary Factors in Cancer Chemoprevention

Abstract

There has been considerable interest about the potential of soy products to decrease risk of cancer, in particular cancer of the breast. Soy products are a unique dietary source of isoflavones, which bind to estrogen receptors and exhibit weak estrogen-like effects under certain experimental conditions. Based mostly on in vitro and rodent results, the relationship between soy foods/isoflavone supplements and breast cancer has become controversial. Several research groups observed that soy isoflavones may promote the growth of estrogen receptor-positive breast cancer cells, and in this regard, it is essential to evaluate the relevance of the preclinical data to the human disease. On the other hand, there are only limited clinical results with no evidence that soy isoflavones increase breast cancer risk in healthy women or worsen the prognosis of breast cancer patients. The epidemiologic data are generally consistent with the clinical results, with no association between increased breast cancer risk and regular consumption of soy products. It is important to determine if and when isoflavones are beneficial or detrimental in breast cancer patients and identify their role in the molecular mechanisms of mammary carcinogenesis.

This book chapter focuses on the biological effects of soy isoflavones in breast tissue, as well as preclinical research and clinical/epidemiologic data with recommendations required in human investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aidoo A, Manjanatha MG (2011) Influence of dietary soy isoflavones genistein and daidzein on genotoxicity and mammary carcinogenicity in rats exposed to the model carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). In: Mutanen M, Pajari AM (eds) Vegetables, whole grains, and their derivates in cancer prevention: Diet and cancer, vol 2. Springer, Dordrecht, pp 143–171

    Google Scholar 

  • Akiyama T, Ishida J, Nakagawa S et al (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595

    CAS  Google Scholar 

  • Allred CD, Allred KF, Ju YH et al (2001) Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner. Cancer Res 61:5045–5050

    CAS  Google Scholar 

  • Allred CD, Allred KF, Ju YH et al (2004) Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis 25:1649–1657

    Article  CAS  Google Scholar 

  • Allred CD, Twaddle NC, Allred KF et al (2005) Soy processing affects metabolism and disposition of dietary isoflavones in ovariectomized BALB/c mice. J Agric Food Chem 53:8542–8550

    Article  CAS  Google Scholar 

  • Anderson GL, Chlebowski RT, Aragaki AK et al (2012) Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: extended follow-up of the Women’s Health Initiative randomised placebo-controlled trial. Lancet Oncol 13:476–486

    Article  CAS  Google Scholar 

  • Bandele OJ, Osheroff N (2007) Bioflavonoids as poisons of human topoisomerase IIα and IIβ. Biochemistry 46:6097–6108

    Article  CAS  Google Scholar 

  • Banerjee S, Li Y, Wang Z, Sarkar FH (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269:226–422

    Article  CAS  Google Scholar 

  • Bentzon N, Düring M, Rasmussen BB et al (2008) Prognostic effect of estrogen receptor status across age in primary breast cancer. Int J Cancer 122:1089–1094

    Article  CAS  Google Scholar 

  • Beral V, Reeves G, Bull D et al (2011) Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst 103:296–305

    Article  CAS  Google Scholar 

  • Bharti AC, Aggarwal BB (2002) Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol 64:883–888

    Article  CAS  Google Scholar 

  • Bosviel R, Dumollard E, Déchelotte P et al (2012) Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer? OMICS 16:235–244

    Article  CAS  Google Scholar 

  • Boucher BA, Cotterchio M, Curca IA et al (2012) Intake of phytoestrogen foods and supplements among women recently diagnosed with breast cancer in Ontario, Canada. Nutr Cancer 64:695–703

    Article  CAS  Google Scholar 

  • Boyapati SM, Shu XO, Ruan ZX et al (2005) Soyfood intake and breast cancer survival: a follow up of the Shanghai Breast Cancer Study. Breast Cancer Res Treat 92:11–17

    Article  Google Scholar 

  • Brooks JD, Thompson LU (2005) Mammalian lignans and genistein decrease the activities of aromatase and 17β-hydroxysteroid dehydrogenase in MCF-7 cells. J Steroid Biochem Mol Biol 94:461–467

    Article  CAS  Google Scholar 

  • Brown NM, Belles CA, Lindley SL et al (2010a) The chemopreventive action of equol enantiomers in a chemically induced animal model of breast cancer. Carcinogenesis 31:886–893

    Article  CAS  Google Scholar 

  • Brown NM, Belles CA, Lindley SL et al (2010b) Mammary gland differentiation by early life exposure to enantiomers of the soy isoflavone metabolite equol. Food Chem Toxicol 48:3042–3050

    Article  CAS  Google Scholar 

  • Caan BJ, Natarajan L, Parker B et al (2011) Soy food consumption and breast cancer prognosis. Cancer Epidemiol Biomarkers Prev 20:854–858

    Article  CAS  Google Scholar 

  • Chalabi N, Coxam V, Satih S et al (2010) Gene signature of rat mammary glands: influence of lifelong soy isoflavones consumption. Mol Med Rep 3:75–81

    CAS  Google Scholar 

  • Chen FP, Chien MH (2014) Phytoestrogens induce apoptosis through a mitochondria/caspase pathway in human breast cancer cells. Climacteric 17:385–392

    Article  CAS  Google Scholar 

  • Chen M, Rao Y, Zheng Y et al (2014) Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: a meta-analysis of epidemiological studies. PLoS One 9:e89288

    Article  CAS  Google Scholar 

  • Chi F, Wu R, Zeng YC et al (2013) Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev 14:2407–2412

    Article  Google Scholar 

  • Cho YA, Kim J, Shin A et al (2010) Dietary patterns and breast cancer risk in Korean women. Nutr Cancer 62:1161–1169

    Article  Google Scholar 

  • Choi EJ, Kim GH (2008) Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine 15:683–690

    Article  CAS  Google Scholar 

  • Choi EJ, Kim GH (2013) Antiproliferative activity of daidzein and genistein may be related to ERα/c-erbB-2 expression in human breast cancer cells. Mol Med Rep 7:781–784

    CAS  Google Scholar 

  • Chuang SE, Yeh PY, Lu YS et al (2002) Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 63:1709–1716

    Article  CAS  Google Scholar 

  • Colozza M, Califano R, Minenza E et al (2008) Aromatase inhibitors: a new reality for the adjuvant endocrine treatment of early-stage breast cancer in postmenopausal women. Mini Rev Med Chem 8:564–574

    Article  CAS  Google Scholar 

  • Conroy SM, Maskarinec G, Park SY et al (2013) The effects of soy consumption before diagnosis on breast cancer survival: the Multiethnic Cohort Study. Nutr Cancer 65:527–537

    Article  CAS  Google Scholar 

  • Constantinou A, Xu H, Cunningham E et al (2001) Consumption of soy products may enhance the breast cancer-preventive effects of tamoxifen. Proc Am Assoc Cancer Res 42:826–827

    Google Scholar 

  • Dai Q, Shu XO, Jin F et al (2001) Population-based case-control study of soyfood intake and breast cancer risk in Shanghai. Br J Cancer 85:372–378

    Article  CAS  Google Scholar 

  • Dave B, Wynne R, Su Y et al (2010) Enhanced mammary progesterone receptor-A isoform activity in the promotion of mammary tumor progression by dietary soy in rats. Nutr Cancer 62:774–782

    Article  CAS  Google Scholar 

  • Davis JN, Singh B, Bhuiyan M et al (1998) Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutr Cancer 32:123–131

    Article  CAS  Google Scholar 

  • Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261

    Article  CAS  Google Scholar 

  • Dong JY, Qin LQ (2011) Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 125:315–323

    Article  CAS  Google Scholar 

  • Eto I (2006) Nutritional and chemopreventive anti-cancer agents up-regulate expression of p27Kip1, a cyclin-dependent kinase inhibitor, in mouse JB6 epidermal and human MCF7, MDA-MB-321 and AU565 breast cancer cells. Cancer Cell Int 6:1–19

    Article  CAS  Google Scholar 

  • Fan S, Meng Q, Auborn K et al (2006) BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br J Cancer 94:407–426

    Article  CAS  Google Scholar 

  • Fang CY, Tseng M, Daly MB (2005) Correlates of soy food consumption in women at increased risk for breast cancer. J Am Diet Assoc 105:1552–1558

    Article  Google Scholar 

  • Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  CAS  Google Scholar 

  • Fischer L, Mahoney C, Jeffcoat AR et al (2004) Clinical characteristics and pharmacokinetics of purified soy isoflavones: multiple-dose administration to men with prostate neoplasia. Nutr Cancer 48:160–170

    Article  CAS  Google Scholar 

  • Frey RS, Li J, Singletary KW (2001) Effects of genistein on cell proliferation and cell cycle arrest in nonneoplastic human mammary epithelial cells: involvement of Cdc2, p21(waf/cip1), p27(kip1), and Cdc25C expression. Biochem Pharmacol 61:979–989

    Article  CAS  Google Scholar 

  • Glazier MG, Bowman MA (2001) A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch Intern Med 161:1161–1172

    Article  CAS  Google Scholar 

  • Gong L, Li Y, Nedeljkovic-Kurepa A, Sarkar FH (2003) Inactivation of NF-kappaB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene 22:4702–4709

    Article  CAS  Google Scholar 

  • Goodman MT, Shvetsov YB, Wilkens LR et al (2009) Urinary phytoestrogen excretion and postmenopausal breast cancer risk: the multiethnic cohort study. Cancer Prev Res (Phila) 2:887–894

    Article  Google Scholar 

  • Gu L, House SE, Prior RL et al (2006) Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J Nutr 136:1215–1221

    CAS  Google Scholar 

  • Guha N, Kwan ML, Quesenberry CP Jr et al (2009) Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the Life After Cancer Epidemiology study. Breast Cancer Res Treat 118:395–405

    Article  CAS  Google Scholar 

  • Guo TL, Chi RP, Hernandez DM et al (2007) Decreased 7,12-dimethylbenz[a]anthracene-induced carcinogenesis coincides with the induction of antitumor immunities in adult female B6C3F1 mice pretreated with genistein. Carcinogenesis 28:2560–2566

    Article  CAS  Google Scholar 

  • Hamdy SM, Latif AK, Drees EA, Soliman SM (2012) Prevention of rat breast cancer by genistin and selenium. Toxicol Ind Health 28:746–757

    Article  CAS  Google Scholar 

  • Han J, Kurita Y, Isoda H (2013) Genistein-induced G2/M cell cycle arrest of human intestinal colon cancer Caco-2 cells is associated with Cyclin B1 and Chk2 down-regulation. Cytotechnology 65:973–978

    Article  CAS  Google Scholar 

  • Hooper L, Ryder JJ, Kurzer MS et al (2009) Effects of soy protein and isoflavones on circulating hormone concentrations in pre- and post-menopausal women: a systematic review and meta-analysis. Hum Reprod Update 15:423–440

    Article  CAS  Google Scholar 

  • Horie S (2012) Chemoprevention of prostate cancer: soy isoflavones and curcumin. Korean J Urol 53:665–672

    Article  Google Scholar 

  • Horn-Ross PL, Lee M, John EM et al (2000) Sources of phytoestrogen exposure among non-Asian women in California, USA. Cancer Causes Control 11:299–302

    Article  CAS  Google Scholar 

  • Hsieh CY, Santell RC, Haslam SZ et al (1998) Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res 58:3833–3838

    CAS  Google Scholar 

  • Ingle JN (2001) Current status of adjuvant endocrine therapy for breast cancer. Clin Cancer Res 7:4392–4396

    Google Scholar 

  • Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  Google Scholar 

  • Jones SM, Kazlauskas A (2001) Growth factor-dependent signaling and cell cycle progression. FEBS Lett 490:110–116

    Article  CAS  Google Scholar 

  • Jordan VC (2014) Avoiding the bad and enhancing the good of soy supplements in breast cancer. J Natl Cancer Inst 4:106–109

    Google Scholar 

  • Ju YH, Allred CD, Allred KF et al (2001) Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in athymic nude mice. J Nutr 131:2957–2962

    CAS  Google Scholar 

  • Ju YH, Doerge DR, Allred KF et al (2002) Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res 62:2474–2477

    CAS  Google Scholar 

  • Ju YH, Fultz J, Allred KF et al (2006) Effects of dietary daidzein and its metabolite, equol, at physiological concentrations on the growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in ovariectomized athymic mice. Carcinogenesis 27:856–863

    Article  CAS  Google Scholar 

  • Ju YH, Doerge DR, Woodling KA et al (2008) Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human breast cancer cells (MCF-7Ca) in vivo. Carcinogenesis 29:2162–2168

    Article  CAS  Google Scholar 

  • Kakehashi A, Tago Y, Yoshida M et al (2012) Hormonally active doses of isoflavone aglycones promote mammary and endometrial carcinogenesis and alter the molecular tumor environment in Donryu rats. Toxicol Sci 126:39–51

    Article  CAS  Google Scholar 

  • Kang X, Zhang Q, Wang S et al (2010) Effect of soy isoflavones on breast cancer recurrence and death for patients receiving adjuvant endocrine therapy. CMAJ 182:1857–1862

    Article  Google Scholar 

  • Kelloff GJ (2000) Perspectives on cancer chemoprevention research and drug development. Adv Cancer Res 78:199–334

    Article  CAS  Google Scholar 

  • Kostelac D, Rechkemmer G, Briviba K (2003) Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51:7632–7635

    Article  CAS  Google Scholar 

  • Kuzumaki T, Kobayashi T, Ishikawa K (1998) Genistein induces p21(Cip1/WAF1) expression and blocks the G1 to S phase transition in mouse fibroblast and melanoma cells. Biochem Biophys Res Commun 251:291–295

    Article  CAS  Google Scholar 

  • Kwon SJ, Song BH (2011) Meta-analysis for effect of dietary isoflavones on breast density and hot flush suppression. Korean J Microbiol Biotechnol 39:224–237

    CAS  Google Scholar 

  • Lacey M, Bohday J, Fonseka SM et al (2005) Dose–response effects of phytoestrogens on the activity and expression of 3β-hydroxysteroid dehydrogenase and aromatase in human granulosa-luteal cells. J Steroid Biochem Mol Biol 96:279–286

    Article  CAS  Google Scholar 

  • Lacroix M (2009) MDA-MB-435 cells are from melanoma, not from breast cancer. Cancer Chemother Pharmacol 63:567

    Article  Google Scholar 

  • Lee SA, Shu XO, Li H et al (2009) Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women’s Health Study. Am J Clin Nutr 89:1920–1926

    Article  CAS  Google Scholar 

  • Lee EH, Park SK, Park B et al (2010) Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: a systematic review and meta-analysis. Breast Cancer Res Treat 122:11–25

    Article  CAS  Google Scholar 

  • Lepri SR, Zanelatto LC, da Silva PB et al (2014) Effects of genistein and daidzein on cell proliferation kinetics in HT29 colon cancer cells: the expression of CTNNBIP1 (β-catenin), APC (adenomatous polyposis coli) and BIRC5 (survivin). Hum Cell 27:78–84

    Article  CAS  Google Scholar 

  • Li Y, Bhuiyan M, Sarkar FH (1999a) Induction of apoptosis and inhibition of c-erbB-2 in MDA-MB-435 cells by genistein. Int J Oncol 15:525–533

    CAS  Google Scholar 

  • Li Y, Upadhyay S, Bhuiyan M et al (1999b) Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene 18:3166–3172

    Article  CAS  Google Scholar 

  • Li YW, Ahmed F, Ali S et al (2005) Inactivation of nuclear factor kappa B by soy isoflavone genistein contributes to increased apoptosis mduced by chemotherapeutic agents in human cancer cells. Cancer Res 65:6934–6942

    Article  CAS  Google Scholar 

  • Li J, Li Z, Mo BQ (2006) Effects of ERK5 MAPK signaling transduction pathway on the inhibition of genistein to breast cancer cells. Wei Sheng Yan Jiu 35:184–186

    CAS  Google Scholar 

  • Li Z, Li J, Mo B et al (2008) Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol In Vitro 22:1749–1753

    Article  CAS  Google Scholar 

  • Li YS, Wu LP, Li KH et al (2011) Involvement of nuclear factor κB (NF-κB) in the downregulation of cyclooxygenase-2 (COX-2) by genistein in gastric cancer cells. J Int Med Res 39:2141–2150

    Article  CAS  Google Scholar 

  • Li Y, Meeran SM, Patel SN et al (2013) Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol Cancer 12:9

    Article  CAS  Google Scholar 

  • Lian FR, Bhuiyan M, Li YW et al (1998) Genistein-induced G(2)-M arrest, p21(WAF1) upregulation, and apoptosis in a non-small-cell lung cancer cell line. Nutr Cancer 31:184–191

    Article  CAS  Google Scholar 

  • Liao CH, Pan SL, Guh JH et al (2004) Genistein inversely affects tubulin-binding agent-induced apoptosis in human breast cancer cells. Biochem Pharmacol 67:2031–2038

    Article  CAS  Google Scholar 

  • Lim E, He HH, Chi D et al (2012) Estrogen receptor signaling in normal, BRCA (B) 1 and B2 mutation associated, and ER-positive breast cancer (BC) mammary cells. J Clin Oncol 30(Suppl):576

    Google Scholar 

  • Linseisen J, Piller R, Hermann S et al (2004) German case-control study. Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case-control study. Int J Cancer 110:284–290

    Article  CAS  Google Scholar 

  • Liu B, Edgerton S, Yang X et al (2005) Low-dose dietary phytoestrogen abrogates tamoxifen-associated mammary tumor prevention. Cancer Res 65:879–886

    CAS  Google Scholar 

  • Liu X, Sun C, Jin X et al (2013a) Genistein enhances the radio sensitivity of breast cancer cells via G2/M cell cycle arrest and apoptosis. Molecules 18:13200–13217

    Article  CAS  Google Scholar 

  • Liu YL, Zhang GQ, Yang Y et al (2013b) Genistein induces G2/M arrest in gastric cancer cells by increasing the tumor suppressor PTEN expression. Nutr Cancer 65:1034–1041

    Article  CAS  Google Scholar 

  • López-Lazaro M, Willmore E, Austin CA (2007) Cells lacking DNA topoisomerase IIβ are resistant to genistein. J Nat Prod 70:763–767

    Article  CAS  Google Scholar 

  • Ma D, Zhang Y, Yang T et al (2014) Isoflavone intake inhibits the development of 7,12-dimethylbenz(a)anthracene(DMBA)-induced mammary tumors in normal and ovariectomized rats. J Clin Biochem Nutr 54:31–38

    Article  CAS  Google Scholar 

  • Magee PJ, Rowland I (2012) Soy products in the management of breast cancer. Curr Opin Clin Nutr Metab Care 15:586–591

    Article  CAS  Google Scholar 

  • Magee PJ, Allsopp P, Samaletdin A, Rowland IR (2014) Daidzein, R-(+)equol and S-(-)equol inhibit the invasion of MDA-MB-231 breast cancer cells potentially via the down-regulation of matrix metalloproteinase-2. Eur J Nutr 53:345–350

    Article  CAS  Google Scholar 

  • Maggiolini M, Bonofiglio D, Marsico S et al (2001) Estrogen receptor alpha mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells. Mol Pharmacol 60:595–602

    CAS  Google Scholar 

  • Mandraju RK, Kannapiran P, Kondapi AK (2008) Distinct roles of Topoisomerase II isoforms: DNA damage accelerating α, double strand break repair promoting β. Arch Biochem Biophys 470:27–34

    Article  CAS  Google Scholar 

  • Martincic D, Hande KR (2005) Topoisomerase II inhibitors. Cancer Chemother Biol Response Modif 22:101–121

    Article  CAS  Google Scholar 

  • Martínez-Montemayor MM, Otero-Franqui E, Martinez J et al (2010) Individual and combined soy isoflavones exert differential effects on metastatic cancer progression. Clin Exp Metastasis 27:465–480

    Article  CAS  Google Scholar 

  • Maskarinec G, Erber E, Verheus M et al (2009) Soy consumption and histopathologic markers in breast tissue using tissue microarrays. Nutr Cancer 61:708–716

    Article  Google Scholar 

  • Medina D (2007) Chemical carcinogenesis of rat and mouse mammary glands. Breast Dis 28:63–68

    CAS  Google Scholar 

  • Messina MJ, Wood CE (2008) Soy isoflavones, estrogen therapy, and breast cancer risk: analysis and commentary. Nutr J 7:17

    Article  Google Scholar 

  • Messina M, Wu AH (2009) Perspectives on the soy-breast cancer relation. Am J Clin Nutr 89:1673S–1679S

    Article  CAS  Google Scholar 

  • Messina M, McCaskill-Stevens W, Lampre JW (2006a) Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst 98:1275–1284

    Article  Google Scholar 

  • Messina M, Nagata C, Wu AH (2006b) Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer 55:1–12

    Article  CAS  Google Scholar 

  • Miousse IR, Sharma N, Blackburn M et al (2013) Feeding soy protein isolate and treatment with estradiol have different effects on mammary gland morphology and gene expression in weanling male and female rats. Physiol Genomics 45:1072–1083

    Article  CAS  Google Scholar 

  • Mizushina Y, Shiomi K, Kuriyama I et al (2013) Inhibitory effects of a major soy isoflavone, genistein, on human DNA topoisomerase II activity and cancer cell proliferation. Int J Oncol 43:1117–1124

    CAS  Google Scholar 

  • Molzberger AF, Soukup ST, Kulling SE, Diel P (2013) Proliferative and estrogenic sensitivity of the mammary gland are modulated by isoflavones during distinct periods of adolescence. Arch Toxicol 87:1129–1140

    Article  CAS  Google Scholar 

  • Mukherjee S, Acharya BR, Bhattacharyya B et al (2010) Genistein arrests cell cycle progression of A549 cells at the G(2)/M phase and depolymerizes interphase microtubules through binding to a unique site of tubulin. Biochemistry 49:1702–1712

    Article  CAS  Google Scholar 

  • Nagaraju GP, Zafar SF, El-Rayes BF (2013) Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutr Rev 71:562–572

    Article  Google Scholar 

  • Nagata C (2010) Factors to consider in the association between soy isoflavone intake and breast cancer risk. J Epidemiol 20:83–89

    Article  Google Scholar 

  • Nechuta SJ, Caan BJ, Chen WY et al (2012) Soy food intake after diagnosis of breast cancer and survival: an in-depth analysis of combined evidence from cohort studies of US and Chinese women. Am J Clin Nutr 96:123–132

    Article  CAS  Google Scholar 

  • Ono M, Koga T, Ueo H, Nakano S (2012) Effects of dietary genistein on hormone-dependent rat mammary carcinogenesis induced by ethyl methanesulphonate. Nutr Cancer 64:1204–1210

    Article  CAS  Google Scholar 

  • Pagliacci MC, Smacchia M, Migliorati G et al (1994) Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. Eur J Cancer 30A:1675–1682

    Article  CAS  Google Scholar 

  • Pan H, Zhou W, He W et al (2012) Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. Int J Mol Med 30:337–343

    CAS  Google Scholar 

  • Papazisis KT, Kalemi TG, Zambouli D et al (2006) Synergistic effects of protein tyrosine kinase inhibitor genistein with camptothecins against three cell lines in vitro. Cancer Lett 233:255–264

    Article  CAS  Google Scholar 

  • Pavese JM, Farmer RL, Bergan RC (2010) Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev 29:465–482

    Article  CAS  Google Scholar 

  • Perrin D, van Hille B, Hill BT (1998) Differential sensitivities of recombinant human topoisomerase IIα and β various classes of topoisomerase II-interacting agents. Biochem Pharmacol 56:503–507

    Article  CAS  Google Scholar 

  • Peterson G, Barnes S (1996) Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells. Cell Growth Differ 7:1345–1351

    CAS  Google Scholar 

  • Pike AC, Brzozowski AM, Hubbard RE et al (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J 18:4608–4618

    Article  CAS  Google Scholar 

  • Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802

    Article  CAS  Google Scholar 

  • Privat M, Aubel C, Arnould S et al (2010) (2010) AKT and p21 WAF1/CIP1 as potential genistein targets in BRCA1-mutant human breast cancer cell lines. Anticancer Res 30:2049–2054

    CAS  Google Scholar 

  • Pugalendhi P, Manoharan S (2010) Chemopreventive potential of genistein and daidzein in combination during 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary carcinogenesis in Sprague-Dawley rats. Pak J Biol Sci 13:279–286

    Article  CAS  Google Scholar 

  • Pugalendhi P, Manoharan S, Suresh K, Baskaran N (2011) Genistein and daidzein, in combination, protect cellular integrity during 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary carcinogenesis in Sprague-Dawley rats. Afr J Tradit Complement Altern Med 8:91–97

    CAS  Google Scholar 

  • Ronco AL, de Stefani E, Aune D et al (2010) Nutrient patterns and risk of breast cancer in Uruguay. Asian Pac J Cancer Prev 11:519–524

    Google Scholar 

  • Ronis MJ, Shankar K, Gomez-Acevedo H et al (2012) Mammary gland morphology and gene expression differ in female rats treated with 17β-estradiol or fed soy protein isolate. Endocrinology 153:6021–6032

    Article  CAS  Google Scholar 

  • Russo IH, Ruso J et al (1996) Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 104:938–967

    Article  CAS  Google Scholar 

  • Saarinen NM, Power K, Chen J, Thompson LU (2006) Flaxseed attenuates the tumor growth stimulating effect of soy protein in ovariectomized athymic mice with MCF-7 human breast cancer xenografts. Int J Cancer 119:925–931

    Article  CAS  Google Scholar 

  • Sakamoto T, Horiguchi H, Oguma E et al (2010) Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. J Nutr Biochem 21:856–864

    Article  CAS  Google Scholar 

  • Salti GI, Grewal S, Mehta RR, Das Gupta TK, Boddie AW Jr, Constantinou AI (2000) Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells. Eur J Cancer 36:796–802

    Article  CAS  Google Scholar 

  • Santell RC, Kieu N, Helferich WG (2000) Genistein inhibits growth of estrogen-independent human breast cancer cells in culture but not in athymic mice. J Nutr 130:1665–1669

    CAS  Google Scholar 

  • Sarkar FH, Li YW (2002) Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 21:265–280

    Article  CAS  Google Scholar 

  • Sartippour MR, Rao JY, Apple S et al (2004) A pilot clinical study of short term isoflavone supplements in breast cancer patients. Nutr Cancer 49:59–65

    Article  CAS  Google Scholar 

  • Satih S, Chalabi N, Rabiau N et al (2010) Transcriptional profiling of breast cancer cells exposed to soy phytoestrogens after BRCA1 knockdown with a whole human genome microarray approach. Nutr Cancer 201062:659–667

    Article  CAS  Google Scholar 

  • Sergeev IN (2004) Genistein induces Ca2+-mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem Biophys Res Commun 321:462–467

    Article  CAS  Google Scholar 

  • Setchell KD, Clerici C (2010) Equol: pharmacokinetics and biological actions. J Nutr 140:1363–1368

    Article  CAS  Google Scholar 

  • Setchell KD, Cole SJ (2006) Method of defining equol-producer status and its frequency among vegetarians. J Nutr 136:2188–2193

    CAS  Google Scholar 

  • Setchell KD, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J Nutr 132:3577–3584

    CAS  Google Scholar 

  • Setchell KD, Clerici C, Lephart ED et al (2005) S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr 81:1072–1079

    CAS  Google Scholar 

  • Setchell KD, Brown NM, Zhao X et al (2011) Soy isoflavone phase II metabolism differs between rodents and humans: implications for the effect on breast cancer risk. Am J Clin Nutr 94:1284–1294

    Article  CAS  Google Scholar 

  • Shao ZM, Wu J, Shen ZZ et al (1998) Genistein exerts multiple suppressive effects on human breast carcinoma cells. Cancer Res 58:4851–4857

    CAS  Google Scholar 

  • Shike M, Doane A, Russo L et al (2014) The effects of soy supplementation on gene expression in breast cancer: a randomized placebo-controlled study. J Natl Cancer Inst 106(9):dju189. doi:10.1093/jnci/dju189

    Article  Google Scholar 

  • Shim HY, Park JH, Paik HD et al (2007) Genistein-induced apoptosis of human breast cancer MCF-7 cells involves calpain-caspase and apoptosis signaling kinase 1-p38 mitogen-activated protein kinase activation cascades. Anticancer Drugs 18:649–657

    Article  CAS  Google Scholar 

  • Shin A, Kim J, Lim SY et al (2010) Dietary mushroom intake and the risk of breast cancer based on hormone receptor status. Nutr Cancer 62:476–483

    Article  Google Scholar 

  • Shishodia S, Aggarwal BB (2004) Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res 119:139–173

    Article  CAS  Google Scholar 

  • Shu XO, Zheng Y, Cai H et al (2009) Soy food intake and breast cancer survival. JAMA 302:2437–2443

    Article  Google Scholar 

  • Stoll B (1977) Palliation by castration or hormone ablation. In: Stoll BA (ed) Breast cancer management early and late. London: William Herman Medical Books Ltd, pp 135–149

    Google Scholar 

  • Taylor CK, Levy RM, Elliott JC et al (2009) The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev 67:398–415

    Article  Google Scholar 

  • Thun MJ, DeLancey JO, Center MM et al (2010) The global burden of cancer: priorities for prevention. Carcinogenesis 31:100–110

    Article  CAS  Google Scholar 

  • Tominaga Y, Wang A, Wang RH et al (2007) Genistein inhibits Brca1 mutant tumor growth through activation of DNA damage checkpoints, cell cycle arrest, and mitotic catastrophe. Cell Death Differ 14:472–479

    Article  CAS  Google Scholar 

  • Trock BJ, Hilakivi-Clarke L, Clarke R (2006) Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst 98:459–471

    Article  CAS  Google Scholar 

  • Valeri A, Fiorenzani P, Rossi R et al (2012) The soy phytoestrogens genistein and daidzein as neuroprotective agents against anoxia-glucopenia and reperfusion damage in rat urinary bladder. Pharmacol Res 66:309–316

    Article  CAS  Google Scholar 

  • Wada K, Nakamura K, Tamai Y et al (2013) Soy isoflavone intake and breast cancer risk in Japan: from the Takayama study. Int J Cancer 133:952–960

    Article  CAS  Google Scholar 

  • Wang JC (1996) DNA topoisomerases. Annu Rev Biochem 65:635–692

    Article  CAS  Google Scholar 

  • Wang Q, Li H, Tao P et al (2011) Soy isoflavones, CYP1A1, CYP1B1, and COMT polymorphisms, and breast cancer: a case-control study in southwestern China. DNA Cell Biol 30:585–595

    Article  CAS  Google Scholar 

  • Ward H, Chapelais G, Kuhnle GG et al (2008) Breast cancer risk in relation to urinary and serum biomarkers of phytoestrogen exposure in the European Prospective into Cancer-Norfolk cohort study. Breast Cancer Res 10:R32

    Article  CAS  Google Scholar 

  • Wu AH, Koh WP, Wang R et al (2008) Soy intake and breast cancer risk in Singapore Chinese Health Study. Br J Cancer 99:196–200

    Article  CAS  Google Scholar 

  • Xie Q, Chen ML, Qin Y et al (2013) Isoflavone consumption and risk of breast cancer: a dose-response meta-analysis of observational studies. Asia Pac J Clin Nutr 22:118–127

    CAS  Google Scholar 

  • Xu J, Loo G (2001) Different effects of genistein on molecular markers related to apoptosis in two phenotypically dissimilar breast cancer cell lines. J Cell Biochem 82:78–88

    Article  CAS  Google Scholar 

  • Yamamoto S, Sobue T, Kobayashi M et al (2003) Soy, isoflavones, and breast cancer risk in Japan. J Natl Cancer Inst 95:906–913

    Article  CAS  Google Scholar 

  • Yamasaki M, Mine Y, Nishimura M et al (2013) Genistein induces apoptotic cell death associated with inhibition of the NF-κB pathway in adult T-cell leukemia cells. Cell Biol Int 37:742–747

    Article  CAS  Google Scholar 

  • Yeh PY, Chuang SE, Yeh KH et al (2002) Increase of the resistance of human cervical carcinoma cells to cisplatin by inhibition of the MEK to ERK signaling pathway partly via enhancement of anticancer drug-induced NF kappa B activation. Biochem Pharmacol 63:1423–1430

    Article  CAS  Google Scholar 

  • Zava DT, Duwe G (1997) Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr Cancer 27:31–40

    Article  CAS  Google Scholar 

  • Zhang M, Yang H, Holman CD (2009) Dietary intake of isoflavones and breast cancer risk by estrogen and progesterone receptor status. Breast Cancer ResTreat 118:553–563

    Article  CAS  Google Scholar 

  • Zhang C, Ho SC, Lin F et al (2010) Soy product and isoflavone intake and breast cancer risk defined by hormone receptor status. Cancer Sci 101:501–507

    Article  CAS  Google Scholar 

  • Zhang X, Gao YT, Yang G et al (2012a) Urinary isoflavonoids and risk of coronary heart disease. Int J Epidemiol 41:1367–1375

    Article  Google Scholar 

  • Zhang YF, Kang HB, Li BL et al (2012b) Positive effects of soy isoflavone food on survival of breast cancer patients in China. Asian Pac J Cancer Prev 3:479–482

    Article  Google Scholar 

  • Zhou N, Yan Y, Li W et al (2009) Genistein inhibition of topoisomerase IIα expression participated by Sp1 and Sp3 in HeLa cell. Int J Mol Sci 10:3255–3268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic (No. VEGA 11/0322/14 and VEGA 1/0071/13) and by the grant FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123) co-funded from EU sources and European Regional Development Fund. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kruzliak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kubatka, P., Mojžiš, J., Pilátová, M., Péč, M., Kruzliak, P. (2016). Soy Isoflavones in the Breast Cancer Risk: From Preclinical Findings to Clinical Strategy. In: Ullah, M., Ahmad, A. (eds) Critical Dietary Factors in Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-319-21461-0_10

Download citation

Publish with us

Policies and ethics