Skip to main content

Therapy of Type 1 Diabetes Mellitus

Principles of Diabetes Mellitus
  • 325 Accesses

Abstract

People with type 1 diabetes have distinct needs and challenges for their management and recent advances have made it even more important to understand the diagnosis and treatment of this disease, distinct from type 2 diabetes. Historically, the guidelines for treating type 1 diabetes and type 2 diabetes were the same, but recent advances in the field of type 1 diabetes have led to a greater understanding of its uniqueness, as well as of the fact that both children and adults, of all ethnicities, can develop type 1 diabetes (Bruno et al. Act Diabetol, 2016).

In recent years, we have learned a great deal about the natural history of type 1 diabetes and its treatments (Sosenko et al. Diabetes Care 38:271–276, 2015; Laugesen et al. Diabet Med 32:843–852, 2015). We know, for instance, that the average blood glucose/hemoglobin A1C level in adults with type 1 diabetes in the T1D Exchange, a large registry of individuals with type 1 diabetes, is ~7.7 % (Sosenko et al. Diabetes Care 38:271–276, 2015; Laugesen et al. Diabet Med 32:843–852, 2015) which is well above the target of <7 %. Therefore, it is clear that the treatment we have for type 1 diabetes – use of exogenous insulin – still falls far short of its goal in many patients even though it is lifesaving for those who do not make any insulin of their own (Heller et al. Diabetes Res Clin Pract 78:149–158, 2007).

Recently, we have expanded the insulin options for people with type 1 diabetes (Postgrad Med J 92:152–164, 2016). Newer insulins and more concentrated (U200 and U300) insulin analogues have come on the market, as well as a new form of inhaled insulin and biosimilar insulin analogues. Noninsulin therapies, metformin, pramlintide, GLP-1 receptor agonists, and SGLT-2 inhibitors, have been studied, with variable results. Insulin delivery devices, from pens to pumps, provide more options for patients. Monitoring technology, with easy to use glucose meters and continuing glucose sensing, makes it easier to follow blood sugar levels and react to trends in glucose levels. None of this approaches the functionality of the human beta cell, however, and it will be our ability to restore and maintain beta cell mass that will truly treat (and potentially cure) type 1 diabetes. This review will focus on the treatments that are currently available, the evolving area of continuous glucose monitoring and possible cures for type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Laugesen E, Ostergaard JA, Leslie RD. Latent autoimmune diabetes of the adult: current knowledge and uncertainty. Diabet Med. 2015;32:843–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heller S, Kozlovski P, Kurtzhals P. Insulin’s 85th anniversary – an enduring medical miracle. Diabetes Res Clin Pract. 2007;78:149–58.

    Article  CAS  PubMed  Google Scholar 

  3. New insulins and newer insulin regimens: a review of their role in improving glycemic control in patients with diabetes. Postgrad med J. 2016;92:152–64.

    Google Scholar 

  4. Otieno CF, Kayima JK, Omonge EO, Oyoo GO. Diabetic ketoacidosis: risk factors, mechanisms and management strategies in sub-Saharan Africa: a review. East Afr Med J. 2005;82 Suppl 12:S197–203.

    CAS  PubMed  Google Scholar 

  5. Hirsch I. Insulin analogues. N Engl J Med. 2005;352:174–83.

    Article  CAS  PubMed  Google Scholar 

  6. Tibaldi JM. Evolution of insulin: from human to analog. Am J Med. 2014;127 Suppl 10:S25–38.

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt S, Schelde B, Norgaard K. Effects of carbohydrate counting inpatients with type 1 diabetes: a systematic review. Diabet Med. 2014;31:886–96.

    Article  CAS  PubMed  Google Scholar 

  8. King AB, Armstrong DU. A prospective evaluation of insulin dosing recommendations in patients with type 1 diabetes at near normal glucose control: bolus dosing. J Diabetes Sci Technol. 2007;1:42–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harmel ALP, Mathur R. Davidson diabetes mellitus. 5th ed. Philadelphia: WB Saunders; 2004.

    Google Scholar 

  10. Home PD, Bergenstal RM, Bolli GB, et al. New insulin glargine 300 units/ml versus glargine 100 units/ml in people with type 1 diabetes: a randomized, phase 3a, open-label clinical trial (EDITION 4). Diabetes Obes Metab. 2015;17:859–67.

    Article  CAS  Google Scholar 

  11. Davies MJ, Gross JL, Ono Y, et al. Efficacy and safety of insulin degludec given as part of basal-bolus treatment with mealtime insulin aspart in type 1 diabetes: a randomized, open-label, treat-to-target non-inferiority trial. Diabetes Obes Metab. 2014;16:922–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mathieu C, Hollander P, Miranda-Palma B, et al. Efficacy and safety of insulin degludec in a flexible dosing regimen vs insulin glargine in patients with type 1 diabetes (BEGIN: Flex T1): a randomized, treat-to-target trial with a 26-week extension. JCEM. 2013;98:1154–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chabanuk AJ. U-200 Humalog insulin now available in United States. Home Health Now. 2016;34:102.

    Google Scholar 

  14. Cochran E, Musso C, Gorden P. The use of U500 insulin in patients with extreme insulin resistance. Diabetes Care. 2005;28:1240–4.

    Article  CAS  PubMed  Google Scholar 

  15. Gough SCL. A review of human and analogue insulin trials. Diabetes Res Clin Pract. 2007;77:1–15.

    Article  CAS  PubMed  Google Scholar 

  16. Galloway JA, Spradlin CT, Nelson RL, Wentworth SM, Davidson JA, Swarner JL. Factors influencing the absorption, serum insulin concentration, and blood glucose responses after injections of regular insulin and various insulin mixtures. Diabetes Care. 1981;4:366–76.

    Article  CAS  PubMed  Google Scholar 

  17. Sindelka G, Heinemann L, Berger M, et al. Effect of insulin concentration, subcutaneous fat thickness and skin temperature on subcutaneous insulin absorption in healthy subjects. Diabetologia. 1994;37:377.

    Article  CAS  PubMed  Google Scholar 

  18. Thow J, Home P. Insulin injection technique: depth of injection is important. Br Med J. 1990;301:3–4.

    Article  CAS  Google Scholar 

  19. Bantle JP, Neal L, Frankamp LM. Effects of the anatomical region used for insulin injections in type 1 diabetic subjects. Diabetes Care. 1993;12:1592–7.

    Article  Google Scholar 

  20. Blundell TL, Cutfield JF, Cutfield SM, et al. Three-dimensional atomic structure of insulin and its relationship to activity. Diabetes. 1972;21 Suppl 2:492–505.

    Article  CAS  PubMed  Google Scholar 

  21. Howey DC, Bowsher RR, Brunelle RL, Woodworth JR. Lys(B28), Pro(B29)-human insulin. A rapidly absorbed analogue of human insulin. Diabetes. 1994;43:396–402.

    Article  CAS  PubMed  Google Scholar 

  22. Jacobs MA, Keulen ET, Kanc K, et al. Metabolic efficacy of preprandial administration of Lys(B28), Pro(B29) human insulin analog in IDDM patients: a comparison with human regular insulin during a three-meal test period. Diabetes Care. 1997;20:1279–86.

    Article  CAS  PubMed  Google Scholar 

  23. Howey DC, Bowsher RR, Brunell RL, et al. [Lys(B28), Pro(B29)]-human insulin: effect of injection time on postprandial glycemia. Clin Pharmacol Ther. 1995;58:459–69.

    Article  CAS  PubMed  Google Scholar 

  24. Raskin P, Guthrie RA, Leiter L, Riis A, Jovanovic L. Use of insulin aspart, a fast-acting insulin analog, as the mealtime insulin in the management of patients with type 1 diabetes. Diabetes Care. 2000;23:583–8.

    Article  CAS  PubMed  Google Scholar 

  25. Home PD, Lindholm A, Riis A. Insulin aspart vs human insulin in the management of long-term blood glucose control in type 1 diabetes mellitus: a randomized controlled trial: European Insulin Aspart Study Group. Diabet Med. 2000;17:762–70.

    Article  CAS  PubMed  Google Scholar 

  26. Becker RH, Frick AD, Nosek L, Heinemann L, Rave K. Dose–response relationship of insulin glulisine in subjects with type 1 diabetes. Diabetes Care. 2007;30:2506–7.

    Article  CAS  PubMed  Google Scholar 

  27. Becker RH, Frick AD. Clinical pharmacokinetics and pharmacodynamics of insulin glulisine. Clin Pharmacokinet. 2008;47:7–20.

    Article  CAS  PubMed  Google Scholar 

  28. Cobry E, McFann K, Messer L, Gage V, VanderWel B, Horton L, Chase HP. Timing of meal insulin boluses to achieve optimal postprandial glycemic control in patients with type 1 diabetes. Diabetes Technol Ther. 2010;12:173–7.

    Article  CAS  PubMed  Google Scholar 

  29. Heinemann L, Linkeschova R, Rave K, Hompesch B, Sedlak M, Heise T. Time-action profile of the long-acting insulin analog glargine (HOE901) in comparison with those of NPH insulin and placebo. Diabetes Care. 2000;23:644–9.

    Article  CAS  PubMed  Google Scholar 

  30. Pieber TR, Eugene-Jolchine I, Derobert E. Efficacy and safety of HOE 901 versus NPH insulin in patients with type 1 diabetes. The European Study Group of HOE 901 in type 1 diabetes. Diabetes Care. 2000;23:157–62.

    Article  CAS  PubMed  Google Scholar 

  31. Gerich J, Becker RHA, Zhu R, Bolli GA. Fluctuation of serum basal insulin levels following single and multiple dosing of insulin glargine. Diabetes Technol Ther. 2006;8:237–43.

    Article  CAS  PubMed  Google Scholar 

  32. Ratner RE, Hirsch IB, Neifing JL, Garg SK, Mecca TE, Wilson CA. Less hypoglycemia with insulin glargine in intensive insulin therapy for type 1 diabetes. US Study Group of Insulin Glargine in Type 1 Diabetes. Diabetes Care. 2000;23:639–43.

    Article  CAS  PubMed  Google Scholar 

  33. Porcellati F, Rossetti P, Pampanelli S, et al. Better long-term glycaemic control with the basal insulin glargine as compared with NPH in patients with type 1 diabetes mellitus given meal-time lispro insulin. Diabet Med. 2004;21:1213–20.

    Article  CAS  PubMed  Google Scholar 

  34. Raskin P. Efficacy and safety of insulin detemir. Endocrinol Metab Clin North Am. 2007;36 Suppl 1:21–32.

    Article  CAS  PubMed  Google Scholar 

  35. Brunner GA, Sendlhofer G, Wutte A, et al. Pharmacokinetic and pharmacodynamic properties of long-acting insulin analogue NN304 in comparison to NPH insulin in humans. Exp Clin Endocrinol Diabetes. 2000;108:100–6.

    Article  CAS  PubMed  Google Scholar 

  36. Porcellati F, Rossetti P, Busciantella MR, et al. Comparison of pharmacokinetics and dynamics of the long-acting insulin analogs glargine and detemir at steady state in type 1 diabetes: a double-blind randomized, crossover study. Diabetes Care. 2007;30:2447–52.

    Article  CAS  PubMed  Google Scholar 

  37. Pettus J, Santos CT, Tamborlane WV, Edelman S. The past, present and future of basal insulins. Diabetes Metab Res Rev. 2015. doi: 10.1002/dmrr.2763.

    Google Scholar 

  38. Tylee T, Hirsch IB. Costs associated with using different insulin preparations. JAMA. 2015;314:665–6.

    Article  CAS  PubMed  Google Scholar 

  39. Peters LA, Pollom D, Zielonka JS, Carey MA, Edelman SV. Biosimilars and new insulin versions. Endocr Pract. 2015;21:1387–97

    Google Scholar 

  40. The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  41. Lind M, Svensson A, et al. Glycemic control and excess mortality in type 1 diabetes. NEJM. 2014;341:1972–82.

    Article  CAS  Google Scholar 

  42. Beck RW, Tamborlane WV, Bergenstal RM, et al. The T1D exchange clinic registry. JCEM. 2012;97:4383–9.

    CAS  PubMed  Google Scholar 

  43. Miller KM, Foster NC, Beck RW, Bergenstal RM, DuBose SN, DiMeglio LA, Maahs DM, Tamborlane WV, T1D Exchange Clinic Network. Current state of type 1 diabetes treatment in the U.S.: updated data from the T1D Exchange clinic registry. Diabetes Care. 2015;38:971–8.

    Article  PubMed  Google Scholar 

  44. Chase HP, Lockspeiser T, Perry B, et al. The impact of the DCCT and Humalog insulin on glycohemoglobin levels and severe hypoglycemia in type 1 diabetes. Diabetes Care. 2001;24:430–4.

    Article  CAS  PubMed  Google Scholar 

  45. Hirsch IB. Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care. 2015;38:1610–4.

    Article  CAS  PubMed  Google Scholar 

  46. Miller KM, Beck RW, Bergenstal RM, Goland RS, Haller MJ, McGill JB, Rodriguez H, Simmons JH, Hirsch IB, T1D Exchange Clinic Network. Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants. Diabetes Care. 2013;36:2009–14.

    Article  PubMed  PubMed Central  Google Scholar 

  47. American Diabetes Association. Standards of medical care in diabetes – 2016. Diabetes Care. 2016;39 Suppl 1:S12–54.

    Google Scholar 

  48. Blumer I, Edelman SV, Hirsch IB. Insulin-pump therapy for type 1 diabetes mellitus. N Engl J Med. 2012;367:383.

    Article  CAS  PubMed  Google Scholar 

  49. Heinemann L, Fleming GA, Petrie JR, Holl RW, Bergenstal RM, Peters AL. Insulin pump risks and benefits: a clinical appraisal of pump safety standards, adverse event reporting, and research needs: a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetes Care. 2015;38:716–22.

    Article  CAS  PubMed  Google Scholar 

  50. Bode BW, Steed RD, Davidson PC. Reduction in severe hypoglycemia with long-term continuous subcutaneous insulin infusion in type 1 diabetes. Diabetes Care. 1996;19:324–7.

    Article  CAS  PubMed  Google Scholar 

  51. Bergenstal RM, Tamborlane WV, Ahmann A, et al. Threshold-based insulin-pump interruption for reduction of hypoglycemia. NEJM. 2013;369:224–32.

    Article  CAS  PubMed  Google Scholar 

  52. Vardar B, Kizilci S. Incidence of lipohypertrophy in diabetic patients and a study of influencing factors. Diabetes Res Clin Pract. 2007;77:231–6.

    Article  PubMed  Google Scholar 

  53. Young RJ, Steel JM, Frier BM, et al. Insulin injection sites in diabetes – a neglected area? BMJ. 1981;283:349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chowdhury TA, Escudier V. Poor glycaemic control caused by insulin induced lipohypertrophy. BMJ. 2003;327:383–4.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gross TM, Kayne D, King A, Rother C, Juth S. A bolus calculator is an effective means of controlling postprandial glycemia in patients on insulin pump therapy. Diabetes Technol Ther. 2003;5:365–9.

    Article  PubMed  Google Scholar 

  56. Bevier WC, Zisser H, Palerm CC, et al. Calculating the insulin to carbohydrate ratio using the hyperinsulinaemic-euglycaemic clamp-a novel use for a proven technique. Diabetes Metab Res Rev. 2007;23:472–8.

    Article  CAS  PubMed  Google Scholar 

  57. Bell KJ, Smart CE, et al. Impact of fat, protein and glycemic index on postprandial glucose control in type 1 diabetes. Diabetes Care. 2015;38:1008–15.

    Article  CAS  PubMed  Google Scholar 

  58. Schwartz SS, Epstein S, Corkey BE, Grant SF, Gavin JR, Aguilar RB. The time is right for a new classification system for diabetes: rationale and implications of the beta-cell-centric classification schema. Diabetes Care. 2016;39:179–86.

    Article  PubMed  Google Scholar 

  59. Merger SR, Leslie RD, Boehm BO. The broad clinical phenotype of type 1 diabetes at presentation. Diabet Med. 2013;30:170–8.

    Article  CAS  PubMed  Google Scholar 

  60. Davis AK, DuBose SN, Haller MJ, et al. Prevalence of detectable C-peptide according to age at diagnosis and duration of type 1 diabetes. Diabetes Care. 2015;38:476–81.

    Article  CAS  PubMed  Google Scholar 

  61. Carlson MG, Campbell PJ. Intensive insulin therapy and weight gain in IDDM. Diabetes. 1993;42:1700.

    Article  CAS  PubMed  Google Scholar 

  62. Lee P, Kinsella J, Borkman M, Carter J. Bilateral pleural effusions, ascites, and facial an peripheral oedema in a 19-year-old woman 2 weeks following commencement of insulin lispro and detemir – an unusual presentation of insulin oedema. Diabet Med. 2007;24:1282–5.

    Article  CAS  PubMed  Google Scholar 

  63. Radermecker RP, Scheen AJ. Allergy reactions to insulin: effects of continuous subcutaneous insulin infusion and insulin analogues. Diabetes Metab Res Rev. 2007;23:348–55.

    Article  CAS  PubMed  Google Scholar 

  64. Towse A, O’Brien M, Twaroj FJ, Braimon J, Moses AC. Local secondary reaction to insulin injection. A potential role for latex antigens in insulin vials and syringes. Diabetes Care. 1995;18:1195–7.

    Article  CAS  PubMed  Google Scholar 

  65. Kaya A, Gungor K, Karakose S. Severe anaphylactic reaction to human insulin in a diabetic patient. J Diabetes Complicat. 2007;21:124–7.

    Article  PubMed  Google Scholar 

  66. Jacquier J, Chik CL, Senior PA. A practical, clinical approach to the assessment and management of suspected insulin allergy. Diabet Med. 2013;30:977–85.

    Article  CAS  PubMed  Google Scholar 

  67. Al-Khenaizan S, Al Thubaiti M, Al Alwan I. Lispro insulin-induced lipoatrophy: a new case. Pediatr Diabetes. 2007;8:393–6.

    Article  PubMed  Google Scholar 

  68. Radermecker RP, Pierard GE, Scheen AJ. Lipodystrophy reactions to insulin: effects of continuous insulin infusion and new insulin analogs. Am J Clin Dermatol. 2007;8:21–8.

    Article  PubMed  Google Scholar 

  69. Hardy KJ, Gill GV, Bryson JR. Severe insulin-induced lipohypertrophy successfully treated by liposuction. Diabetes Care. 1993;16:929.

    Article  CAS  PubMed  Google Scholar 

  70. Wallymahmed ME, Littler P, Clegg C, Haggani MT, MacFarlane IA. Nodules of fibrocollagenous scar tissue induced by subcutaneous insulin injections: a cause of poor diabetic control. Postgrad Med J. 2004;80:732–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Koda JE, Fineman M, Rink TJ, Dailey GE, Muchmore DB, Linarelli LG. Amylin concentrations and glucose control. Lancet. 1992;339:1179–80.

    Article  CAS  PubMed  Google Scholar 

  72. Singh-Franco D, Robles G, Gazze D. Pramlintide acetate injection for the treatment of type 1 and type 2 diabetes mellitus. Clin Ther. 2007;29:535–62.

    Article  CAS  PubMed  Google Scholar 

  73. Weyer C, Gottlieb A, Kim DD, et al. Pramlintide reduces postprandial glucose excursions when added to regular insulin or insulin lispro in subjects with type 1 diabetes: a dose-timing study. Diabetes Care. 2003;26:3074–9.

    Article  CAS  PubMed  Google Scholar 

  74. Chapman I, Parker B, Doran S, et al. Low-dose pramlintide reduced food intake and meal duration in healthy, normal-weight subjects. Obesity. 2007;15:1179–86.

    Article  CAS  PubMed  Google Scholar 

  75. Ratner RE, Dickey R, Fineman M, et al. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in type 1 diabetes mellitus: a 1-year, randomized controlled trial. Diabet Med. 2004;21:1204–12.

    Article  CAS  PubMed  Google Scholar 

  76. Whitehouse F, Kruger DF, Fineman M, et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care. 2002;25:724–30.

    Article  CAS  PubMed  Google Scholar 

  77. Liu C, Wu D, Zheng X, Li P, Li L. Efficacy and safety of metformin for patients with type 1 diabetes mellitus: a meta-analysis. Diabetes Technol Ther. 2015;17:142–8.

    Article  CAS  PubMed  Google Scholar 

  78. Pryor R, Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J. 2015;471(3):307–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Libman IM, Miller KM, DiMeglio LA, et al. Effect of metformin added to insulin on glycemic control among overweight/obese adolescents with type 1 diabetes: a randomized clinical trial. JAMA. 2015;314(21):2241–50.

    Article  CAS  PubMed  Google Scholar 

  80. Sarkar G, et al. Exenatide treatment for 6 months improves insulin sensitivity in adults with type 1 diabetes. Diabetes Care. 2014;37:666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Frandsen CS, Dejgaard TF, Holst JJ, Andersen HU, Thorsteinsson B, Madsbad S. Twelve-week treatment with liraglutide as add-on to insulin in normal-weight patients with poorly controlled type 1 diabetes: a randomized, placebo-controlled, double-blind parallel study. Diabetes Care. 2015;38(12):2250–7.

    Article  CAS  PubMed  Google Scholar 

  82. Pieber TR, et al. Empagliflozin as adjunct to insulin in patients with type 1 diabetes: a 4-week, randomized, placebo-controlled trial (EASE-1). Diabetes Obes Metab. 2015;17:928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Henry R, et al. Efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on insulin in patients with type I diabetes. Diabetes Care. 2015;38:2258–65.

    Article  PubMed  Google Scholar 

  84. Perkins BA, et al. Sodium-glucose co-transporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care. 2014;37:1480–3.

    Article  PubMed  Google Scholar 

  85. Peters AL, Buschur EO, Buse JB, Cohan P, Diner JC, Hirsch IB. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015;38:1687–93.

    Article  CAS  PubMed  Google Scholar 

  86. Peters AL, Henry RR, Thakkar P, Tong C, Alba M. Diabetic ketoacidosis with canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in patients with type 1 diabetes. Diabetes Care. 2016;39:532–8

    Google Scholar 

  87. Graff MR, McClanahan MA. Assessment by patients with diabetes mellitus of two insulin pen delivery systems versus vial and syringe. Clin Ther. 1998;20:486–96.

    Article  CAS  PubMed  Google Scholar 

  88. Lteif AN, Schwenk WF. Accuracy of pen injectors in children with type 1 diabetes. Diabetes Care. 1999;22:137–40.

    Article  CAS  PubMed  Google Scholar 

  89. Ginsberg BH, Parkes JL, Soaracino C. The kinetics of insulin administration by insulin pens. Horm Metab Res. 1994;26:584–7.

    Article  CAS  PubMed  Google Scholar 

  90. Albareda M, Balmes L, Wagner A, Corcoy R. Insulin pens and acute deterioration in blood glucose control. Arch Intern Med. 1999;159:100–2.

    Article  CAS  PubMed  Google Scholar 

  91. Gross TM, Bode BW, Einhorn D, et al. Performance evaluation of the MiniMed continuous glucose monitoring system during patient home use. Diabetes Technol Ther. 2000;2:49–56.

    Article  CAS  PubMed  Google Scholar 

  92. Dunn TC, Eastman RC, Tamada JA. The GlucoWatch biographer: a frequent automatic and noninvasive glucose monitor. Ann Med. 2000;32:632–41.

    Article  Google Scholar 

  93. DeSalvo D, Buckingham B. Continuous glucose monitoring: current use and future directions. Curr Diab Rep. 2013;13:657–62.

    Article  CAS  PubMed  Google Scholar 

  94. Liebl A, Henrichs HR, Heinemann L, et al. Continuous glucose monitoring: evidence and consensus statement for clinical use. J Diabetes Sci Technol. 2013;7:500–19.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Tamborlane WV, Beck RW, Bode BW, et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359:1464–76.

    Article  Google Scholar 

  96. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Beck RW, Hirsch IB, Laffel L, et al. The effect of continuous glucose monitoring in well-controlled type 1 diabetes. Diabetes Care. 2009;32:1378–83.

    Article  PubMed Central  CAS  Google Scholar 

  97. Thabit H, Tauschmann M, Allen JM, et al. Home use of an artificial beta cell in type 1 diabetes. N Engl J Med. 2015;373:2129–40.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Russell SJ, El-Khatib FH, Sinha M, et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med. 2014;371:313–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Russell S. Progress of artificial pancreas devices towards clinical use: the first outpatient studies. Curr Opin Endocrinol Diabetes Obes. 2015;22:106–11.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bergenstal RM, Ahmann AJ, Bailey T, et al. Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes: the ambulatory glucose profile. J Diabetes Sci Technol. 2013;7:562–78.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Muchmore DB, Vaughn DE. Acceleration and improving the consistency of rapid acting analog insulin absorption and action for both subcutaneous injection and continuous subcutaneous infusion using recombinant human hyaluronidase. J Diabetes Sci Technol. 2012;612:764–72.

    Article  Google Scholar 

  102. Burke GW, Ciancio G, Sollinger HW. Advances in pancreas transplantation. Transplantation. 2004;77(Suppl):S62–7.

    Article  CAS  PubMed  Google Scholar 

  103. Odorico JS, Becker YT, Groshek M, et al. Improved solitary pancreas transplant graft survival in the modern immunosuppressive era. Cell Transplant. 2000;9:919.

    CAS  PubMed  Google Scholar 

  104. Mai M, Ahsan N, Gonwa T. The long-term management of pancreas transplantation. Transplantation. 2006;82:991–1003.

    Article  PubMed  Google Scholar 

  105. Stratta RJ, Lo A, Shokouh-Amiri MH, et al. Improving results in solitary pancreas transplantation with portal-enteric drainage, thymoglobulin induction, and tacrolimus/mycopehnolate mofetil-based immunosuppression. Transpl Int. 2003;16:154.

    Article  CAS  PubMed  Google Scholar 

  106. Sharpiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–8.

    Article  Google Scholar 

  107. Srinivasan P, Huang GC, Amiel SA, Heaton ND. Islet cell transplantation. Postgrad Med J. 2007;83:224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ault A. Edmonton’s islet success tough to duplicate elsewhere. Lancet. 2003;361:2054.

    PubMed  Google Scholar 

  109. Shapiro AM, Ricordi C, Haring B. Edmonton’s islet success has indeed been replicated elsewhere. Lancet. 2003;9391:1242.

    Article  Google Scholar 

  110. Foud T, Ricordi C, Baidal DA, et al. Islet transplantation in type 1 diabetes mellitus using cultured islets and steroid-free immunosuppression: Miami experience. Am J Transplant. 2005;5:2037–46.

    Article  Google Scholar 

  111. Ryan EA, Lakey JR, Rajotte RV, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes. 2001;50:710–9.

    Article  CAS  PubMed  Google Scholar 

  112. Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes. 2005;54:2060–9.

    Article  CAS  PubMed  Google Scholar 

  113. Balamurugan AN, Bottino R, Giannoukakis N. Prospective and challenges of islet transplantation for the therapy of autoimmune diabetes. Pancreas. 2006;32:231–43.

    Article  CAS  PubMed  Google Scholar 

  114. Shaprio AM, Lakey JR, Paty BW, et al. Strategic opportunities in clinical islet transplantation. Transplantation. 2005;79:1304–7.

    Article  Google Scholar 

  115. Meirigeng Q, Kinzer K, et al. Five year follow-up of patients with type 1 diabetes transplanted with allogenic islets: the UIC experience. Acta Diabetol. 2014;51:833–43.

    Article  CAS  Google Scholar 

  116. Robertson RP. Islet transplantation for type 1 diabetes, 2015: what have we learned from alloislet and autoislet successes. Diabetes Care. 2015;38:1030–5.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dufour JM, Rajotte RV, Zimmerman M, et al. Development of an ectopic site for islet transplantation, using biodegradable scaffolds. Tissue Eng. 2005;11:1323–31.

    Article  CAS  PubMed  Google Scholar 

  118. Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen KT. Islet encapsulation: strategies to enhance islet cell functions. Tissue Eng. 2007;13:589–99.

    Article  CAS  PubMed  Google Scholar 

  119. Lin H, Chan T, Lin S, et al. Applicability of adipose-derived stem cells in type 1 diabetes mellitus. Cell Transplant. 2015;24:521–32.

    Article  PubMed  Google Scholar 

  120. Palma CA, Lindeman R, Tuch BE. Blood into beta-cells: can adult stem cells be used as a therapy for type 1 diabetes? Regen Med. 2008;3:33–47.

    Article  CAS  PubMed  Google Scholar 

  121. Miszta-Lane H, Mirbolooki M, James Shapiro AM, Lakey JR. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells. Med Hypotheses. 2006;67:909–13.

    Article  CAS  PubMed  Google Scholar 

  122. Bour-Jordan H, Bluestone JA. B cell depletion: a novel therapy for autoimmune disorders? JCI. 2007;117:3642–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bingley PJ, Gale EA, European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. Progression to type 1 diabetes in islet cell antibody-positive relatives in the European nicotinamide diabetes intervention trial: the role of additional immune, genetic and metabolic markers of risk. Diabetologia. 2006;49:881–90.

    Article  CAS  PubMed  Google Scholar 

  124. Diabetes Prevention Trial – Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med. 2002;346:1685–91.

    Article  Google Scholar 

  125. Hao W, Palmer JP, et al. The effect of DPT-1 intravenous insulin infusion and Daily subcutaneous insulin on endogenous insulin secretion and post prandial glucose tolerance. Diabetes Care. 2015;38:891–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Matthews JB, Ramos E, Bluestone JA. Clinical trials of transplant tolerance: slow but steady progress. Am J Transplant. 2003;3:794–803.

    Article  PubMed  Google Scholar 

  127. Skylar JS. Prevention and reversal of type 1 diabetes-past challenges and future opportunities. Diabetes Care. 2015;38:997–1007.

    Article  Google Scholar 

  128. Liu E, Li M, Jasinski J, et al. Deleting islet autoimmunity. Cell Biochem Biophys. 2007;48:177–82.

    Article  CAS  PubMed  Google Scholar 

  129. Clinical Trials Database http://clinicaltrials.gov/ct2/results?term=type+1+diabetes&show_flds=Y. Accessed 17 Mar 2016.

  130. Trial Net. http://www2.diabetestrialnet.org/. Accessed 17 Mar 2016.

  131. Calafiore R, Basta G, Luca G, et al. Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus. Transplant Proc. 2006;38:1156–7.

    Article  CAS  PubMed  Google Scholar 

  132. Calafiore R, Basta G. Artificial pancreas to treat type 1 diabetes mellitus. Methods Mol Med. 2007;140:197–236.

    Article  CAS  PubMed  Google Scholar 

  133. Juutilainen A, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Similarity of the impact of type 1 and type 2 diabetes on cardiovascular mortality in middle-aged subjects. Diabetes Care. 2008;31:714–9.

    Article  PubMed  Google Scholar 

  134. Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353:2643–53.

    Article  PubMed  Google Scholar 

  135. Cleary PA, Orchard TJ, Genuth S, et al. The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2006;55:3556–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. McGill M, Molyneaux L, Twigg SM, Yue DK. The metabolic syndrome in type 1 diabetes: does it exist and does it matter? J Diabetes Complicat. 2008;22:18–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Omura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Omura, E., Peters, A.L. (2016). Therapy of Type 1 Diabetes Mellitus. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-20797-1_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20797-1_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20797-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Therapy of Type 1 Diabetes Mellitus
    Published:
    10 February 2017

    DOI: https://doi.org/10.1007/978-3-319-20797-1_43-2

  2. Original

    Therapy of Type 1 Diabetes Mellitus
    Published:
    14 May 2016

    DOI: https://doi.org/10.1007/978-3-319-20797-1_43-1