Skip to main content

Infrared Emission from Supernova Remnants: Formation and Destruction of Dust

  • Living reference work entry
  • First Online:
Handbook of Supernovae

Abstract

We review the observations of dust emission in supernova remnants (SNRs) and supernovae (SNe). Theoretical calculations suggest that SNe, particularly core-collapse, should make significant quantities of dust, perhaps as much as a solar mass. Observations of extragalactic SNe have yet to find anywhere near this amount, but this may be the result of observational limitations. SN 1987A, in the process of transitioning from a SN to an SNR, does show signs of a significant amount of dust forming in its ejecta, but whether this dust will survive the passage of the reverse shock to be injected into the ISM is unknown. IR observations of SNRs have not turned up significant quantities of dust, and the dust that is observed is generally swept up by the forward shock, rather than created in the ejecta. Because the shock waves also destroy dust in the ISM, we explore the question of whether SNe might be net destroyers, rather than net creators of dust in the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arendt RG, Dwek E, Blair WP, Ghavamian P, Hwang U, Long KS et al (2010) Spitzer observations of dust destruction in the Puppis A supernova remnant. ApJ 725:585

    Article  ADS  Google Scholar 

  • Arendt RG, Dwek E, Kober G, Rho J, Hwang U (2014) Interstellar and ejecta dust in the Cas A supernova remnant. ApJ 786:55

    Article  ADS  Google Scholar 

  • Barlow MJ, Krause O, Swinyard BM, Sibthorpe B, Besel M-A, Wesson R et al (2010) A Herschel PACS and SPIRE study of the dust content of the Cassiopeia A supernova remnant. A&A 518:138

    Article  ADS  Google Scholar 

  • Biscaro C, Cherchneff I (2014) Molecules and dust in Cassiopeia A. I. Synthesis in the supernova phase and processing by the reverse shock in the clumpy remnant. A&A 564:A25

    Google Scholar 

  • Blair WP, Ghavamian P, Long KS, Williams BJ, Borkowski KJ, Reynolds SP et al (2007) Spitzer space telescope observations of Kepler’s supernova remnant: a detailed look at the circumstellar dust component. ApJ 662:998

    Article  ADS  Google Scholar 

  • Borkowski KJ, Williams BJ, Reynolds SP, Blair WP, Ghavamian P, Sankrit R et al (2006) Dust destruction in type Ia supernova remnants in the large magellanic cloud. ApJ 642:141

    Article  ADS  Google Scholar 

  • Bouchet P, De Buizer JM, Suntzeff NB, Danziger JI, Hayward TL, Telesco CM et al (2004) High-resolution mid-infrared imaging of SN 1987A. ApJ 611:394

    Article  ADS  Google Scholar 

  • Draine BT, Salpeter EE (1979) Destruction mechanisms for interstellar dust. ApJ 231:77

    Article  ADS  Google Scholar 

  • Draine BT (2009) In: Henning T, Grün E, Steinacker J (eds) Cosmic dust – near and far ASP conference series, proceedings of a conference held 8-12 September 2008 in Heidelberg, Germany, vol 414. Astromomical Society of the Pacific, San Francisco, p 453

    Google Scholar 

  • Dwek E, Arendt RG (2015) ApJ 810:75

    Article  ADS  Google Scholar 

  • Dwek E, Galliano F, Jones A (2009) In: Henning T, Grün E, Steinacker J (eds) Cosmic Dust – Near and Far ASP conference series, proceedings of a conference held 8–12 September 2008 in Heidelberg, Germany, vol 414. Astromomical Society of the Pacific, San Francisco, p 183

    Google Scholar 

  • Dwek E, Arendt RG, Bouchet P, Burrows DN, Challis P, Danziger JI et al (2010) Five years of mid-infrared evolution of the remnant of SN 1987A: the encounter between the blast wave and the dusty equatorial ring. ApJ 722:425

    Article  ADS  Google Scholar 

  • Elvis M, Marengo M, Karovska M (2002) Smoking quasars: a new source for cosmic dust. ApJL 567:L107

    Article  ADS  Google Scholar 

  • Ercolano B, Barlow MJ, Sugerman BEK (2007) Dust yields in clumpy supernova shells: SN 1987A revisited. MNRAS 375:753

    Article  ADS  Google Scholar 

  • Fabbri J, Otsuka M, Barlow MJ, Gallagher JS, Wesson R, Sugerman BEK et al (2011) The effects of dust on the optical and infrared evolution of SN 2004et. MNRAS 418:1285

    Article  ADS  Google Scholar 

  • Gall C, Hjorth J, Andersen AC (2011) Production of dust by massive stars at high redshift. A&ARv 19:43

    Article  ADS  Google Scholar 

  • Gehrz RD, Ney EP (1987) On the possibility of dust condensation in the ejecta of supernova 1987a. Proc Natl Acad Sci 84:6961

    Article  ADS  Google Scholar 

  • Gomez HL, Krause O, Barlow MJ, Swinyard BM, Owen PJ, Clark CJR et al (2012a) A cool dust factory in the crab nebula: a Herschel study of the filaments. ApJ 760:96

    Article  ADS  Google Scholar 

  • Gomez HL, Clark CJR, Nozawa T, Krause O, Gomez EL, Matsuura M et al (2012b) Dust in historical galactic type Ia supernova remnants with Herschel. MNRAS 420:3557

    Article  ADS  Google Scholar 

  • Indebetouw R, Matsuura M, Dwek E, Zanardo G, Barlow MJ, Baes M et al (2014) Dust production and particle acceleration in supernova 1987A revealed with ALMA. ApJL 782:L2

    Article  ADS  Google Scholar 

  • Jones AP, Tielens AGGM, Hollenbach DJ (1996) Grain shattering in shocks: the interstellar grain size distribution. ApJ 469:740

    Article  ADS  Google Scholar 

  • Kotak R, Meikle WPS, Farrah D, Gerardy CL, Foley RJ, Van Dyk SD et al (2009) Dust and the type II-Plateau supernova 2004et. ApJ 704:306

    Article  ADS  Google Scholar 

  • Kozasa T, Nozawa T, Tominaga N, Umeda H, Maeda K, Nomoto K (2009) In: Henning T, Grün E, Steinacker J (eds) Cosmic dust – near and far ASP conference series, proceedings of a conference held 8–12 September 2008 in Heidelberg, Germany, vol 414. Astromomical Society of the Pacific, San Francisco, p 43

    Google Scholar 

  • Lakicevic M, Van Loon JT, Meikner M, Gorden K et al. (2015) ApJ 799:50

    Article  ADS  Google Scholar 

  • Lau RM, Herter TL, Morris MR, Li Z, Adams JD (2015) Old supernova dust factory revealed at the galactic center. Science 348:413

    Article  ADS  Google Scholar 

  • Matsuura M, Dwek E, Barlow MJ, Babler B, Baes M, Meixner M et al (2015) A stubbornly large mass of cold dust in the ejecta of supernova 1987A. ApJ 800:50

    Article  ADS  Google Scholar 

  • WPS Meikle, Mattila S, Pastorello A, Gerardy CL, Kotak R, Sollerman J et al (2007) A spitzer space telescope study of SN 2003gd: still no direct evidence that core-collapse supernovae are major dust factories. ApJ 665:608

    Article  ADS  Google Scholar 

  • Moseley SH, Dwek E, Glaccum W, Graham JR, Loewenstein RF (1989) Nature. 340:697

    Article  ADS  Google Scholar 

  • Nozawa T, Kozasa T, Tominaga N, Sakon I, Tanaka M, Suzuki T et al (2008) Early formation of dust in the ejecta of type Ib SN 2006jc and temperature and mass of the dust. ApJ: 684:1343

    Article  ADS  Google Scholar 

  • Nozawa T, Maeda K, Kozasa T, Tanaka M, Nomoto K, Umeda H (2011) Formation of dust in the ejecta of type Ia supernovae. ApJ 736:45

    Article  ADS  Google Scholar 

  • Ochsendorf BB, Brown AGA, Bally J, Tielens AGGM (2015) Nested shells reveal the rejuvenation of the Orion-Eridanus superbubble. ApJ 808:111

    Article  ADS  Google Scholar 

  • Owen PJ, Barlow MJ (2015) The dust and gas content of the crab nebula. ApJ 801:141

    Article  ADS  Google Scholar 

  • Reach WT, Rho J, Tappe A, Pannuti TG, Brogan CL, Churchwell EB et al (2006) A Spitzer space telescope infrared survey of supernova remnants in the inner galaxy. AJ 131:1479

    Article  ADS  Google Scholar 

  • Sandstrom KM, Bolatto AD, Alberto D, Stanimirović S, van Loon J, Smith JDT (2009) Measuring dust production in the small magellanic cloud core-collapse supernova remnant 1E 0102.2-7219. ApJ 696:2138

    Google Scholar 

  • Sankrit R, Raymond JC, Bautista M, Gaetz TJ, Williams BJ, Blair WP et al (2014) Spitzer IRS observations of the XA region in the cygnus loop supernova remnant. ApJ 787:3

    Article  ADS  Google Scholar 

  • Sarangi A, Cherchneff I (2015) Condensation of dust in the ejecta of type II-P supernovae. A&A 575:A95

    Article  ADS  Google Scholar 

  • Silvia DW, Smith BD, Shull JM (2010) Numerical simulations of supernova dust destruction. I. Cloud-crushing and post-processed grain sputtering. ApJ: 715:1575

    Google Scholar 

  • Slavin JD, Dwek E, Jones AP (2015) Destruction of interstellar dust in evolving supernova remnant shock waves. ApJ 803:7

    Article  ADS  Google Scholar 

  • Smith N, Foley RJ, Filippenko AV (2008) Dust formation and He II λ4686 emission in the dense shell of the peculiar type Ib supernova 2006jc. ApJ 680:568

    Article  ADS  Google Scholar 

  • Sugerman BE, Ercolano B, Barlow MJ, Tielens AGGM, Clayton GC, Zijlstra AA et al (2006) Massive-star supernovae as major dust factories. Science 313:196

    Article  ADS  Google Scholar 

  • Szalai T, Vinkó J, Balog Z, Gáspár A, Block M, Kiss LL (2011) Dust formation in the ejecta of the type II-P supernova 2004dj. A&A 527:61

    Article  ADS  Google Scholar 

  • Temim T, Slane P, Reynolds SP, Raymond JC, Borkowski KJ (2010) Deep Chandra observations of the crab-like Pulsar wind nebula G54.1+0.3 and Spitzer spectroscopy of the associated infrared shell. ApJ 710:309

    Google Scholar 

  • Temim T, Slane P, Arendt RG, Dwek E (2012a) Infrared and X-ray spectroscopy of the Kes 75 supernova remnant shell: characterizing the dust and gas properties. ApJ 745:46

    Article  ADS  Google Scholar 

  • Temim T, Sonneborn G, Dwek E, Arendt RG, Gehrz RD, Slane P et al (2012b) Properties and spatial distribution of dust emission in the crab nebula. ApJ 753:72

    Article  ADS  Google Scholar 

  • Temim T, Dwek E (2013) The importance of physical models for deriving dust masses and grain size distributions in supernova ejecta. I. Radiatively heated dust in the crab nebula. ApJ 774:8

    Google Scholar 

  • Temim T, Dwek E, Tchernyshyov K, Boyer ML, Meixner M, Gall C et al (2015) Dust destruction rates and lifetimes in the magellanic clouds. ApJ 799:158

    Article  ADS  Google Scholar 

  • Wesson R, Barlow MJ, Matsuura M, Ercolano B (2015) The timing and location of dust formation in the remnant of SN 1987A. MNRAS 446:2089

    Article  ADS  Google Scholar 

  • Williams BJ, Borkowski KJ, Reynolds SP, Blair WP, Ghavamian P, Hendrick SP et al (2006) Dust destruction in fast shocks of core-collapse supernova remnants in the large magellanic cloud. ApJ 652:33

    Article  ADS  Google Scholar 

  • Williams BJ, Borkowski KJ, Reynolds SP, Raymond JC, Long KS, Morse J et al (2008) Ejecta, dust, and synchrotron radiation in SNR B0540-69.3: a more crab-like remnant than the crab. ApJ 687:1054

    Google Scholar 

  • Williams BJ, Borkowski KJ, Reynolds SP, Ghavamian P, Raymond JC, Long KS et al (2011) Dusty blast waves of two young large magellanic cloud supernova remnants: constraints on post-shock compression. ApJ: 729:65

    Article  ADS  Google Scholar 

  • Williams BJ, Borkowski KJ, Reynolds SP, Ghavamian P, Blair WP, Long KS et al (2012) Dust in a type Ia supernova progenitor: spitzer spectroscopy of Kepler’s supernova remnant. ApJ 755:3

    Article  ADS  Google Scholar 

  • Wooden DH, Rank DM, Bregman JD, Witteborn FC, Tielens AGGM, Cohen M et al (1993) Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns – time history of the dust continuum and line emission. ApJS 88:477; 152:211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Williams, B.J., Temim, T. (2016). Infrared Emission from Supernova Remnants: Formation and Destruction of Dust. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_94-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_94-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics