Skip to main content

Sulfur Mustard

  • Living reference work entry
  • First Online:
Critical Care Toxicology

Abstract

The exact date of the first sulfur mustard synthesis is uncertain [1]. There are several reports on the formation of a chemical compound formed by the reaction of sulfur dichloride and ethylene in the early nineteenth century by the Belgian-French chemist César-Mansuète Despretz [2–5]. However, it is unclear whether Despretz realized the irritating or toxic properties of his newly discovered product [2]. The German chemist Albert Niemann reported in 1860 during experiments with ethylene and sulfur dichloride the formation of an oily liquid, “Even traces brought into contact with the skin, while painless at first, result in a reddening of the skin after several hours, and in the following days produce blisters which fester, heal slowly and with great difficulty, and leave behind significant scarring” [2, 6, 7]. Niemann likely suffered from sulfur mustard-induced pulmonary late effects that resulted in an early death. Almost in parallel, the British chemist Frederick Guthrie reported the same reaction [8, 9]. In 1886, the German chemist Viktor Meyer established the first reliable synthesis of pure sulfur mustard based on the chlorination of thiodiglycol, produced from chloroethanol and potassium sulfide, with phosphorus trichloride [10, 11]. This process is recognized as the “Meyer method” and has to be considered an important step toward the large-scale production of sulfur mustard [12]. The Levinstein process involved the reaction of ethylene and sulfur chloride and resulted in less pure products [3, 5, 13]. These impurities are responsible for the characteristic odor (garlic-, horseradish-, mustard-like) of non-distilled sulfur mustard [3, 5, 14, 15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pechura CM, Rall DP, editors. Veterans at risk: the health effects of mustard gas and lewisite. Washington, DC: National Academy Press; 1993.

    Google Scholar 

  2. Pearson C. By any other name: origins of mustard gas. http://itech.dickinson.edu/chemistry/?p=408. Accessed 11 Feb 2016.

  3. Gupta RC, editor. Handbook of toxicology of chemical warfare agents. 2nd ed. Amsterdam: Academic/Elsevier; 2015.

    Google Scholar 

  4. Balali-Mood M, Abdollahi M, editors. Basic and clinical toxicology of mustard compounds. 1st ed. Heidelberg: Springer International Publishing; 2015.

    Google Scholar 

  5. Marrs TC, Maynard RL, Sidell FR, editors. Chemical warfare agents: toxicology and treatment. 2nd ed. Chichester: Wiley; 2007.

    Google Scholar 

  6. Niemann A. Ueber die Einwirkung des braunen Chlorschwefels auf Elaylgas. Ann Chem Pharm. 1860;113:288–92. doi:10.1002/jlac.18601130304.

    Article  Google Scholar 

  7. Flury F, Wieland H. Ueber Kampfgasvergiftungen.: VII. Die pharmakologische Wirkung des Dichloräthylsullids. Z f d g exp Med. 1921;13:367–483. doi:10.1007/BF02998613.

    Article  CAS  Google Scholar 

  8. Guthrie F. Ueber einige Derivate der Kohlenwasserstoffe CnHn. Ann Chem Pharm. 1860;113:266–88. doi:10.1002/jlac.18601130303.

    Article  Google Scholar 

  9. Guthrie F. On some derivatives from the olefins. Q J Chem Soc. 1860;12:109. doi:10.1039/qj8601200109.

    Article  Google Scholar 

  10. Meyer V. Ueber Thiodiglykolverbindungen. Ber Dtsch Chem Ges. 1886;19:3259–66. doi:10.1002/cber.188601902358.

    Article  Google Scholar 

  11. Robinson JP. The rise of CB weapons. Stockholm: Almqvist & Wiksell; 1971.

    Google Scholar 

  12. Kehe K, Szinicz L. Medical aspects of sulphur mustard poisoning. Toxicology. 2005;214:198–209. doi:10.1016/j.tox.2005.06.014.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z. Levinstein process. In: Wang Z, editor. Comprehensive organic name reactions and reagents. Chichester: Wiley; 2010. p. 1747–9. doi:10.1002/9780470638859.conrr392.

    Chapter  Google Scholar 

  14. Huber U. Fact-sheet senfgas. http://www.labor-spiez.ch/de/dok/fa/pdf/FS-Senfgas_d.pdf. Accessed 12 Feb 2016.

  15. Vohr H-W. Toxikologie. Hoboken: Wiley; 2012.

    Google Scholar 

  16. Freemantle M. Gas! Gas! Quick, boys: how chemistry changed the First World War. Stroud: History Press; 2013.

    Google Scholar 

  17. Schmaltz F. Kampfstoff-Forschung im Nationalsozialismus: Zur Kooperation von Kaiser-Wilhelm-Instituten, Militär und Industrie. Göttingen: Wallstein; 2005.

    Google Scholar 

  18. Harris R, Paxman J. A higher form of killing: the secret history of gas and germ warfare. New York: Random House; 2002.

    Google Scholar 

  19. Fitzgerald GJ. Chemical warfare and medical response during World War I. Am J Public Health. 2008;98:611–25. doi:10.2105/AJPH.2007.11930.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Office of The Surgeon General, editor. Medical aspects of chemical and biological warfare: office of the surgeon general. Washington, DC: TMM Publications; 1997.

    Google Scholar 

  21. Dacre JC, Goldman M. Toxicology and pharmacology of the chemical warfare agent sulfur mustard. Pharmacol Rev. 1996;48:289–326.

    CAS  PubMed  Google Scholar 

  22. Ghazanfari T, Faghihzadeh S, Aragizadeh H, Soroush M-R, Yaraee R, Mohammad Hassan Z, et al. Sardasht-Iran cohort study of chemical warfare victims: design and methods. Arch Iran Med. 2009;12:5–14.

    PubMed  Google Scholar 

  23. Organization for the Prohibition of Chemical Weapons. About OPCW. https://www.opcw.org/about-opcw/. Accessed 12 Feb 2016.

  24. Organization for the Prohibition of Chemical Weapons. Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction. https://www.opcw.org/fileadmin/OPCW/CWC/CWC_en.pdf. Accessed 12 Feb 2016.

  25. Organization for the Prohibition of Chemical Weapons Executive Council. Further reports of the OPCW fact-finding mission in Syria. 2015. https://www.opcw.org/fileadmin/OPCW/EC/M-48/ecm48dec01_e_.pdf. Accessed 12 Feb 2016.

  26. Steinritz D, Striepling E, Rudolf K-D, Schröder-Kraft C, Püschel K, Hullard-Pulstinger A, et al. Medical documentation, bioanalytical evidence of an accidental human exposure to sulfur mustard and general therapy recommendations. Toxicol Lett. 2016;244:112–20. doi:10.1016/j.toxlet.2015.08.1105.

    Article  CAS  PubMed  Google Scholar 

  27. United States National Library of Medicine. Hazardous Substances Data Bank (HSDB). http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB. Accessed 13 Feb 2016.

  28. Rosemond ZA, Beblo DA, Amata R. Toxicological profile for sulfur mustard. 2003. http://www.atsdr.cdc.gov/toxprofiles/tp49.pdf

  29. Malhotra RC, Ganesan K, Sugendran K, Swamy RV. Chemistry and toxicology of sulphur mustard- a review. DSJ. 1999;49:97–116. doi:10.14429/dsj.49.3793.

    Article  CAS  Google Scholar 

  30. Bundeswehr Institute of Pharmacology and Toxicology, Munich. Copyright.

    Google Scholar 

  31. Golomb FM. Agents used in cancer chemotherapy. Am J Surg. 1963;105:579–90. doi:10.1016/0002-9610(63)90233-2.

    Article  CAS  PubMed  Google Scholar 

  32. Krumbhaar EB. Role of the blood and the bone marrow in certain forms of gas poisoning. J Am Med Assoc. 1919;72:39–41. doi:10.1001/jama.1919.26110010018009f.

    Article  Google Scholar 

  33. Krumbhaar EB, Krumbhaar HD. The blood and bone marrow in yellow cross gas (mustard gas) poisoning: changes produced in the bone marrow of fatal cases. J Med Res. 1919;40:497–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, McLennan M. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc. 1946;132:126–32. doi:10.1001/jama.1946.02870380008004.

    Article  CAS  PubMed  Google Scholar 

  35. Gilman A. The initial clinical trial of nitrogen mustard. Am J Surg. 1963;105:574–8. doi:10.1016/0002-9610(63)90232-0.

    Article  CAS  PubMed  Google Scholar 

  36. Mattes WB, Hartley JA, Kohn KW. DNA sequence selectivity of guanine-N7 alkylation by nitrogen mustards. Nucleic Acids Res. 1986;14:2971–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kehe K, Balszuweit F, Steinritz D, Thiermann H. Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology. 2009;263:12–9. doi:10.1016/j.tox.2009.01.019.

    Article  CAS  PubMed  Google Scholar 

  38. Kehe K, Balszuweit F, Emmler J, Kreppel H, Jochum M, Thiermann H. Sulfur mustard research-strategies for the development of improved medical therapy. Eplasty. 2008;8, e32.

    PubMed  PubMed Central  Google Scholar 

  39. Ghabili K, Agutter PS, Ghanei M, Ansarin K, Panahi Y, Shoja MM. Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Crit Rev Toxicol. 2011;41:384–403. doi:10.3109/10408444.2010.541224.

    Article  CAS  PubMed  Google Scholar 

  40. John H, Balszuweit F, Kehe K, Worek F, Thiermann H. Toxicokinetic aspects of nerve agents and vesicants. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents. 2nd ed. Amsterdam: Academic/Elsevier; 2015. p. 817–56.

    Chapter  Google Scholar 

  41. Gandor F, Gawlik M, Thiermann H, John H. Evidence of sulfur mustard exposure in human plasma by LC-ESI-MS-MS detection of the albumin-derived alkylated HETE-CP dipeptide and chromatographic investigation of its cis/trans isomerism. J Anal Toxicol. 2015;39:270–9. doi:10.1093/jat/bkv010.

    Article  CAS  PubMed  Google Scholar 

  42. Fidder A, Moes GW, Scheffer AG, van der Schans GP, Baan RA, de Jong LP, Benschop HP. Synthesis, characterization, and quantitation of the major adducts formed between sulfur mustard and DNA of calf thymus and human blood. Chem Res Toxicol. 1994;7:199–204.

    Article  CAS  PubMed  Google Scholar 

  43. Lawley PD, Brookes P. Interstrand cross-linking of DNA by difunctional alkylating agents. J Mol Biol. 1967;25:143–60. doi:10.1016/0022-2836(67)90285-9.

    Article  CAS  PubMed  Google Scholar 

  44. Ludlum DB, Tong WP, Mehta JR, Kirk MC, Papirmeister B. Formation of O6-ethylthioethyldeoxyguanosine from the reaction of chloroethyl ethyl sulfide with deoxyguanosine. Cancer Res. 1984;44:5698–701.

    CAS  PubMed  Google Scholar 

  45. Ludlum DB, Kent S, Mehta JR. Formation of O6-ethylthioethylguanine in DNA by reaction with the sulfur mustard, chloroethyl sulfide, and its apparent lack of repair by O6-alkylguanine-DNA alkyltransferase. Carcinogenesis. 1986;7:1203–6.

    Article  CAS  PubMed  Google Scholar 

  46. Yue L, Wei Y, Chen J, Shi H, Liu Q, Zhang Y, et al. Abundance of four sulfur mustard-DNA adducts ex vivo and in vivo revealed by simultaneous quantification in stable isotope dilution-ultrahigh performance liquid chromatography-tandem mass spectrometry. Chem Res Toxicol. 2014;27:490–500. doi:10.1021/tx4003403.

    Article  CAS  PubMed  Google Scholar 

  47. Shahin S, Cullinane C, Gray PJ. Mitochondrial and nuclear DNA damage induced by sulphur mustard in keratinocytes. Chem Biol Interact. 2001;138:231–45.

    Article  CAS  PubMed  Google Scholar 

  48. Mol MAE, van den Berg RM, Benschop HP. Proteomic assessment of sulfur mustard-induced protein adducts and other protein modifications in human epidermal keratinocytes. Toxicol Appl Pharmacol. 2008;230:97–108. doi:10.1016/j.taap.2008.02.006.

    Article  CAS  PubMed  Google Scholar 

  49. Andacht TM, Pantazides BG, Crow BS, Fidder A, Noort D, Thomas JD, et al. An enhanced throughput method for quantification of sulfur mustard adducts to human serum albumin via isotope dilution tandem mass spectrometry. J Anal Toxicol. 2014;38:8–15. doi:10.1093/jat/bkt088.

    Article  CAS  PubMed  Google Scholar 

  50. John H, Siegert M, Gandor F, Gawlik M, Kranawetvogl A, Karaghiosoff K, Thiermann H. Optimized verification method for detection of an albumin-sulfur mustard adduct at Cys(34) using a hybrid quadrupole time-of-flight tandem mass spectrometer after direct plasma proteolysis. Toxicol Lett. 2016;244:103–11. doi:10.1016/j.toxlet.2015.09.027.

    Article  CAS  PubMed  Google Scholar 

  51. Noort D, Hulst AG, Trap HC, de Jong LP, Benschop HP. Synthesis and mass spectrometric identification of the major amino acid adducts formed between sulphur mustard and haemoglobin in human blood. Arch Toxicol. 1997;71:171–8.

    Article  CAS  PubMed  Google Scholar 

  52. Loeber R, Michaelson E, Fang Q, Campbell C, Pegg AE, Tretyakova N. Cross-linking of the DNA repair protein Omicron6-alkylguanine DNA alkyltransferase to DNA in the presence of antitumor nitrogen mustards. Chem Res Toxicol. 2008;21:787–95. doi:10.1021/tx7004508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Michaelson-Richie ED, Ming X, Codreanu SG, Loeber RL, Liebler DC, Campbell C, Tretyakova NY. Mechlorethamine-induced DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. J Proteome Res. 2011;10:2785–96. doi:10.1021/pr200042u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Debiak M, Kehe K, Bürkle A. Role of poly(ADP-ribose) polymerase in sulfur mustard toxicity. Toxicology. 2009;263:20–5. doi:10.1016/j.tox.2008.06.002.

    Article  CAS  PubMed  Google Scholar 

  55. Noort D, Verheij ER, Hulst AG, de Jong LP, Benschop HP. Characterization of sulfur mustard induced structural modifications in human hemoglobin by liquid chromatography-tandem mass spectrometry. Chem Res Toxicol. 1996;9:781–7. doi:10.1021/tx9502148.

    Article  CAS  PubMed  Google Scholar 

  56. Noort D, Fidder A, Degenhardt-Langelaan CEAM, Hulst AG. Retrospective detection of sulfur mustard exposure by mass spectrometric analysis of adducts to albumin and hemoglobin: an in vivo study. J Anal Toxicol. 2008;32:25–30.

    Article  CAS  PubMed  Google Scholar 

  57. Xu H, Nie Z, Zhang Y, Li C, Yue L, Yang W, et al. Four sulfur mustard exposure cases: overall analysis of four types of biomarkers in clinical samples provides positive implication for early diagnosis and treatment monitoring. Toxicol Rep. 2014;1:533–43. doi:10.1016/j.toxrep.2014.07.017.

    Article  CAS  Google Scholar 

  58. Lodhi IJ, Sweeney JF, Clift RE, Hinshaw DB. Nuclear dependence of sulfur mustard-mediated cell death. Toxicol Appl Pharmacol. 2001;170:69–77. doi:10.1006/taap.2000.9083.

    Article  CAS  PubMed  Google Scholar 

  59. Lin PP, Bernstein IA, Vaughan FL. Bis(2-chloroethyl)sulfide (BCES) disturbs the progression of rat keratinocytes through the cell cycle. Toxicol Lett. 1996;84:23–32.

    Article  CAS  PubMed  Google Scholar 

  60. Smith WJ, Sanders KM, Ruddle SE, Gross CL. Cytometric analysis of DNA changes induced by sulfur mustard. J Toxicol Cutan Ocul Toxicol. 2008;12:337–47. doi:10.3109/15569529309050150.

    Article  Google Scholar 

  61. Steinritz D, Emmler J, Hintz M, Worek F, Kreppel H, Szinicz L, Kehe K. Apoptosis in sulfur mustard treated A549 cell cultures. Life Sci. 2007;80:2199–201. doi:10.1016/j.lfs.2006.11.052.

    Article  CAS  PubMed  Google Scholar 

  62. Rosenthal DS, Simbulan-Rosenthal CM, Iyer S, Spoonde A, Smith W, Ray R, Smulson ME. Sulfur mustard induces markers of terminal differentiation and apoptosis in keratinocytes via a Ca2+ −calmodulin and caspase-dependent pathway. J Invest Dermatol. 1998;111:64–71. doi:10.1046/j.1523-1747.1998.00250.x.

    Article  CAS  PubMed  Google Scholar 

  63. Inturi S, Tewari-Singh N, Agarwal C, White CW, Agarwal R. Activation of DNA damage repair pathways in response to nitrogen mustard-induced DNA damage and toxicity in skin keratinocytes. Mutat Res. 2014;763–764:53–63. doi:10.1016/j.mrfmmm.2014.04.002.

    Article  PubMed  CAS  Google Scholar 

  64. Jowsey PA, Williams FM, Blain PG. DNA damage responses in cells exposed to sulphur mustard. Toxicol Lett. 2012;209:1–10. doi:10.1016/j.toxlet.2011.11.009.

    Article  CAS  PubMed  Google Scholar 

  65. Bürkle A, Virág L. Poly(ADP-ribose): PARadigms and PARadoxes. Mol Aspects Med. 2013;34:1046–65. doi:10.1016/j.mam.2012.12.010.

    Article  PubMed  CAS  Google Scholar 

  66. Virág L, Robaszkiewicz A, Rodriguez-Vargas JM, Oliver FJ. Poly(ADP-ribose) signaling in cell death. Mol Aspects Med. 2013;34:1153–67. doi:10.1016/j.mam.2013.01.007.

    Article  PubMed  CAS  Google Scholar 

  67. Ribeiro PL, Mitra RS, Bernstein IA. Assessment of the role of DNA damage and repair in the survival of primary cultures of rat cutaneous keratinocytes exposed to bis(2-chloroethyl)sulfide. Toxicol Appl Pharmacol. 1991;111:342–51. doi:10.1016/0041-008X(91)90035-D.

    Article  CAS  PubMed  Google Scholar 

  68. Berger NA. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985;101:4–15.

    Article  CAS  PubMed  Google Scholar 

  69. Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F. Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res. 2014;329:18–25. doi:10.1016/j.yexcr.2014.07.003.

    Article  CAS  PubMed  Google Scholar 

  70. Chiarugi A. Poly(ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol Sci. 2002;23:122–9. doi:10.1016/S0165-6147(00)01902-7.

    Article  CAS  PubMed  Google Scholar 

  71. Rosenthal DS, Simbulan-Rosenthal CM, Liu WF, Velena A, Anderson D, Benton B, et al. PARP determines the mode of cell death in skin fibroblasts, but not keratinocytes, exposed to sulfur mustard. J Invest Dermatol. 2001;117:1566–73. doi:10.1046/j.0022-202x.2001.01578.x.

    Article  CAS  PubMed  Google Scholar 

  72. Hinshaw DB, Lodhi IJ, Hurley LL, Atkins KB, Dabrowska MI. Activation of poly [ADP-Ribose] polymerase in endothelial cells and keratinocytes: role in an in vitro model of sulfur mustard-mediated vesication. Toxicol Appl Pharmacol. 1999;156:17–29. doi:10.1006/taap.1999.8634.

    Article  CAS  PubMed  Google Scholar 

  73. Bhat KR, Benton BJ, Rosenthal DS, Smulson ME, Ray R. Role of poly(ADP-ribose) polymerase (PARP) in DNA repair in sulfur mustard-exposed normal human epidermal keratinocytes (NHEK). J Appl Toxicol. 2000;20 Suppl 1:S13–7.

    CAS  PubMed  Google Scholar 

  74. Papirmeister B, Gross CL, Meier HL, Petrali JP, Johnson JB. Molecular basis for mustard-induced vesication. Fundam Appl Toxicol. 1985;5:S134–49.

    Article  CAS  PubMed  Google Scholar 

  75. Meier HL, Gross CL, Papirmeister B. 2,2′-Dichlorodiethyl sulfide (sulfur mustard) decreases NAD+ levels in human leukocytes. Toxicol Lett. 1987;39:109–22.

    Article  CAS  PubMed  Google Scholar 

  76. Meier HL, Millard C, Moser J. Poly(ADP-ribose) polymerase inhibitors regulate the mechanism of sulfur mustard-initiated cell death in human lymphocytes. J Appl Toxicol. 2000;20 Suppl 1:S93–100.

    Article  CAS  PubMed  Google Scholar 

  77. Kehe K, Raithel K, Kreppel H, Jochum M, Worek F, Thiermann H. Inhibition of poly(ADP-ribose) polymerase (PARP) influences the mode of sulfur mustard (SM)-induced cell death in HaCaT cells. Arch Toxicol. 2008;82:461–70. doi:10.1007/s00204-007-0265-7.

    Article  CAS  PubMed  Google Scholar 

  78. Ray R, Keyser B, Benton B, Daher A, Simbulan-Rosenthal CM, Rosenthal DS. Sulfur mustard induces apoptosis in cultured normal human airway epithelial cells: evidence of a dominant caspase-8-mediated pathway and differential cellular responses. Drug Chem Toxicol. 2008;31:137–48. doi:10.1080/01480540701688840.

    Article  CAS  PubMed  Google Scholar 

  79. Ray R, Simbulan-Rosenthal CM, Keyser BM, Benton B, Anderson D, Holmes W, et al. Sulfur mustard induces apoptosis in lung epithelial cells via a caspase amplification loop. Toxicology. 2010;271:94–9. doi:10.1016/j.tox.2010.03.008.

    Article  CAS  PubMed  Google Scholar 

  80. Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta. 2006;1757:1371–87. doi:10.1016/j.bbabio.2006.06.014.

    Article  CAS  PubMed  Google Scholar 

  81. Green DR. Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor: Cold Spring Harbor Laboratory Pr; 2011.

    Google Scholar 

  82. Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7:1–24. doi:10.1101/cshperspect.a006080.

    Article  CAS  Google Scholar 

  83. Balszuweit F, John H, Schmidt A, Kehe K, Thiermann H, Steinritz D. Silibinin as a potential therapeutic for sulfur mustard injuries. Chem Biol Interact. 2013;206:496–504. doi:10.1016/j.cbi.2013.06.010.

    Article  CAS  PubMed  Google Scholar 

  84. Balszuweit F, Menacher G, Bloemeke B, Schmidt A, Worek F, Thiermann H, Steinritz D. Development of a co-culture of keratinocytes and immune cells for in vitro investigation of cutaneous sulfur mustard toxicity. Chem Biol Interact. 2014;223:117–24. doi:10.1016/j.cbi.2014.09.002.

    Article  CAS  PubMed  Google Scholar 

  85. Heinrich A, Balszuweit F, Thiermann H, Kehe K. Rapid simultaneous determination of apoptosis, necrosis, and viability in sulfur mustard exposed HaCaT cell cultures. Toxicol Lett. 2009;191:260–7. doi:10.1016/j.toxlet.2009.09.008.

    Article  CAS  PubMed  Google Scholar 

  86. Smith KJ, Graham JS, Moeller RB, Okerberg CV, Skelton H, Hurst CG. Histopathologic features seen in sulfur mustard induced cutaneous lesions in hairless guinea pigs. J Cutan Pathol. 1995;22:260–8.

    Article  CAS  PubMed  Google Scholar 

  87. Smith KJ, Skelton HG, Hobson DW, Reid FM, Blank JA, Hurst CG. Cutaneous histopathologic features in weanling pigs after exposure to three different doses of liquid sulfur mustard. Am J Dermatopathol. 1996;18:515–20.

    Article  CAS  PubMed  Google Scholar 

  88. Rosenthal DS, Velena A, Chou F-P, Schlegel R, Ray R, Benton B, et al. Expression of dominant-negative Fas-associated death domain blocks human keratinocyte apoptosis and vesication induced by sulfur mustard. J Biol Chem. 2003;278:8531–40. doi:10.1074/jbc.M209549200.

    Article  CAS  PubMed  Google Scholar 

  89. Ruff AL, Dillman JF. Signaling molecules in sulfur mustard-induced cutaneous injury. Eplasty. 2007;8:8–22.

    Google Scholar 

  90. Keyser BM, Andres DK, Nealley E, Holmes WW, Benton B, Paradiso D, et al. Postexposure application of Fas receptor small-interfering RNA to suppress sulfur mustard-induced apoptosis in human airway epithelial cells: implication for a therapeutic approach. J Pharmacol Exp Ther. 2013;344:308–16. doi:10.1124/jpet.112.199935.

    Article  CAS  PubMed  Google Scholar 

  91. Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci. 2011;119:3–19. doi:10.1093/toxsci/kfq268.

    Article  CAS  PubMed  Google Scholar 

  92. Sourdeval M, Lemaire C, Deniaud A, Taysse L, Daulon S, Breton P, et al. Inhibition of caspase-dependent mitochondrial permeability transition protects airway epithelial cells against mustard-induced apoptosis. Apoptosis. 2006;11:1545–59. doi:10.1007/s10495-006-8764-1.

    Article  CAS  PubMed  Google Scholar 

  93. Balszuweit F, Menacher G, Schmidt A, Kehe K, Popp T, Worek F, et al. Protective effects of the thiol compounds GSH and NAC against sulfur mustard toxicity in a human keratinocyte cell line. Toxicol Lett. 2016;244:35–43. doi:10.1016/j.toxlet.2015.09.002.

    Article  CAS  PubMed  Google Scholar 

  94. Chang Y-C, Wang JD, Hahn RA, Gordon MK, Joseph LB, Heck DE, et al. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard. Toxicol Appl Pharmacol. 2014;280:236–44. doi:10.1016/j.taap.2014.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goswami DG, Tewari-Singh N, Dhar D, Kumar D, Agarwal C, Ammar DA, et al. Nitrogen mustard-induced corneal injury involves DNA damage and pathways related to inflammation, epithelial-stromal separation, and neovascularization. Cornea. 2016;35:257–66. doi:10.1097/ICO.0000000000000685.

    Article  PubMed  Google Scholar 

  96. Jain AK, Tewari-Singh N, Inturi S, Kumar D, Orlicky DJ, Agarwal C, et al. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin. Toxicol Appl Pharmacol. 2015;285:71–8. doi:10.1016/j.taap.2015.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mouret S, Wartelle J, Batal M, Emorine S, Bertoni M, Poyot T, et al. Time course of skin features and inflammatory biomarkers after liquid sulfur mustard exposure in SKH-1 hairless mice. Toxicol Lett. 2014;232:68–78. doi:10.1016/j.toxlet.2014.09.022.

    Article  PubMed  CAS  Google Scholar 

  98. Tewari-Singh N, Jain AK, Inturi S, Agarwal C, White CW, Agarwal R. Silibinin attenuates sulfur mustard analog-induced skin injury by targeting multiple pathways connecting oxidative stress and inflammation. PLoS One. 2012;7, e46149. doi:10.1371/journal.pone.0046149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yego ECK, Dillman JF. Cytokine regulation by MAPK activated kinase 2 in keratinocytes exposed to sulfur mustard. Toxicol In Vitro. 2013;27:2067–75. doi:10.1016/j.tiv.2013.07.002.

    Article  CAS  PubMed  Google Scholar 

  100. Zhu X-J, Xu R, Meng X, Chu H-B, Zhao C, Lian C-J, et al. Mechanistic insights of sulfur mustard-induced acute tracheal injury in rats. Int J Toxicol. 2014;33:382–92. doi:10.1177/1091581814548730.

    Article  CAS  PubMed  Google Scholar 

  101. Arroyo CM, Schafer RJ, Kurt EM, Broomfield CA, Carmichael AJ. Response of normal human keratinocytes to sulfur mustard: cytokine release. J Appl Toxicol. 2000;20 Suppl 1:S63–72.

    CAS  PubMed  Google Scholar 

  102. Sabourin CL, Petrali JP, Casillas RP. Alterations in inflammatory cytokine gene expression in sulfur mustard-exposed mouse skin. J Biochem Mol Toxicol. 2000;14:291–302. doi:10.1002/1099-0461(2000)14:6<291::AID-JBT1>3.0.CO;2-B.

    Article  CAS  PubMed  Google Scholar 

  103. Sabourin CLK, Rogers JV, Choi YW, Kiser RC, Casillas RP, Babin MC, Schlager JJ. Time- and dose-dependent analysis of gene expression using microarrays in sulfur mustard-exposed mice. J Biochem Mol Toxicol. 2004;18:300–12. doi:10.1002/jbt.20047.

    Article  CAS  PubMed  Google Scholar 

  104. Jain AK, Tewari-Singh N, Inturi S, Orlicky DJ, White CW, Agarwal R. Histopathological and immunohistochemical evaluation of nitrogen mustard-induced cutaneous effects in SKH-1 hairless and C57BL/6 mice. Exp Toxicol Pathol. 2014;66:129–38. doi:10.1016/j.etp.2013.11.005.

    Article  CAS  PubMed  Google Scholar 

  105. Minsavage GD, Dillman JF. Bifunctional alkylating agent-induced p53 and nonclassical nuclear factor kappaB responses and cell death are altered by caffeic acid phenethyl ester: a potential role for antioxidant/electrophilic response-element signaling. J Pharmacol Exp Ther. 2007;321:202–12. doi:10.1124/jpet.106.116145.

    Article  CAS  PubMed  Google Scholar 

  106. Rebholz B, Kehe K, Ruzicka T, Rupec RA. Role of NF-kappaB/RelA and MAPK pathways in keratinocytes in response to sulfur mustard. J Invest Dermatol. 2008;128:1626–32. doi:10.1038/sj.jid.5701234.

    Article  CAS  PubMed  Google Scholar 

  107. Yazdani S, Karimfar MH, Imani Fooladi AA, Mirbagheri L, Ebrahimi M, Ghanei M, Nourani MR. Nuclear factor kB1/RelA mediates the inflammation and/or survival of human airway exposed to sulfur mustard. J Recept Signal Transduct Res. 2011;31:367–73. doi:10.3109/10799893.2011.602415.

    Article  CAS  PubMed  Google Scholar 

  108. Steinritz D, Elischer A, Balszuweit F, Gonder S, Heinrich A, Bloch W, et al. Sulphur mustard induces time- and concentration-dependent regulation of NO-synthesizing enzymes. Toxicol Lett. 2009;188:263–9. doi:10.1016/j.toxlet.2009.04.012.

    Article  CAS  PubMed  Google Scholar 

  109. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84. doi:10.1016/j.biocel.2006.07.001.

    Article  CAS  PubMed  Google Scholar 

  110. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95. doi:10.1152/physrev.00018.2001.

    Article  PubMed  Google Scholar 

  111. Korkmaz A, Yaren H, Topal T, Oter S. Molecular targets against mustard toxicity: implication of cell surface receptors, peroxynitrite production, and PARP activation. Arch Toxicol. 2006;80:662–70. doi:10.1007/s00204-006-0089-x.

    Article  CAS  PubMed  Google Scholar 

  112. Yaren H, Mollaoglu H, Kurt B, Korkmaz A, Oter S, Topal T, Karayilanoglu T. Lung toxicity of nitrogen mustard may be mediated by nitric oxide and peroxynitrite in rats. Res Vet Sci. 2007;83:116–22. doi:10.1016/j.rvsc.2006.11.004.

    Article  CAS  PubMed  Google Scholar 

  113. Pal A, Tewari-Singh N, Gu M, Agarwal C, Huang J, Day BJ, et al. Sulfur mustard analog induces oxidative stress and activates signaling cascades in the skin of SKH-1 hairless mice. Free Radic Biol Med. 2009;47:1640–51. doi:10.1016/j.freeradbiomed.2009.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kumar O, Sugendran K, Vijayaraghavan R. Protective effect of various antioxidants on the toxicity of sulphur mustard administered to mice by inhalation or percutaneous routes. Chem Biol Interact. 2001;134:1–12.

    Article  CAS  PubMed  Google Scholar 

  115. Gross CL, Innace JK, Hovatter RC, Meier HL, Smith WJ. Biochemical manipulation of intracellular glutathione levels influences cytotoxicity to isolated human lymphocytes by sulfur mustard. Cell Biol Toxicol. 1993;9:259–67.

    Article  CAS  PubMed  Google Scholar 

  116. Anderson DR, Yourick JJ, Arroyo CM, Young GD, Harris LW. Use of EPR spin-trapping techniques to detect radicals from rat lung lavage fluid following sulfur mustard vapor exposure. Fort Belvoir: Defense Technical Information Center; 1993.

    Google Scholar 

  117. Brimfield AA, Soni SD, Trimmer KA, Zottola MA, Sweeney RE, Graham JS. Metabolic activation of sulfur mustard leads to oxygen free radical formation. Free Radic Biol Med. 2012;52:811–7. doi:10.1016/j.freeradbiomed.2011.11.031.

    Article  CAS  PubMed  Google Scholar 

  118. Black RM, Read RW. Biological fate of sulphur mustard, 1,1′-thiobis(2-chloroethane): identification of beta-lyase metabolites and hydrolysis products in human urine. Xenobiotica. 1995;25:167–73. doi:10.3109/00498259509061842.

    Article  CAS  PubMed  Google Scholar 

  119. Paromov V, Suntres Z, Smith M, Stone WL. Sulfur mustard toxicity following dermal exposure: role of oxidative stress, and antioxidant therapy. J Burns Wounds. 2007;7, e7.

    PubMed  PubMed Central  Google Scholar 

  120. Husain K, Dube SN, Sugendran K, Singh R, Das Gupta S, Somani SM. Effect of topically applied sulphur mustard on antioxidant enzymes in blood cells and body tissues of rats. J Appl Toxicol. 1996;16:245–8. doi:10.1002/(SICI)1099-1263(199605)16:3<245::AID-JAT339>3.0.CO;2-3.

    Article  CAS  PubMed  Google Scholar 

  121. Sawyer TW. Characterization of the protective effects of L-nitroarginine methyl ester (L-NAME) against the toxicity of sulphur mustard in vitro. Toxicology. 1998;131:21–32.

    Article  CAS  PubMed  Google Scholar 

  122. Sawyer TW. Modulation of sulfur mustard toxicity by arginine analogues and related nitric oxide synthase inhibitors in vitro. Toxicol Sci. 1998;46:112–23. doi:10.1006/toxs.1998.2536.

    CAS  PubMed  Google Scholar 

  123. Sawyer TW, Lundy PM, Weiss MT. Protective effect of an inhibitor of nitric oxide synthase on sulphur mustard toxicity in vitro. Toxicol Appl Pharmacol. 1996;141:138–44. doi:10.1006/taap.1996.0270.

    Article  CAS  PubMed  Google Scholar 

  124. O’Neill HC, Orlicky DJ, Hendry-Hofer TB, Loader JE, Day BJ, White CW. Role of reactive oxygen and nitrogen species in olfactory epithelial injury by the sulfur mustard analogue 2-chloroethyl ethyl sulfide. Am J Respir Cell Mol Biol. 2011;45:323–31. doi:10.1165/rcmb.2010-0214OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Tewari-Singh N, Inturi S, Jain AK, Agarwal C, Orlicky DJ, White CW, et al. Catalytic antioxidant AEOL 10150 treatment ameliorates sulfur mustard analog 2-chloroethyl ethyl sulfide-associated cutaneous toxic effects. Free Radic Biol Med. 2014;72:285–95. doi:10.1016/j.freeradbiomed.2014.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gould NS, White CW, Day BJ. A role for mitochondrial oxidative stress in sulfur mustard analog 2-chloroethyl ethyl sulfide-induced lung cell injury and antioxidant protection. J Pharmacol Exp Ther. 2009;328:732–9. doi:10.1124/jpet.108.145037.

    Article  CAS  PubMed  Google Scholar 

  127. Laskin JD, Black AT, Jan Y-H, Sinko PJ, Heindel ND, Sunil V, et al. Oxidants and antioxidants in sulfur mustard-induced injury. Ann N Y Acad Sci. 2010;1203:92–100. doi:10.1111/j.1749-6632.2010.05605.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Steinritz D, Schmidt A, Simons T, Ibrahim M, Morguet C, Balszuweit F, et al. Chlorambucil (nitrogen mustard) induced impairment of early vascular endothelial cell migration – effects of α-linolenic acid and N-acetylcysteine. Chem Biol Interact. 2014;219:143–50. doi:10.1016/j.cbi.2014.05.015.

    Article  CAS  PubMed  Google Scholar 

  129. Kehe K, Thiermann H, Balszuweit F, Eyer F, Steinritz D, Zilker T. Acute effects of sulfur mustard injury – Munich experiences. Toxicology. 2009;263:3–8. doi:10.1016/j.tox.2009.04.060.

    Article  CAS  PubMed  Google Scholar 

  130. Chilcott RP, Jenner J, Carrick W, Hotchkiss SA, Rice P. Human skin absorption of Bis-2-(chloroethyl)sulphide (sulphur mustard) in vitro. J Appl Toxicol. 2000;20:349–55. doi:10.1002/1099-1263(200009/10)20:5<349::AID-JAT713>3.0.CO;2-O.

    Article  CAS  PubMed  Google Scholar 

  131. Cullumbine H. Medical aspects of mustard gas poisoning. Nature. 1947;159:151–3.

    Article  CAS  PubMed  Google Scholar 

  132. Benson JM, Tibbetts BM, Weber WM, Grotendorst GR. Uptake, tissue distribution, and excretion of 14C-sulfur mustard vapor following inhalation in F344 rats and cutaneous exposure in hairless guinea pigs. J Toxicol Environ Health A. 2011;74:875–85. doi:10.1080/15287394.2011.567959.

    Article  CAS  PubMed  Google Scholar 

  133. Chilcott RP, Jenner J, Hotchkiss SAM, Rice P. Evaluation of barrier creams against sulphur mustard. I. In vitro studies using human skin. Skin Pharmacol Appl Skin Physiol. 2002;15:225–35.

    Article  CAS  PubMed  Google Scholar 

  134. Weber WM, Kracko DA, Lehman MR, Irvin CM, Blair LF, White RK, et al. Inhalation exposure systems for the development of rodent models of sulfur mustard-induced pulmonary injury. Toxicol Mech Methods. 2010;20:14–24. doi:10.3109/15376510903483730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Malaviya R, Sunil VR, Venosa A, Vayas KN, Heck DE, Laskin JD, Laskin DL. Inflammatory mechanisms of pulmonary injury induced by mustards. Toxicol Lett. 2016;244:2–7. doi:10.1016/j.toxlet.2015.10.011.

    Article  CAS  PubMed  Google Scholar 

  136. Drasch G, Kretschmer E, Kauert G, von Meyer L. Concentrations of mustard gas [bis(2-chloroethyl)sulfide] in the tissues of a victim of a vesicant exposure. J Forensic Sci. 1987;32:1788–93.

    Article  CAS  PubMed  Google Scholar 

  137. Eisenmenger W, Drasch G, von Clarmann M, Kretschmer E, Roider G. Clinical and morphological findings on mustard gas bis(2-chloroethyl)sulfide poisoning. J Forensic Sci. 1991;36:1688–98.

    Article  CAS  PubMed  Google Scholar 

  138. Maisonneuve A, Callebat I, Debordes L, Coppet L. Biological fate of sulphur mustard in rat: toxicokinetics and disposition. Xenobiotica. 1993;23:771–80.

    Article  CAS  PubMed  Google Scholar 

  139. Vycudilik W. Detection of bis(2-chlorethyl)-sulfide (Yperite) in urine by high resolution gas chromatography–mass spectrometry. Forensic Sci Int. 1987;35:67–71.

    Article  CAS  PubMed  Google Scholar 

  140. Black RM, Clarke RJ, Harrison JM, Read RW. Biological fate of sulphur mustard: identification of valine and histidine adducts in haemoglobin from casualties of sulphur mustard poisoning. Xenobiotica. 1997;27:499–512. doi:10.1080/004982597240460.

    Article  CAS  PubMed  Google Scholar 

  141. Black RM, Harrison JM, Read RW. Biological fate of sulphur mustard: in vitro alkylation of human haemoglobin by sulphur mustard. Xenobiotica. 1997;27:11–32. doi:10.1080/004982597240730.

    Article  CAS  PubMed  Google Scholar 

  142. Barr JR, Pierce CL, Smith JR, Capacio BR, Woolfitt AR, Solano MI, et al. Analysis of urinary metabolites of sulfur mustard in two individuals after accidental exposure. J Anal Toxicol. 2008;32:10–6.

    Article  CAS  PubMed  Google Scholar 

  143. Ash DH, Lemire SW, McGrath SC, McWilliams LG, Barr JR. Multianalyte quantification of five sesqui- and ethyl ether oxy-mustard metabolites in human urine by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J Anal Toxicol. 2008;32:44–50.

    Article  CAS  PubMed  Google Scholar 

  144. Smith JR, Capacio BR, Korte WD, Woolfitt AR, Barr JR. Analysis for plasma protein biomarkers following an accidental human exposure to sulfur mustard. J Anal Toxicol. 2008;32:17–24.

    Article  CAS  PubMed  Google Scholar 

  145. Petrali JP, Oglesby SB, Justus BTA. Morphologic effects of sulfur mustard on a human skin equivalent. J Toxicol Cutan Ocul Toxicol. 2008;10:315–24. doi:10.3109/15569529109052139.

    Article  Google Scholar 

  146. Papirmeister B, Gross CL, Petrali JP, Meier HL. Pathology produced by sulfur mustard in human skin grafts on athymic nude mice. II. Ultrastructural changes. J Toxicol Cutan Ocul Toxicol. 2008;3:393–408. doi:10.3109/15569528409036290.

    Article  Google Scholar 

  147. Zilker T. Medical management of incidents with chemical warfare agents. Toxicology. 2005;214:221–31. doi:10.1016/j.tox.2005.06.028.

    Article  CAS  PubMed  Google Scholar 

  148. Rice P. Sulphur mustard injuries of the skin. Toxicol Rev. 2003;22:111–8. doi:10.2165/00139709-200322020-00006.

    Article  CAS  PubMed  Google Scholar 

  149. Dachir S, Cohen M, Kamus-Elimeleh D, Fishbine E, Sahar R, Gez R, et al. Characterization of acute and long-term pathologies of superficial and deep dermal sulfur mustard skin lesions in the hairless guinea pig model. Wound Repair Regen. 2012;20:852–61. doi:10.1111/j.1524-475X.2012.00830.x.

    Article  PubMed  Google Scholar 

  150. Abteilung für Handchirurgie, Plastische und Mikrochirurgie, Zentrum für Schwerbrandverletzte, BG Klinikum Hamburg. Copyright.

    Google Scholar 

  151. Ghabili K, Agutter PS, Ghanei M, Ansarin K, Shoja MM. Mustard gas toxicity: the acute and chronic pathological effects. J Appl Toxicol. 2010;30:627–43. doi:10.1002/jat.1581.

    Article  CAS  PubMed  Google Scholar 

  152. Weinberger B, Laskin JD, Sunil VR, Sinko PJ, Heck DE, Laskin DL. Sulfur mustard-induced pulmonary injury: therapeutic approaches to mitigating toxicity. Pulm Pharmacol Ther. 2011;24:92–9. doi:10.1016/j.pupt.2010.09.004.

    Article  CAS  PubMed  Google Scholar 

  153. Ghasemi H, Owlia P, Jalali-Nadoushan MR, Pourfarzam S, Azimi G, Yarmohammadi M-E, et al. A clinicopathological approach to sulfur mustard-induced organ complications: a major review. Cutan Ocul Toxicol. 2013;32:304–24. doi:10.3109/15569527.2013.781615.

    Article  PubMed  Google Scholar 

  154. Tang FR, Loke WK. Sulfur mustard and respiratory diseases. Crit Rev Toxicol. 2012;42:688–702. doi:10.3109/10408444.2012.698405.

    Article  CAS  PubMed  Google Scholar 

  155. Balali-Mood M, Hefazi M. Comparison of early and late toxic effects of sulfur mustard in Iranian veterans. Basic Clin Pharmacol Toxicol. 2006;99:273–82. doi:10.1111/j.1742-7843.2006.pto_429.x.

    Article  CAS  PubMed  Google Scholar 

  156. Vijayaraghavan R, Kulkarni A, Pant SC, Kumar P, Rao PVL, Gupta N, et al. Differential toxicity of sulfur mustard administered through percutaneous, subcutaneous, and oral routes. Toxicol Appl Pharmacol. 2005;202:180–8. doi:10.1016/j.taap.2004.06.020.

    Article  CAS  PubMed  Google Scholar 

  157. Rowell M, Kehe K, Balszuweit F, Thiermann H. The chronic effects of sulfur mustard exposure. Toxicology. 2009;263:9–11. doi:10.1016/j.tox.2009.05.015.

    Article  CAS  PubMed  Google Scholar 

  158. Shohrati M, Peyman M, Peyman A, Davoudi M, Ghanei M. Cutaneous and ocular late complications of sulfur mustard in Iranian veterans. Cutan Ocul Toxicol. 2007;26:73–81. doi:10.1080/15569520701212399.

    Article  CAS  PubMed  Google Scholar 

  159. Balali-Mood M, Hefazi M. The pharmacology, toxicology, and medical treatment of sulphur mustard poisoning. Fundam Clin Pharmacol. 2005;19:297–315. doi:10.1111/j.1472-8206.2005.00325.x.

    Article  CAS  PubMed  Google Scholar 

  160. Firooz A, Sadr B, Davoudi SM, Nassiri-Kashani M, Panahi Y, Dowlati Y. Long-term skin damage due to chemical weapon exposure. Cutan Ocul Toxicol. 2011;30:64–8. doi:10.3109/15569527.2010.529547.

    Article  PubMed  Google Scholar 

  161. Khateri S, Ghanei M, Keshavarz S, Soroush M, Haines D. Incidence of lung, eye, and skin lesions as late complications in 34,000 Iranians with wartime exposure to mustard agent. J Occup Environ Med. 2003;45:1136–43. doi:10.1097/01.jom.0000094993.20914.d1.

    Article  PubMed  Google Scholar 

  162. Taghaddosinejad F, Fayyaz AF, Behnoush B. Pulmonary complications of mustard gas exposure: a study on cadavers. Acta Med Iran. 2011;49:233–6.

    PubMed  Google Scholar 

  163. Ghanei M, Harandi AA. Long term consequences from exposure to sulfur mustard: a review. Inhal Toxicol. 2007;19:451–6. doi:10.1080/08958370601174990.

    Article  CAS  PubMed  Google Scholar 

  164. Ghanei M, Naderi M, Kosar AM, Harandi AA, Hopkinson NS, Poursaleh Z. Long-term pulmonary complications of chemical warfare agent exposure in Iraqi Kurdish civilians. Inhal Toxicol. 2010;22:719–24. doi:10.3109/08958371003686016.

    Article  CAS  PubMed  Google Scholar 

  165. Ghanei M, Harandi AA. Molecular and cellular mechanism of lung injuries due to exposure to sulfur mustard: a review. Inhal Toxicol. 2011;23:363–71. doi:10.3109/08958378.2011.576278.

    Article  CAS  PubMed  Google Scholar 

  166. Ghanei M, Mokhtari M, Mohammad MM, Aslani J. Bronchiolitis obliterans following exposure to sulfur mustard: chest high resolution computed tomography. Eur J Radiol. 2004;52:164–9. doi:10.1016/j.ejrad.2004.03.018.

    Article  PubMed  Google Scholar 

  167. Beheshti J, Mark EJ, Akbaei HMH, Aslani J, Ghanei M. Mustard lung secrets: long term clinicopathological study following mustard gas exposure. Pathol Res Pract. 2006;202:739–44. doi:10.1016/j.prp.2006.04.008.

    Article  CAS  PubMed  Google Scholar 

  168. Emad A, Rezaian GR. The diversity of the effects of sulfur mustard gas inhalation on respiratory system 10 years after a single, heavy exposure: analysis of 197 cases. Chest. 1997;112:734–8.

    Article  CAS  PubMed  Google Scholar 

  169. Shohrati M, Karimzadeh I, Saburi A, Khalili H, Ghanei M. The role of N-acetylcysteine in the management of acute and chronic pulmonary complications of sulfur mustard: a literature review. Inhal Toxicol. 2014;26:507–23. doi:10.3109/08958378.2014.920439.

    Article  CAS  PubMed  Google Scholar 

  170. Saber H, Saburi A, Ghanei M. Clinical and paraclinical guidelines for management of sulfur mustard induced bronchiolitis obliterans; from bench to bedside. Inhal Toxicol. 2012;24:900–6. doi:10.3109/08958378.2012.725783.

    Article  CAS  PubMed  Google Scholar 

  171. Balali-Mood M, Hefazi M, Mahmoudi M, Jalali E, Attaran D, Maleki M, et al. Long-term complications of sulphur mustard poisoning in severely intoxicated Iranian veterans. Fundam Clin Pharmacol. 2005;19:713–21. doi:10.1111/j.1472-8206.2005.00364.x.

    Article  CAS  PubMed  Google Scholar 

  172. Baradaran-Rafii A, Javadi M-A, Rezaei Kanavi M, Eslani M, Jamali H, Karimian F. Limbal stem cell deficiency in chronic and delayed-onset mustard gas keratopathy. Ophthalmology. 2010;117:246–52. doi:10.1016/j.ophtha.2009.07.012.

    Article  PubMed  Google Scholar 

  173. Blodi FC. Delayed mustard-gas keratopathy. Am J Ophthalmol. 1953;36:1575–6.

    Article  CAS  PubMed  Google Scholar 

  174. Pleyer U, Sherif Z, Baatz H, Hartmann C. Delayed mustard gas keratopathy: clinical findings and confocal microscopy. Am J Ophthalmol. 1999;128:506–7.

    Article  CAS  PubMed  Google Scholar 

  175. Ghasemi H, Ghazanfari T, Ghassemi-Broumand M, Javadi MA, Babaei M, Soroush MR, et al. Long-term ocular consequences of sulfur mustard in seriously eye-injured war veterans. Cutan Ocul Toxicol. 2009;28:71–7. doi:10.1080/15569520902913936.

    Article  CAS  PubMed  Google Scholar 

  176. Etezad-Razavi M, Mahmoudi M, Hefazi M, Balali-Mood M. Delayed ocular complications of mustard gas poisoning and the relationship with respiratory and cutaneous complications. Clin Experiment Ophthalmol. 2006;34:342–6. doi:10.1111/j.1442-9071.2006.01220.x.

    Article  PubMed  Google Scholar 

  177. Kadar T, Dachir S, Cohen L, Sahar R, Fishbine E, Cohen M, et al. Ocular injuries following sulfur mustard exposure – pathological mechanism and potential therapy. Toxicology. 2009;263:59–69. doi:10.1016/j.tox.2008.10.026.

    Article  CAS  PubMed  Google Scholar 

  178. IARC Monographs. Sulfur mustard;2012.

    Google Scholar 

  179. Fox M, Scott D. The genetic toxicology of nitrogen and sulphur mustard. Mutat Res. 1980;75:131–68.

    Article  CAS  PubMed  Google Scholar 

  180. IARC Monographs. Some aziridines, N-, S- & O-mustards and selenium;1975.

    Google Scholar 

  181. Watson AP, Jones TD, Griffin GD. Sulfur mustard as a carcinogen: application of relative potency analysis to the chemical warfare agents H, HD, and HT. Regul Toxicol Pharmacol. 1989;10:1–25.

    Article  CAS  PubMed  Google Scholar 

  182. Ghanei M, Harandi AA. Lung carcinogenicity of sulfur mustard. Clin Lung Cancer. 2010;11:13–7. doi:10.3816/CLC.2010.n.002.

    Article  CAS  PubMed  Google Scholar 

  183. Ashby J, Tinwell H, Callander RD, Clare N. Genetic activity of the human carcinogen sulphur mustard towards Salmonella and the mouse bone marrow. Mutat Res/Rev Genet Toxicol. 1991;257:307–11. doi:10.1016/0165-1110(91)90004-F.

    Article  CAS  Google Scholar 

  184. Weiß A, Weiß B. Carcinogenesis due to mustard gas exposure in man, important sign for therapy with alkylating agents. Dtsch Med Wochenschr. 1975;100:919–23.

    Article  PubMed  Google Scholar 

  185. Norman JE. Lung cancer mortality in World War I veterans with mustard-gas injury: 1919–1965. J Natl Cancer Inst. 1975;54:311–7.

    PubMed  Google Scholar 

  186. Zafarghandi MR, Soroush MR, Mahmoodi M, Naieni KH, Ardalan A, Dolatyari A, et al. Incidence of cancer in Iranian sulfur mustard exposed veterans: a long-term follow-up cohort study. Cancer Causes Control. 2013;24:99–105. doi:10.1007/s10552-012-0094-8.

    Article  PubMed  Google Scholar 

  187. Boffetta P, Kaldor JM. Secondary malignancies following cancer chemotherapy. Acta Oncol. 2009;33:591–8. doi:10.3109/02841869409121767.

    Article  Google Scholar 

  188. Ghanei M, Vosoghi AA. An epidemiologic study to screen for chronic myelocytic leukemia in war victims exposed to mustard gas. Environ Health Perspect. 2002;110:519–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hosseini-khalili A, Haines DD, Modirian E, Soroush M, Khateri S, Joshi R, et al. Mustard gas exposure and carcinogenesis of lung. Mutat Res. 2009;678:1–6. doi:10.1016/j.mrgentox.2009.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Korkmaz A, Yaren H, Kunak ZI, Uysal B, Kurt B, Topal T, et al. Epigenetic perturbations in the pathogenesis of mustard toxicity; hypothesis and preliminary results. Interdiscip Toxicol. 2008;1:236–41. doi:10.2478/v10102-010-0048-5.

    PubMed  PubMed Central  Google Scholar 

  191. Schmidt A, Steinritz D, Thiermann H, Meineke V, Abend M. Alteration of miRNA expression in early endothelial cells after exposure with sub-lethal sulfur mustard concentrations. Toxicol Lett. 2016;244:88–94. doi:10.1016/j.toxlet.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  192. Steinritz D, Schmidt A, Balszuweit F, Thiermann H, Simons T, Striepling E, et al. Epigenetic modulations in early endothelial cells and DNA hypermethylation in human skin after sulfur mustard exposure. Toxicol Lett. 2016;244:95–102. doi:10.1016/j.toxlet.2015.09.016.

    Article  CAS  PubMed  Google Scholar 

  193. Imani S, Panahi Y, Salimian J, Fu J, Ghanei M. Epigenetic: a missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study. Iran J Basic Med Sci. 2015;18:723–36.

    PubMed  PubMed Central  Google Scholar 

  194. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28. doi:10.1038/nrg816.

    Article  CAS  PubMed  Google Scholar 

  195. Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007;16:R50–9. doi:10.1093/hmg/ddm018.

    Article  CAS  PubMed  Google Scholar 

  196. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36. doi:10.1093/carcin/bgp220.

    Article  CAS  PubMed  Google Scholar 

  197. Das SK, Mukherjee S, Smith MG, Chatterjee D. Prophylactic protection by N-acetylcysteine against the pulmonary injury induced by 2-chloroethyl ethyl sulfide, a mustard analogue. J Biochem Mol Toxicol. 2003;17:177–84. doi:10.1002/jbt.10076.

    Article  CAS  PubMed  Google Scholar 

  198. Bobb AJ, Arfsten DP, Jederberg WW. N-acetyl-l-Cysteine as prophylaxis against sulfur mustard. Mil Med. 2005;170:52–6.

    Article  PubMed  Google Scholar 

  199. McClintock SD, Hoesel LM, Das SK, Till GO, Neff T, Kunkel RG, et al. Attenuation of half sulfur mustard gas-induced acute lung injury in rats. J Appl Toxicol. 2006;26:126–31. doi:10.1002/jat.1115.

    Article  CAS  PubMed  Google Scholar 

  200. Jugg B, Fairhall S, Smith A, Rutter S, Mann T, Perrott R, et al. N-acetyl-l-cysteine protects against inhaled sulfur mustard poisoning in the large swine. Clin Toxicol (Phila). 2013;51:216–24. doi:10.3109/15563650.2013.780208.

    Article  CAS  Google Scholar 

  201. Atkins KB, Lodhi IJ, Hurley LL, Hinshaw DB. N-acetylcysteine and endothelial cell injury by sulfur mustard. J Appl Toxicol. 2000;20 Suppl 1:S125–8.

    CAS  PubMed  Google Scholar 

  202. Black RM, Brewster K, Clarke RJ, Harrison JM. The chemistry of 1,1′-thiobis(2-chloroethane) (Sulphur Mustard) PART II. 1 The synthesis of some conjugates with cysteine, N-acetylcysteine and N-acetylcysteine methyl ester. Phosphorus Sulfur Silicon Relat Elem. 1992;71:49–58. doi:10.1080/10426509208034495.

    Article  CAS  Google Scholar 

  203. Saberi M, Zaree MA. The protective effects of N-Acetl-cysteine, oxo-thiazolidine-carboxylate, acetaminophen and their combinations against sulfur mustard cytotoxicity on human skin fibroblast cell line (HF2FF). Iran Biomed J. 2009;13:215–21.

    CAS  PubMed  Google Scholar 

  204. Boulware S, Fields T, McIvor E, Powell KL, Abel EL, Vasquez KM, MacLeod MC. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog. Toxicol Appl Pharmacol. 2012;263:203–9. doi:10.1016/j.taap.2012.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Green J, Heard K, Reynolds K, Albert D. Oral and intravenous acetylcysteine for treatment of acetaminophen toxicity: a systematic review and meta-analysis. West J Emerg Med. 2013;14:218–26. doi:10.5811/westjem.2012.4.6885.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Casillas RP, Kiser RC, Truxall JA, Singer AW, Shumaker SM, Niemuth NA, et al. Therapeutic approaches to dermatotoxicity by sulfur mustard. I. Modulation of sulfur mustard-induced cutaneous injury in the mouse ear vesicant model. J Appl Toxicol. 2000;20 Suppl 1:S145–51.

    CAS  PubMed  Google Scholar 

  207. Dachir S, Fishbeine E, Meshulam Y, Sahar R, Chapman S, Amir A, Kadar T. Amelioration of sulfur mustard skin injury following a topical treatment with a mixture of a steroid and a NSAID. J Appl Toxicol. 2004;24:107–13. doi:10.1002/jat.955.

    Article  CAS  PubMed  Google Scholar 

  208. O’Neill HC, White CW, Veress LA, Hendry-Hofer TB, Loader JE, Min E, et al. Treatment with the catalytic metalloporphyrin AEOL 10150 reduces inflammation and oxidative stress due to inhalation of the sulfur mustard analog 2-chloroethyl ethyl sulfide. Free Radic Biol Med. 2010;48:1188–96. doi:10.1016/j.freeradbiomed.2010.01.039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Plahovinsak JL, Buccellato MA, Reid FM, Graham JS. Selection of non-steroidal anti-inflammatory drug and treatment regimen for sulfur mustard-induced cutaneous lesions. Cutan Ocul Toxicol. 2015:1–10. doi:10.3109/15569527.2015.1076436.

    Google Scholar 

  210. Young SC, Fabio KM, Huang M-T, Saxena J, Harman MP, Guillon CD, et al. Investigation of anticholinergic and non-steroidal anti-inflammatory prodrugs which reduce chemically induced skin inflammation. J Appl Toxicol. 2012;32:135–41. doi:10.1002/jat.1645.

    Article  CAS  PubMed  Google Scholar 

  211. Amitai G, Adani R, Fishbein E, Meshulam H, Laish I, Dachir S. Bifunctional compounds eliciting anti-inflammatory and anti-cholinesterase activity as potential treatment of nerve and blister chemical agents poisoning. J Appl Toxicol. 2006;26:81–7. doi:10.1002/jat.1111.

    Article  CAS  PubMed  Google Scholar 

  212. Wigenstam E, Rocksén D, Ekstrand-Hammarström B, Bucht A. Treatment with dexamethasone or liposome-encapsulated vitamin E provides beneficial effects after chemical-induced lung injury. Inhal Toxicol. 2009;21:958–64. doi:10.1080/08958370802596298.

    Article  CAS  PubMed  Google Scholar 

  213. Vogt RF, Dannenberg AM, Schofield BH, Hynes NA, Papirmeister B. Pathogenesis of skin lesions caused by sulfur mustard. Fundam Appl Toxicol. 1984;4:S71–83.

    Article  PubMed  Google Scholar 

  214. Poursaleh Z, Harandi AA, Vahedi E, Ghanei M. Treatment for sulfur mustard lung injuries; new therapeutic approaches from acute to chronic phase. Daru. 2012;20:27. doi:10.1186/2008-2231-20-27.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Dachir S, Fishbeine E, Meshulam Y, Sahar R, Amir A, Kadar T. Potential anti-inflammatory treatments against cutaneous sulfur mustard injury using the mouse ear vesicant model. Hum Exp Toxicol. 2002;21:197–203.

    Article  CAS  PubMed  Google Scholar 

  216. Vojvodic V, Milosavljevic Z, Boskovic B, Bojanic N. The protective effect of different drugs in rats poisoned by sulfur and nitrogen mustards. Fundam Appl Toxicol. 1985;5:S160–8.

    Article  CAS  PubMed  Google Scholar 

  217. Stenger B, Zehfuss F, Mückter H, Schmidt A, Balszuweit F, Schäfer E, et al. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents. Arch Toxicol. 2015;89:1631–43. doi:10.1007/s00204-014-1414-4.

    Article  CAS  PubMed  Google Scholar 

  218. Graham JS, Stevenson RS, Mitcheltree LW, Hamilton TA, Deckert RR, Lee RB, Schiavetta AM. Medical management of cutaneous sulfur mustard injuries. Toxicology. 2009;263:47–58. doi:10.1016/j.tox.2008.07.067.

    Article  CAS  PubMed  Google Scholar 

  219. Evison D, Brown RFR, Rice P. The treatment of sulphur mustard burns with laser debridement. J Plast Reconstr Aesthet Surg. 2006;59:1087–93. doi:10.1016/j.bjps.2006.02.010.

    Article  CAS  PubMed  Google Scholar 

  220. Thiermann H, Worek F, Kehe K. Limitations and challenges in treatment of acute chemical warfare agent poisoning. Chem Biol Interact. 2013;206:435–43. doi:10.1016/j.cbi.2013.09.015.

    Article  CAS  PubMed  Google Scholar 

  221. Klaus S, Beitsch C, Scheibenzuber M. Development of a rapid and reliable on-site sulfur mustard detector. Toxicology. 2007;233:233. doi:10.1016/j.tox.2006.04.021.

    Article  CAS  Google Scholar 

  222. Kehe K, Müller H, Balszuweit F, Steinritz D, Thiermann H, Klaus SM, Kreppel H. New methods to detect sulfur mustard (SM) and SM-induced skin damage. In: Dishovsky C, Pivovarov A, editors. Counteraction to chemical and biological terrorism in East European countries. Dordrecht/Heidelberg: Springer; 2009. p. 127–33. doi:10.1007/978-90-481-2342-1_17.

    Chapter  Google Scholar 

  223. Koller M, Szinicz L. Chemical warfare agents. In: Külpmann W-R, editor. Clinical toxicological analysis: procedures, results, interpretation. Weinheim: Wiley-VCH-Verl; 2009.

    Google Scholar 

  224. Oostdijk JP, Degenhardt CEAM, Trap HC, Langenberg JP. Selective and sensitive trace analysis of sulfur mustard with thermal desorption and two-dimensional gas chromatography–mass spectrometry. J Chromatogr A. 2007;1150:62–9. doi:10.1016/j.chroma.2006.08.053.

    Article  CAS  PubMed  Google Scholar 

  225. Dangi RS, Jeevaratnam K, Sugendran K, Malhotra RC, Raghuveeran CD. Solid-phase extraction and reversed-phase high-performance liquid chromatographic determination of sulphur mustard in blood. J Chromatogr B Biomed Appl. 1994;661:341–5.

    Article  CAS  PubMed  Google Scholar 

  226. Capacio BR, Smith JR, DeLion MT, Anderson DR, Graham JS, Platoff GE, Korte WD. Monitoring sulfur mustard exposure by gas chromatography–mass spectrometry analysis of thiodiglycol cleaved from blood proteins. J Anal Toxicol. 2004;28:306–10.

    Article  CAS  PubMed  Google Scholar 

  227. Lawrence RJ, Smith JR, Boyd BL, Capacio BR. Improvements in the methodology of monitoring sulfur mustard exposure by gas chromatography–mass spectrometry analysis of cleaved and derivatized blood protein adducts. J Anal Toxicol. 2008;32:31–6.

    Article  CAS  PubMed  Google Scholar 

  228. Black RM, Noort D. Biological markers of exposure to chemical warfare agents. In: Marrs TC, Maynard RL, Sidell FR, editors. Chemical warfare agents: toxicology and treatment. 2nd ed. Chichester: Wiley; 2007. p. 127–56. doi:10.1002/9780470060032.ch5.

    Chapter  Google Scholar 

  229. Black RM. An overview of biological markers of exposure to chemical warfare agents. J Anal Toxicol. 2008;32:2–9.

    Article  CAS  PubMed  Google Scholar 

  230. Noort D, Benschop HP, Black RM. Biomonitoring of exposure to chemical warfare agents: a review. Toxicol Appl Pharmacol. 2002;184:116–26.

    Article  CAS  PubMed  Google Scholar 

  231. Black RM, Clarke RJ, Read RW. Analysis of 1,1′-sulphonylbis2-(methylsulphinyl)ethane and 1-methylsulphinyl-2-2-(methylthio)ethylsulphonylethane, metabolites of sulphur mustard, in urine using gas chromatography–mass spectrometry. J Chromatogr. 1991;558:405–14.

    Article  CAS  PubMed  Google Scholar 

  232. Black RM, Read RW. Improved methodology for the detection and quantitation of urinary metabolites of sulphur mustard using gas chromatography-tandem mass spectrometry. J Chromatogr B Biomed Appl. 1995;665:97–105.

    Article  CAS  PubMed  Google Scholar 

  233. Lin Y, Dong Y, Chen J, Li C-Z, Nie Z-Y, Guo L, et al. Gas chromatographic-tandem mass spectrometric analysis of beta-lyase metabolites of sulfur mustard adducts with glutathione in urine and its use in a rabbit cutaneous exposure model. J Chromatogr B Biomed Appl. 2014;945–946:233–9. doi:10.1016/j.jchromb.2013.11.058.

    Article  CAS  Google Scholar 

  234. Li C, Chen J, Liu Q, Xie J, Li H. Simultaneous quantification of seven plasma metabolites of sulfur mustard by ultra high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Biomed Appl. 2013;917–918:100–7. doi:10.1016/j.jchromb.2012.12.035.

    Article  CAS  Google Scholar 

  235. Steinritz D, Thiermann H. Verification of SM exposure in biological samples. In: Balali-Mood M, Abdollahi M, editors. Basic and clinical toxicology of mustard compounds. 1st ed. Heidelberg: Springer International Publishing; 2015. p. 349–58.

    Chapter  Google Scholar 

  236. Noort D, Hulst AG, de Jong LP, Benschop HP. Alkylation of human serum albumin by sulfur mustard in vitro and in vivo: mass spectrometric analysis of a cysteine adduct as a sensitive biomarker of exposure. Chem Res Toxicol. 1999;12:715–21. doi:10.1021/tx9900369.

    Article  CAS  PubMed  Google Scholar 

  237. Noort D, Fidder A, Hulst AG, Woolfitt AR, Ash D, Barr JR. Retrospective detection of exposure to sulfur mustard: improvements on an assay for liquid chromatography-tandem mass spectrometry analysis of albumin-sulfur mustard adducts. J Anal Toxicol. 2004;28:333–8.

    Article  CAS  PubMed  Google Scholar 

  238. Noort D, Fidder A, Hulst AG, de Jong LP, Benschop HP. Diagnosis and dosimetry of exposure to sulfur mustard: development of a standard operating procedure for mass spectrometric analysis of haemoglobin adducts: exploratory research on albumin and keratin adducts. J Appl Toxicol. 2000;20 Suppl 1:S187–92.

    CAS  PubMed  Google Scholar 

  239. Zhang Y, Yue L, Nie Z, Chen J, Guo L, Wu B, et al. Simultaneous determination of four sulfur mustard-DNA adducts in rabbit urine after dermal exposure by isotope-dilution liquid chromatography-tandem mass spectrometry. J Chromatogr B Biomed Appl. 2014;961:29–35. doi:10.1016/j.jchromb.2014.04.050.

    Article  CAS  Google Scholar 

  240. Bikker FJ, Mars-Groenendijk RH, Noort D, Fidder A, van der Schans GP. Detection of sulfur mustard adducts in human callus by phage antibodies. Chem Biol Drug Des. 2007;69:314–20. doi:10.1111/j.1747-0285.2007.00504.x.

    Article  CAS  PubMed  Google Scholar 

  241. van der Schans GP, Scheffer AG, Mars-Groenendijk RH, Fidder A, Benschop HP, Baan RA. Immunochemical detection of adducts of sulfur mustard to DNA of calf thymus and human white blood cells. Chem Res Toxicol. 1994;7:408–13. doi:10.1021/tx00039a019.

    Article  PubMed  Google Scholar 

  242. Kehe K, Schrettl V, Thiermann H, Steinritz D. Modified immunoslot blot assay to detect hemi and sulfur mustard DNA adducts. Chem Biol Interact. 2013;206:523–8. doi:10.1016/j.cbi.2013.08.001.sulfurmustardfinal.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dirk Steinritz or Horst Thiermann .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, Second Edition

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, Second Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Steinritz, D., Thiermann, H. (2016). Sulfur Mustard. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_149-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_149-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics