Skip to main content

Abstract

Device technologies to treat cardiac arrhythmia continue to advance at a rapid pace; this is a highly competitive field with numerous corporate powerhouses playing significant roles. The primary goals for treatment of arrhythmia are to: (1) alleviate symptoms and improve an individual’s quality of life; (2) prolong the patient’s life by preventing complications such as ventricular tachycardia/fibrillation, syncope, and/or stroke; and (3) reduce an individual’s dependency on pharmacologic therapies that often carry significant side effects. Pharmacologic treatment has been the mainstay for management of most cardiac arrhythmias, although in recent years implantable devices and ablation have become increasingly more important. In this chapter we review several ablation technologies that are in current use as well as others that are being developed. This review contains descriptions of: (1) various energy sources; (2) the mechanisms of action for lesion formation; (3) required power sources; (4) the variety of catheters that can be used to apply these therapies; (5) potential treatment complications; and (6) the recent sensor technologies that are being developed to improve therapeutic efficacy and/or minimize complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avitall B, Khan M, Krum D et al (1993) Physics and engineering of transcatheter cardiac tissue ablation. J Am Coll Cardiol 22:921–932

    Article  CAS  PubMed  Google Scholar 

  2. Aliot EM, Stevenson WG, Almendral-Garrote JM et al (2009) EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias. Heart Rhythm 6:886–933

    Article  PubMed  Google Scholar 

  3. Eick OJ (2003) Factors influencing lesion formation during radiofrequency catheter ablation. Indian Pacing Electrophysiol J 3:117–128

    PubMed Central  PubMed  Google Scholar 

  4. Haines DE (1993) The biophysics of radiofrequency catheter ablation in the heart: the importance of temperature monitoring. Pacing Clin Electrophysiol 16:586–591

    Article  CAS  PubMed  Google Scholar 

  5. Avitall B, Mughal K, Hare J, Helms R, Krum D (1997) The effects of electrode-tissue contact on radiofrequency lesion generation. Pacing Clin Electrophysiol 20:2899–2910

    Article  CAS  PubMed  Google Scholar 

  6. Nakagawa H, Yamanashi WS, Pitha JV et al (1995) Comparison of in vitro tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation 91:2264–2273

    Article  CAS  PubMed  Google Scholar 

  7. Chan RC, Johnson SB, Seward JB et al (2002) The effect of ablation electrode length and catheter tip to endocardial orientation on radiofrequency lesion size in the canine right atrium. Pacing Clin Electrophysiol 25:4–13

    Article  PubMed  Google Scholar 

  8. Dorwarth U, Fiek M, Remp T et al (2003) Radiofrequency catheter ablation: different cooled and noncooled electrode systems induce specific lesion geometries and adverse effects profiles. Pacing Clin Electrophysiol 26:1438–1445

    Article  PubMed  Google Scholar 

  9. Akca F, Hubay M, Zima E et al (2014) High-volume lesions using a new second-generation open irrigation radiofrequency catheter are associated with the development of inhomogeneous lesions. Pacing Clin Electrophysiol 37:864–873

    Article  PubMed  Google Scholar 

  10. Martinek M, Lemes C, Sigmund E et al (2012) Clinical impact of an open-irrigated radiofrequency catheter with direct force measurement on atrial fibrillation ablation. Pacing Clin Electrophysiol 35:1312–1318

    Article  PubMed  Google Scholar 

  11. Issa Z, Miller JM, Zipes DP (2009). In: Issa Z (ed) Clinical arrhythmology and electrophysiology: a companion to Braunwald’s heart disease. Philadelphia, Elsevier, p 487

    Google Scholar 

  12. Avitall B, Singh I, Arora P et al (2012) Novel ablation catheter technology that improves mapping resolution and monitoring of lesion maturation. J Innov Cardiac Rhythm Manag 3:599–609

    Google Scholar 

  13. Watanabe I, Masaki R, Min N et al (2002) Cooled-tip ablation results in increased radiofrequency power delivery and lesion size in the canine heart: importance of catheter tip temperature monitoring for prevention of popping and impedance rise. J Interv Card Electrophysiol 6:9–16

    Article  PubMed  Google Scholar 

  14. Wijffels MC, Van Oosterhout M, Boersma LV et al (2009) Characterization of in vitro and in vivo lesions made by a novel multichannel ablation generator and a circumlinear decapolar ablation catheter. J Cardiovasc Electrophysiol 20:1142–1148

    Article  PubMed  Google Scholar 

  15. Boersma LV, Wijffels MC, Oral H, Wever EF, Morady F (2008) Pulmonary vein isolation by duty-cycled bipolar and unipolar radiofrequency energy with a multielectrode ablation catheter. Heart Rhythm 5:1635–1642

    Article  PubMed  Google Scholar 

  16. Gaita F, Leclercq JF, Schumacher B et al (2011) Incidence of silent cerebral thromboembolic lesions after atrial fibrillation ablation may change according to technology used: comparison of irrigated radiofrequency, multipolar nonirrigated catheter and cryoballoon. J Cardiovasc Electrophysiol 22:961–968

    Article  PubMed  Google Scholar 

  17. Weiss C, Antz M, Eick O, Eshagzaiy K, Meinertz T, Willems S (2002) Radiofrequency catheter ablation using cooled electrodes: impact of irrigation flow rate and catheter contact pressure on lesion dimensions. Pacing Clin Electrophysiol 25:463–469

    Article  PubMed  Google Scholar 

  18. Shake JG, Larson DW, Salerno CT, Bianco RW, Bolman RM III (1997) The role of electrolyte in lesion size using an irrigated radio frequency electrode. J Invest Surg 10:339–348

    Article  CAS  PubMed  Google Scholar 

  19. Demazumder D, Mirotznik MS, Schwartzman D (2001) Biophysics of radiofrequency ablation using an irrigated electrode. J Interv Card Electrophysiol 5:377–389

    Article  CAS  PubMed  Google Scholar 

  20. Nakagawa H, Kautzner J, Natale A et al (2013) Locations of high contact force during left atrial mapping in atrial fibrillation patients: electrogram amplitude and impedance are poor predictors of electrode-tissue contact force for ablation of atrial fibrillation. Circ Arrhythm Electrophysiol 6:746–753

    Article  PubMed  Google Scholar 

  21. Thiagalingam A, D’Avila A, Foley L et al (2010) Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter. J Cardiovasc Electrophysiol 21:806–811

    PubMed  Google Scholar 

  22. Yokoyama K, Nakagawa H, Shah DC et al (2008) Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ Arrhythm Electrophysiol 1:354–362

    Article  PubMed  Google Scholar 

  23. Kuck KH, Reddy VY, Schmidt et al (2011) A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm 9:18–23

    Google Scholar 

  24. Jensen-Urstad M, Tabrizi F, Kennebäck G, Wredlert C, Klang C, Insulander P (2006) High success rate with cryomapping and cryoablation of atrioventricular nodal reentry tachycardia. Pacing Clin Electrophysiol 29:487–489

    Article  PubMed  Google Scholar 

  25. Schwagten B, Knops P, Janse P et al (2011) Long-term follow-up after catheter ablation for atrioventricular nodal reentrant tachycardia: a comparison of cryothermal and radiofrequency energy in a large series of patients. J Interv Card Electrophysiol 30:55–61

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bastani H, Drca N, Insulander P et al (2013) Cryothermal vs. radiofrequency ablation as atrial flutter therapy: a randomized comparison. Europace 15:420–428

    Article  PubMed  Google Scholar 

  27. Wadhwa MK, Rahme MM, Dobak J et al (2000) Transcatheter cryoablation of ventricular myocardium in dogs. J Interv Card Electrophysiol 4:537–546

    Article  CAS  PubMed  Google Scholar 

  28. Collins NJ, Barlow M, Varghese P, Leitch J (2006) Cryoablation versus radiofrequency ablation in the treatment of atrial flutter trial (CRAAFT). J Interv Card Electrophysiol 16:1–5

    Article  PubMed  Google Scholar 

  29. Khairy P, Chauvet P, Lehmann J et al (2003) Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation. Circulation 107:2045–2050

    Article  PubMed  Google Scholar 

  30. Shepherd JP, Dawber RP (1984) Wound healing and scarring after cryosurgery. Cryobiology 21:157–169

    Article  CAS  PubMed  Google Scholar 

  31. Gage AA, Guest K, Montes M, Caruana JA, Whalen DA Jr (1985) Effect of varying freezing and thawing rates in experimental cryosurgery. Cryobiology 22:175–182

    Article  CAS  PubMed  Google Scholar 

  32. Lustgarten DL, Keane D, Ruskin J (1999) Cryothermal ablation: mechanism of tissue injury and current experience in the treatment of tachyarrhythmias. Prog Cardiovasc Dis 41:481–498

    Article  CAS  PubMed  Google Scholar 

  33. Andrade JG, Khairy P, Dubuc M (2013) Advances in arrhythmia and electrophysiology. Circulation 6:218–227

    Google Scholar 

  34. Weimar T, Lee AM, Ray S, Schuessler RB, Damiano RJ (2012) Evaluation of a novel cryoablation system: in-vitro testing of heat capacity and freezing temperatures. Innovations 7:403–409

    PubMed Central  PubMed  Google Scholar 

  35. Sarabanda AV, Bunch TJ, Johnson SB et al (2005) Efficacy and safety of circumferential pulmonary vein isolation using a novel cryothermal balloon ablation system. J Am Coll Cardiol 46:1902–1912

    Article  PubMed  Google Scholar 

  36. Neumann T, Vogt J, Schumacher B et al (2008) Circumferential pulmonary vein isolation with the cryoballoon technique: results from a prospective 3-Center study. J Am Coll Cardiol 52:273–278

    Article  PubMed  Google Scholar 

  37. Van Belle Y, Janse P, Rivero-Ayerza MJ et al (2007) Pulmonary vein isolation using an occluding cryoballoon for circumferential ablation: feasibility, complications, and short-term outcome. Eur Heart J 28:2231–2237

    Article  PubMed  Google Scholar 

  38. Schmidt B, Chun KR, Kuck KH, Antz M (2007) Pulmonary vein isolation by high-intensity focused ultrasound. Indian Pacing Electrophysiol J 7:126–133

    PubMed Central  PubMed  Google Scholar 

  39. Chen L, Rivens I, ter Haar G, Riddler S, Hill CR, Bensted JP (1993) Histological changes in rat liver tumours treated with high-intensity focused ultrasound. Ultrasound Med Biol 19:67–74

    Article  CAS  PubMed  Google Scholar 

  40. Fujikura K, Otsuka R, Kalisz A et al (2006) Effects of ultrasonic exposure parameters on myocardial lesions induced by high-intensity focused ultrasound. J Ultrasound Med 25:1375–1386

    PubMed  Google Scholar 

  41. Neven K, Schmidt B, Metzner A et al (2010) Fatal end of a safety algorithm for pulmonary vein isolation with use of high-intensity focused ultrasound. Circ Arrhythm Electrophysiol 3:260–265

    Article  PubMed  Google Scholar 

  42. Schmidt B, Chun KR, Metzner A, Fuernkranz A, Ouyang F, Kuck KH (2009) Pulmonary vein isolation with high-intensity focused ultrasound: results from the HIFU 12F study. Europace 11:1281–1288

    Article  PubMed  Google Scholar 

  43. He DS, Zimmer JE, Hynynen K et al (1994) Preliminary results using ultrasound energy for ablation of the ventricular myocardium in dogs. Am J Cardiol 73:1029–1031

    Article  CAS  PubMed  Google Scholar 

  44. Yokoyama K, Nakagawa H, Seres KA et al (2009) Canine model of esophageal injury and atrial-esophageal fistula after applications of forward-firing high-intensity focused ultrasound and side-firing unfocused ultrasound in the left atrium and inside the pulmonary vein. Circ Arrhythm Electrophysiol 2:41–49

    Article  PubMed  Google Scholar 

  45. Engel DJ, Muratore R, Hirata K et al (2006) Myocardial lesion formation using high-intensity focused ultrasound. J Am Soc Echocardiogr 19:932–937

    Article  PubMed  Google Scholar 

  46. Nakagawa H, Antz M, Wong T et al (2007) Initial experience using a forward directed, high intensity focused ultrasound balloon catheter for pulmonary vein antrum isolation in patients with atrial fibrillation. J Cardiovasc Electrophysiol 18:136–144

    Article  PubMed  Google Scholar 

  47. Natale A, Pisano E, Shewchik J et al (2000) First human experience with pulmonary vein isolation using a through-the-balloon circumferential ultrasound ablation system for recurrent atrial fibrillation. Circulation 102:1879–1882

    Article  CAS  PubMed  Google Scholar 

  48. Langberg JJ, Wonnel TL, Chin MC, Finkbeiner W, Scheinnman MM, Stauffer PR (1991) Catheter ablation of the atrioventricular junction using a helical microwave antenna: a novel means of coupling energy to the endocardium. Pacing Clin Electrophysiol 14:2105–2113

    Article  CAS  PubMed  Google Scholar 

  49. Liem LB, Mead RH (1998) Microwave linear ablation of the isthmus between the inferior vena cava and tricuspid annulus. Pacing Clin Electrophysiol 21:2079–2086

    Article  CAS  PubMed  Google Scholar 

  50. Iwasa A, Storey J, Yao B, Liem LB, Feld GK (2004) Efficacy of a microwave antenna for ablation of the tricuspid valve – inferior vena cava isthmus in dogs as a treatment for Type 1 atrial flutter. J Cardiovasc Electrophysiol 10:191–198

    Article  Google Scholar 

  51. Liem LB, Mead RH, Shenasa M et al (1996) In vitro and in vivo results of transcatheter microwave ablation using forward firing tip antenna design. Pacing Clin Electrophysiol 19:2004–2008

    Article  CAS  PubMed  Google Scholar 

  52. Lin Z, Shan ZG, Liao CX, Chen LW (2011) The effect of microwave and bipolar radio-frequency ablation in the surgical treatment of permanent atrial fibrillation during valve surgery. Thorac Cardiovasc Surg 59:460–464

    Article  CAS  PubMed  Google Scholar 

  53. Schuetz A, Schulze CJ, Sarvanakis KK et al (2003) Surgical treatment of permanent atrial fibrillation using microwave energy ablation: a prospective randomized clinical trial. Eur J Cardiothorac Surg 24:475–480

    Article  CAS  PubMed  Google Scholar 

  54. Brace CL (2009) Microwave ablation technology: what every user should know. Curr Probl Diagn Radiol 38:61–67

    Article  PubMed Central  PubMed  Google Scholar 

  55. Wonnell TL, Stauffer PR, Langberg JJ (1992) Evaluation of microwave and radiofrequency catheter ablation in a myocardium-equivalent phantom model. IEEE Trans Biomed Eng 39:1086–1095

    Article  CAS  PubMed  Google Scholar 

  56. Nevels RD, Arndt GD, Raffoul GW, Carl JR, Pacifico A (1998) Microwave catheter design. IEEE Trans Biomed Eng 45:885–890

    Google Scholar 

  57. Wisser W, Khazen C, Deviatko E et al (2004) Microwave and radiofrequency ablation yield similar success rates for treatment of chronic atrial fibrillation. Eur J Cardiothorac Surg 25:1011–1017

    Article  PubMed  Google Scholar 

  58. Knaut M, Tugtekin SM, Jung F, Matschke K (2004) Microwave ablation for the surgical treatment of permanent atrial fibrillation—a single centre experience. Eur J Cardiothorac Surg 26:742–746

    Article  PubMed  Google Scholar 

  59. Bordignon S, Chun KR, Gunawardene M et al (2013) Endoscopic ablation systems. Expert Rev Med Devices 10:177–183

    Article  CAS  PubMed  Google Scholar 

  60. Schmidt B, Metzner A, Chun KR et al (2010) Feasibility of circumferential pulmonary vein isolation using a novel endoscopic ablation system. Circ Arrhythm Electrophysiol 3:481–488

    Article  PubMed  Google Scholar 

  61. Reddy VY, Neuzil P, Themistoclakes S et al (2009) Visually-guided balloon catheter ablation of atrial fibrillation: experimental feasibility and first in-human multicenter clinical outcome. Circulation 120:12–20

    Article  PubMed  Google Scholar 

  62. Schade A, Krug J, Szollosi A, El Tarahony M, Deneke T (2012) Pulmonary vein isolation with a novel endoscopic ablation system using laser energy. Expert Rev Cardiovasc Ther 10:995–1000

    Article  CAS  PubMed  Google Scholar 

  63. Reddy VY, Houghtaling C, Fallon J et al (2004) Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model. Pacing Clin Electrophysiol 27:52–57

    Article  PubMed  Google Scholar 

  64. Phillips KP, Schweikert RA, Saliba WI et al (2008) Anatomic location of pulmonary vein electrical disconnection with balloon-based catheter ablation. J Cardiovasc Electrophysiol 9:14–18

    Google Scholar 

  65. Themistoclakis S, Wazni OM, Saliba W et al (2006) Endoscopic fiberoptic assessment of the balloon occlusion of the pulmonary vein ostium in humans: comparison with phased-array intracardiac echocardiography. Heart Rhythm 3:44–49

    Article  PubMed  Google Scholar 

  66. Reddy VY, Neuzil P, d’Avila A et al (2008) Balloon catheter ablation to treat paroxysmal atrial fibrillation: what is the level of pulmonary venous isolation? Heart Rhythm 5:353–360

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz Avitall MD, PhD, FACC, FHRS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Avitall, B., Kalinski, A. (2015). Cardiac Ablative Technologies. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_29

Download citation

Publish with us

Policies and ethics