Skip to main content

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 6))

Abstract

Reduction is an effective way to convert carbon dioxide (CO2), a greenhouse gas, into compounds that can be further used for materials and energy. Here we discuss the emission and utilization of CO2. Then we review the photocatalytic conversion of CO2 with emphasis on the use of TiO2, modified TiO2 and non-titanium metal oxides. Finally, the challenges and prospects for further development of CO2 photocatalytic reduction are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Asi M, Zhu L, He C, Sharma VK, Shu D, Li S, Yang J, Xiong Y (2013) Visible-light-harvesting reduction of CO2 to chemical fuels with plasmonic Ag@AgBr/CNT nanocomposites. Catal Today 216:268–275. doi:10.1016/j.cattod.2013.05.021

    Article  CAS  Google Scholar 

  • Adams EE (2012) Forest cover. http://www.earth-policy.org/indicators/C56/forests_2012

  • Ahmed N, Shibata Y, Taniguchi T, Izumi Y (2011) Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M = aluminum, gallium) layered double hydroxides. J Catal 279:123–135. doi:10.1016/j.jcat.2011.01.004

    Article  CAS  Google Scholar 

  • Ahmed N, Morikawa M, Izumi Y (2012) Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts. Catal Today 185:263–269. doi:10.1016/j.cattod.2011.08.010

    Article  CAS  Google Scholar 

  • Anonymous. Carbon capture and storage. http://en.wikipedia.org/wiki/Carbon_capture_and_storage

  • Anonymous (2009) Copenhagen accord. http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf

  • Arai T, Tajima S, Sato S, Uemura K, Morikawa T, Kajino T (2011) Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer. Chem Commun 47:12664–12666. doi:10.1039/c1cc16160a

    Article  CAS  Google Scholar 

  • Ashley A, O’Hare D (2013) FLP-mediated activations and reductions of CO2 and CO. In: Erker G, Stephan DW (eds) Frustrated Lewis pairs II. Springer, Berlin/Heidelberg, pp 191–217

    Google Scholar 

  • Ashley AE, Thompson AL, O’Hare D (2009) Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 48:9839–9843. doi:10.1002/anie.200905466

    Article  CAS  Google Scholar 

  • Balucan RD, Dlugogorski BZ (2012) Thermal activation of antigorite for mineralization of CO2. Environ Sci Technol 47:182–190. doi:10.1021/es303566z

    Article  CAS  Google Scholar 

  • Bazzo A, Urakawa A (2013) Origin of photocatalytic activity in continuous gas phase CO2 reduction over Pt/TiO2. ChemSusChem 6:2095–2102. doi:10.1002/cssc.201300307

    Article  CAS  Google Scholar 

  • Chen Q, Zhou M, Ma D, Jing D (2012) Effect of preparation parameters on photoactivity of BiVO4 by hydrothermal method. J Nanomater 2012:14. doi:10.1155/2012/621254

    Google Scholar 

  • Chen J, Qin S, Song G, Xiang T, Xin F, Yin X (2013a) Shape-controlled solvothermal synthesis of Bi2S3 for photocatalytic reduction of CO2 to methyl formate in methanol. Dalton Trans 42:15133–15138. doi:10.1039/c3dt51887f

    Article  CAS  Google Scholar 

  • Chen J, Xin F, Qin S, Yin X (2013b) Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts. Chem Eng J 230:506–512. doi:10.1016/j.cej.2013.06.119

    Article  CAS  Google Scholar 

  • Cheng H, Huang B, Liu Y, Wang Z, Qin X, Zhang X, Dai Y (2012) An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chem Commun 48:9729–9731. doi:10.1039/c2cc35289c

    Article  CAS  Google Scholar 

  • Collado L, Jana P, Sierra B, Coronado JM, Pizarro P, Serrano DP, de la Peña O’Shea VA (2013) Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors. Chem Eng J 224:128–135. doi:10.1016/j.cej.2012.12.053

    Article  CAS  Google Scholar 

  • de Coninck H (2013) Successful CCS relies upon social science the social dynamics of carbon capture and storage: understanding CCS representations, governance and innovation. Clim Pol 13:530–532. doi:10.1080/14693062.2013.812908

    Article  Google Scholar 

  • Dean JA (1998) Lange’s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

  • Dimitrijevic NM, Shkrob IA, Gosztola DJ, Rajh T (2011) Dynamics of interfacial charge transfer to formic acid, formaldehyde, and methanol on the surface of TiO2 nanoparticles and its role in methane production. J Phys Chem C 116:878–885. doi:10.1021/jp2090473

    Article  CAS  Google Scholar 

  • Drees M, Cokoja M, Kühn FE (2012) Recycling CO2? Computational considerations of the activation of CO2 with homogeneous transition metal catalysts. ChemCatChem 4:1703–1712. doi:10.1002/cctc.201200145

    Article  CAS  Google Scholar 

  • Engels A (2013) Caching the carbon: the politics and policy of carbon capture and storage. Glob Environ Politics 13:138–143

    Article  Google Scholar 

  • Feng S, Chen X, Zhou Y, Tu W, Li P, Li H, Zou Z (2014) Na2V6O16 · xH2O nanoribbons: large-scale synthesis and visible-light photocatalytic activity of CO2 into solar fuels. Nanoscale 6:1896–1900. doi:10.1039/c3nr05219b

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi:10.1038/238037a0

    Article  CAS  Google Scholar 

  • Garside B (2013) Global carbon emissions rise to new record in 2013. http://in.reuters.com/article/2013/11/19/carbon-climate-idINDEE9AI00920131119. Accessed 19 Nov 2013

  • Glueck SM, Gumus S, Fabian WMF, Faber K (2010) Biocatalytic carboxylation. Chem Soc Rev 39:313–328. doi:10.1039/b807875k

    Article  CAS  Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Chemistry of the elements. Elsevier Science, Oxford

    Google Scholar 

  • Guadalupe-Medina V, Wisselink H, Luttik M, de Hulster E, Daran J-M, Pronk J, van Maris A (2013) Carbon dioxide fixation by Calvin-cycle enzymes improves ethanol yield in yeast. Biotechnol Biofuels 6:125. doi:10.1186/1754-6834-6-125

    Article  CAS  Google Scholar 

  • Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275:115–116. doi:10.1038/275115a0

    Article  CAS  Google Scholar 

  • Halmann M, Ulman M, Aurian-Blajeni B (1983) Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Sol Energy 31:429–431. doi:10.1016/0038-092x(83)90145-7

    Article  CAS  Google Scholar 

  • Hardin L, Payne J. Plunging into carbon sequestration research. http://web.ornl.gov/info/ornlreview/v33_2_00/research.htm

  • He L (2013) Carbon dioxide chemistry. Science Press, Beijing

    Google Scholar 

  • Hoffmann MR, Moss JA, Baum MM (2011) Artificial photosynthesis: semiconductor photocatalytic fixation of CO2 to afford higher organic compounds. Dalton Trans 40:5151–5158. doi:10.1039/c0dt01777a

    Article  CAS  Google Scholar 

  • Housecroft C, Sharpe AG (2012) Inorganic chemistry. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Hsu H-C, Shown I, Wei H-Y, Chang Y-C, Du H-Y, Lin Y-G, Tseng C-A, Wang C-H, Chen L-C, Lin Y-C (2013) Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 5:262–268. doi:10.1039/c2nr31718d

    Article  CAS  Google Scholar 

  • Huff CA, Kampf JW, Sanford MS (2012) Role of a noninnocent pincer ligand in the activation of CO2 at (PNN)Ru(H)(CO). Organometallics 31:4643–4645. doi:10.1021/om300403b

    Article  CAS  Google Scholar 

  • Hussain M, Akhter P, Russo N, Saracco G (2013) Novel Ti-KIT-6 material for the photocatalytic reduction of carbon dioxide to methane. Catal Commun 36:58–62. doi:10.1016/j.catcom.2013.03.002

    Article  CAS  Google Scholar 

  • Iizuka K, Wato T, Miseki Y, Saito K, Kudo A (2011) Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J Am Chem Soc 133:20863–20868. doi:10.1021/ja207586e

    Article  CAS  Google Scholar 

  • Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638. doi:10.1038/277637a0

    Article  CAS  Google Scholar 

  • Jean Y, Volatron F, Burdett JK (1993) An introduction to molecular orbitals. Oxford University Press, New York

    Google Scholar 

  • Jia L, Li J, Fang W (2009) Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide. Catal Commun 11:87–90. doi:10.1016/j.catcom.2009.08.016

    Article  CAS  Google Scholar 

  • Jiang W, Yin X, Xin F, Bi Y, Liu Y, Li X (2014) Preparation of CdIn2S4 microspheres and application for photocatalytic reduction of carbon dioxide. Appl Surf Sci 288:138–142. doi:10.1016/j.apsusc.2013.09.165

    Article  CAS  Google Scholar 

  • Jin Z, Qian L, Lue G (2010) CO2 chemistry-actuality and expectation. Prog Chem 22:1102–1115

    CAS  Google Scholar 

  • Jing H, Wang H, Xu J, Sui X, Hu H, Li P, Yin H (2013) CdSeTe NSs/TiO2 NTs photoelectric catalytic reduction of CO2. Acta Chim Sin 71:421–426. doi:10.6023/a12100830

    Article  CAS  Google Scholar 

  • Katsumata K-I, Sakai K, Ikeda K, Carja G, Matsushita N, Okada K (2013) Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn-Cr layered double hydroxides. Mater Lett 107:138–140. doi:10.1016/j.matlet.2013.05.132

    Article  CAS  Google Scholar 

  • Kočí K, Zatloukalová K, Obalová L, Krejčíková S, Lacný Z, Čapek L, Hospodková A, Šolcová O (2011) Wavelength effect on photocatalytic reduction of CO2 by Ag/TiO2 catalyst. Chin J Catal 32:812–815. doi:10.1016/s1872-2067(10)60199-4

    Article  CAS  Google Scholar 

  • Kozák O, Praus P, Kočí K, Klementová M (2010) Preparation and characterization of ZnS nanoparticles deposited on montmorillonite. J Colloid Interface Sci 352:244–251. doi:10.1016/j.jcis.2010.09.016

    Article  CAS  Google Scholar 

  • Krogman JP, Foxman BM, Thomas CM (2011) Activation of CO2 by a heterobimetallic Zr/Co complex. J Am Chem Soc 133:14582–14585. doi:10.1021/ja2071847

    Article  CAS  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380. doi:10.1016/j.tibtech.2010.04.004

    Article  CAS  Google Scholar 

  • Lee D-S, Chen H-J, Chen Y-W (2012) Photocatalytic reduction of carbon dioxide with water using InNbO4 catalyst with NiO and Co3O4 cocatalysts. J Phys Chem Solids 73:661–669. doi:10.1016/j.jpcs.2012.01.005

    Article  CAS  Google Scholar 

  • Lekse JW, Underwood MK, Lewis JP, Matranga C (2012) Synthesis, characterization, electronic structure, and photocatalytic behavior of CuGaO2 and CuGa1–x Fe xO2 (x = 0.05, 0.10, 0.15, 0.20) delafossites. J Phys Chem C 116:1865–1872. doi:10.1021/jp2087225

    Article  CAS  Google Scholar 

  • Li R, Tang Q, Yin S, Sato T (2006) Preparation and application of Ca0.8Sr0.2TiO3 for plasma activation of CO2. Plasma Chem Plasma Process 26:267–276. doi:10.1007/s11090-006-9002-x

    Article  CAS  Google Scholar 

  • Li H, Lei Y, Huang Y, Fang Y, Xu Y, Zhu L, Li X (2011a) Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation. J Nat Gas Chem 20:145–150. doi:10.1016/S1003-9953(10)60166-1

    Article  CAS  Google Scholar 

  • Li K, Martin D, Tang J (2011b) Conversion of solar energy to fuels by inorganic heterogeneous systems. Chin J Catal 32:879–890. doi:10.1016/s1872-2067(10)60209-4

    Article  CAS  Google Scholar 

  • Li X, Chen J, Li H, Li J, Xu Y, Liu Y, Zhou J (2011c) Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation. J Nat Gas Chem 20:413–417. doi:10.1016/S1003-9953(10)60212-5

    Article  CAS  Google Scholar 

  • Li P, Ouyang S, Xi G, Kako T, Ye J (2012a) The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3. J Phys Chem C 116:7621–7628. doi:10.1021/jp210106b

    Article  CAS  Google Scholar 

  • Li X, Li W, Zhuang Z, Zhong Y, Li Q, Wang L (2012b) Photocatalytic reduction of carbon dioxide to methane over SiO2-pillared HNb3O8. J Phys Chem C 116:16047–16053. doi:10.1021/jp303365z

    Article  CAS  Google Scholar 

  • Li X, Pan H, Li W, Zhuang Z (2012c) Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts. Appl Catal A 413–414:103–108. doi:10.1016/j.apcata.2011.10.044

    Google Scholar 

  • Li L, Zhao N, Wei W, Sun Y (2013a) A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel 108:112–130. doi:10.1016/j.fuel.2011.08.022

    Article  CAS  Google Scholar 

  • Li P, Ouyang S, Zhang Y, Kako T, Ye J (2013b) Surface-coordination-induced selective synthesis of cubic and orthorhombic NaNbO3 and their photocatalytic properties. J Mater Chem A 1:1185–1191. doi:10.1039/c2ta00260d

    Article  CAS  Google Scholar 

  • Li P, Wang H, Xu J, Jing H, Zhang J, Han H, Lu F (2013c) Reduction of CO2 to low carbon alcohols on CuO FCs/Fe2O3 NTs catalyst with photoelectric dual catalytic interfaces. Nanoscale 5:11748–11754. doi:10.1039/c3nr03352j

    Article  CAS  Google Scholar 

  • Liu Y, Huang B, Dai Y, Zhang X, Qin X, Jiang M, Whangbo M-H (2009) Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal Commun 11:210–213. doi:10.1016/j.catcom.2009.10.010

    Article  CAS  Google Scholar 

  • Liu Q, Zhou Y, Kou J, Chen X, Tian Z, Gao J, Yan S, Zou Z (2010) High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J Am Chem Soc 132:14385–14387. doi:10.1021/ja1068596

    Article  CAS  Google Scholar 

  • Liu J-Y, Garg B, Ling Y-C (2011) CuxAgyInzZnkSm solid solutions customized with RuO2 or Rh1. 32Cr0. 66O3 co-catalyst display visible light-driven catalytic activity for CO2 reduction to CH3OH. Green Chem 13:2029–2031. doi:10.1039/c1gc15078b

    Article  CAS  Google Scholar 

  • Liu L, Zhao H, Andino JM, Li Y (2012a) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2:1817–1828. doi:10.1021/cs300273q

    Article  CAS  Google Scholar 

  • Liu Q, Zhou Y, Ma Y, Zou Z (2012b) Synthesis of highly crystalline In2Ge2O7 (En) hybrid sub-nanowires with ultraviolet photoluminescence emissions and their selective photocatalytic reduction of CO2 into renewable fuel. RSC Adv 2:3247–3250. doi:10.1039/c2ra20186k

    Article  CAS  Google Scholar 

  • Liu Q, Zhou Y, Tian Z, Chen X, Gao J, Zou Z (2012c) Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation. J Mater Chem 22:2033–2038. doi:10.1039/c1jm14122h

    Article  CAS  Google Scholar 

  • Liu Z, Huang H, Liang B, Wang X, Wang Z, Chen D, Shen G (2012d) Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates. Opt Express 20:2982–2991. doi:10.1364/OE.20.002982

    Article  CAS  Google Scholar 

  • Liu L, Gao F, Zhao H, Li Y (2013a) Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl Catal B 134–135:349–358. doi:10.1016/j.apcatb.2013.01.040

    Article  CAS  Google Scholar 

  • Liu Q, Low Z-X, Li L, Razmjou A, Wang K, Yao J, Wang H (2013b) ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J Mater Chem A 1:11563–11569. doi:10.1039/c3ta12433a

    Article  CAS  Google Scholar 

  • Liu R-W, Qin Z-Z, Ji H-B, Su T-M (2013c) Synthesis of dimethyl ether from CO2 and H2 using a Cu–Fe–Zr/HZSM-5 catalyst system. Ind Eng Chem Res 52:16648–16655. doi:10.1021/ie401763g

    Article  CAS  Google Scholar 

  • Lv X-J, Fu W-F, Hu C-Y, Chen Y, Zhou W-B (2013) Photocatalytic reduction of CO2 with H2O over a graphene-modified NiOx-Ta2O5 composite photocatalyst: coupling yields of methanol and hydrogen. RSC Adv 3:1753–1757. doi:10.1039/c2ra21283h

    Article  CAS  Google Scholar 

  • Mahammadunnisa S, Reddy EL, Ray D, Subrahmanyam C, Whitehead JC (2013) CO2 reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water. Int J Greenhouse Gas Control 16:361–363. doi:10.1016/j.ijggc.2013.04.008

    Article  CAS  Google Scholar 

  • Mahmodi G, Sharifnia S, Madani M, Vatanpour V (2013a) Photoreduction of carbon dioxide in the presence of H2, H2O and CH4 over TiO2 and ZnO photocatalysts. Sol Energy 97:186–194. doi:10.1016/j.solener.2013.08.027

    Article  CAS  Google Scholar 

  • Mahmodi G, Sharifnia S, Rahimpour F, Hosseini SN (2013b) Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: effect of operational parameters and optimization. Sol Energy Mater Sol Cells 111:31–40. doi:10.1016/j.solmat.2012.12.017

    Article  CAS  Google Scholar 

  • Mao J, Peng T, Zhang X, Li K, Zan L (2012) Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catal Commun 28:38–41. doi:10.1016/j.catcom.2012.08.008

    Article  CAS  Google Scholar 

  • Mao J, Peng T, Zhang X, Li K, Ye L, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal Sci Technol 3:1253–1260. doi:10.1039/c3cy20822b

    Article  CAS  Google Scholar 

  • Matějová L, Kočí K, Reli M, Čapek L, Matějka V, Šolcová O, Obalová L (2013) On sol–gel derived Au-enriched TiO2 and TiO2-ZrO2 photocatalysts and their investigation in photocatalytic reduction of carbon dioxide. Appl Surf Sci 285:688–696. doi:10.1016/j.apsusc.2013.08.111

    Article  CAS  Google Scholar 

  • Merajin MT, Sharifnia S, Hosseini SN, Yazdanpour N (2013) Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet. J Taiwan Inst Chem Eng 44:239–246. doi:10.1016/j.jtice.2012.11.007

    Article  CAS  Google Scholar 

  • Mömming CM, Otten E, Kehr G, Fröhlich R, Grimme S, Stephan DW, Erker G (2009) Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew Chem Int Ed 48:6643–6646. doi:10.1002/anie.200901636

    Article  CAS  Google Scholar 

  • Nguyen T-V, Wu JCS, Chiou C-H (2008) Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal Commun 9:2073–2076. doi:10.1016/j.catcom.2008.04.004

    Article  CAS  Google Scholar 

  • Núñez J, de la Peña O’Shea VA, Jana P, Coronado JM, Serrano DP (2013) Effect of copper on the performance of ZnO and ZnO1−xNx oxides as CO2 photoreduction catalysts. Catal Today 209:21–27. doi:10.1016/j.cattod.2012.12.022

    Article  CAS  Google Scholar 

  • Oftadeh M, Aghtar A, Nasr Esfahani M, Salavati-Niasari M, Mir N (2012) Fabrication of highly efficient dye-sensitized solar cell and CO2 reduction photocatalyst using TiO2 nanoparticles prepared by spin coating-assisted sol–gel method. J Iran Chem Soc 9:143–149. doi:10.1007/s13738-011-0017-8

    Article  CAS  Google Scholar 

  • Omae I (2006) Aspects of carbon dioxide utilization. Catal Today 115:33–52. doi:10.1016/j.cattod.2006.02.024

    Article  CAS  Google Scholar 

  • Ong W-J, Gui MM, Chai S-P, Mohamed AR (2013) Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Adv 3:4505–4509. doi:10.1039/c3ra00030c

    Article  CAS  Google Scholar 

  • Otsuki T (2001) A study for the biological CO2 fixation and utilization system. Sci Total Environ 277:21–25. doi:10.1016/S0048-9697(01)00831-2

    Article  CAS  Google Scholar 

  • Ozcan O, Yukruk F, Akkaya EU, Uner D (2007a) Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation. Appl Catal B 71:291–297. doi:10.1016/j.apcatb.2006.09.015

    Article  CAS  Google Scholar 

  • Ozcan O, Yukruk F, Akkaya EU, Uner D (2007b) Dye sensitized CO2 reduction over pure and platinized TiO2. Top Catal 44:523–528. doi:10.1007/s11244-006-0100-z

    Article  CAS  Google Scholar 

  • Palmisano G, Garcia-Lopez E, Marci G, Loddo V, Yurdakal S, Augugliaro V, Palmisano L (2010) Advances in selective conversions by heterogeneous photocatalysis. Chem Commun 46:7074–7089. doi:10.1039/c0cc02087g

    Article  CAS  Google Scholar 

  • Pan PW, Chen YW (2007) Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catal Commun 8:1546–1549. doi:10.1016/j.catcom.2007.01.006

    Article  CAS  Google Scholar 

  • Ping G, Wang C, Chen D, Liu S, Huang X, Qin L, Huang Y, Shu K (2013) Fabrication of self-organized TiO2 nanotube arrays for photocatalytic reduction of CO2. J Solid State Electrochem 17:2503–2510. doi:10.1007/s10008-013-2143-y

    Article  CAS  Google Scholar 

  • Praus P, Kozák O, Kočí K, Panáček A, Dvorský R (2011) CdS nanoparticles deposited on montmorillonite: preparation, characterization and application for photoreduction of carbon dioxide. J Colloid Interface Sci 360:574–579. doi:10.1016/j.jcis.2011.05.004

    Article  CAS  Google Scholar 

  • Qin G, Sun Z, Wu Q, Lin L, Liang M, Xue S (2011) Dye-sensitized TiO2 film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol. J Hazard Mater 192:599–604. doi:10.1016/j.jhazmat.2011.05.059

    Article  CAS  Google Scholar 

  • Qin G, Zhang Y, Ke X, Tong X, Sun Z, Liang M, Xue S (2013) Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film. Appl Catal B 129:599–605. doi:10.1016/j.apcatb.2012.10.012

    Article  CAS  Google Scholar 

  • Reli M, Šihor M, Kočí K, Praus P, Kozák O, Obalová L (2012) Influence of reaction medium on CO2 photocatalytic reduction yields over zns-mmt. GeoSci Eng LVIII:34–42. doi:10.2478/v10205-011-0011-5

    Google Scholar 

  • Rodriguez MM, Peng X, Liu L, Li Y, Andino JM (2012) A density functional theory and experimental study of CO2 interaction with brookite TiO2. J Phys Chem C 116:19755–19764. doi:10.1021/jp302342t

    Article  CAS  Google Scholar 

  • Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387. doi:10.1021/cr068357u

    Article  CAS  Google Scholar 

  • Sato S, Morikawa T, Kajino T, Ishitani O (2013) A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angew Chem Int Ed 52:988–992. doi:10.1002/anie.201206137

    Article  CAS  Google Scholar 

  • Shi H, Zou Z (2012) Photophysical and photocatalytic properties of ANbO3 (A = Na, K) photocatalysts. J Phys Chem Solids 73:788–792. doi:10.1016/j.jpcs.2012.01.026

    Article  CAS  Google Scholar 

  • Shi H, Wang T, Chen J, Zhu C, Ye J, Zou Z (2011) Photoreduction of carbon dioxide over NaNbO3 nanostructured photocatalysts. Catal Lett 141:525–530. doi:10.1007/s10562-010-0482-1

    Article  CAS  Google Scholar 

  • Sorescu DC, Lee J, Al-Saidi WA, Jordan KD (2012) Coadsorption properties of CO2 and H2O on TiO2 rutile (110): a dispersion-corrected DFT study. J Chem Phys 137:074704. doi:10.1063/1.4739088

    Article  CAS  Google Scholar 

  • Sui D, Yin X, Dong H, Qin S, Chen J, Jiang W (2012) Photocatalytically reducing CO2 to methyl formate in methanol over Ag loaded SrTiO3 nanocrystal catalysts. Catal Lett 142:1202–1210. doi:10.1007/s10562-012-0876-3

    Article  CAS  Google Scholar 

  • Tahir M, Amin NS (2013a) Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor. Appl Catal A 467:483–496. doi:10.1016/j.apcata.2013.07.056

    Article  CAS  Google Scholar 

  • Tahir M, Amin NS (2013b) Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor. Chem Eng J 230:314–327. doi:10.1016/j.cej.2013.06.055

    Article  CAS  Google Scholar 

  • Tahir M, Amin NS (2013c) Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites. Appl Catal B 142–143:512–522. doi:10.1016/j.apcatb.2013.05.054

    Article  CAS  Google Scholar 

  • Tan LL, Ong WJ, Chai SP, Mohamed AR (2013) Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res Lett 8:465. doi:10.1186/1556-276x-8-465

    Article  CAS  Google Scholar 

  • Teramura K, Okuoka S-I, Tsuneoka H, Shishido T, Tanaka T (2010) Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Appl Catal B 96:565–568. doi:10.1016/j.apcatb.2010.03.021

    Article  CAS  Google Scholar 

  • Truong QD, Le TH, Liu J-Y, Chung C-C, Ling Y-C (2012) Synthesis of TiO2 nanoparticles using novel titanium oxalate complex towards visible light-driven photocatalytic reduction of CO2 to CH3OH. Appl Catal A 437–438:28–35. doi:10.1016/j.apcata.2012.06.009

    Article  CAS  Google Scholar 

  • Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Xiao M, Zou Z (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater 23:1743–1749. doi:10.1002/adfm.201202349

    Article  CAS  Google Scholar 

  • Umar A, Chauhan MS, Chauhan S, Kumar R, Kumar G, Al-Sayari SA, Hwang SW, Al-Hajry A (2011) Large-scale synthesis of ZnO balls made of fluffy thin nanosheets by simple solution process: structural, optical and photocatalytic properties. J Colloid Interf Sci 363:521–528. doi:10.1016/j.jcis.2011.07.058

    Article  CAS  Google Scholar 

  • Vogt M, Gargir M, Iron MA, Diskin-Posner Y, Ben-David Y, Milstein D (2012) A new mode of activation of CO2 by metal–ligand cooperation with reversible C-C and M-O bond formation at ambient temperature. Chem Eur J 18:9194–9197. doi:10.1002/chem.201201730

    Article  CAS  Google Scholar 

  • Wang S, Mao D, Guo X, Wu G, Lu G (2009) Dimethyl ether synthesis via CO2 hydrogenation over CuO-TiO2-ZrO2/HZSM-5 bifunctional catalysts. Catal Commun 10:1367–1370. doi:10.1016/j.catcom.2009.02.001

    Article  CAS  Google Scholar 

  • Wang Z-Y, Chou H-C, Wu JCS, Tsai DP, Mul G (2010) CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Appl Catal Gen 380:172–177. doi:10.1016/j.apcata.2010.03.059

    Article  CAS  Google Scholar 

  • Wang C, Thompson RL, Ohodnicki P, Baltrus J, Matranga C (2011) Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. J Mater Chem 21:13452–13457. doi:10.1039/c1jm12367j

    Article  CAS  Google Scholar 

  • Wang C, Ma X-X, Li J, Xu L, Zhang F-X (2012a) Reduction of CO2 aqueous solution by using photosensitized-TiO2 nanotube catalysts modified by supramolecular metalloporphyrins-ruthenium(II) polypyridyl complexes. J Mol Catal A 363–364:108–114. doi:10.1016/j.molcata.2012.05.023

    Article  CAS  Google Scholar 

  • Wang P-Q, Bai Y, Liu J-Y, Fan Z, Hu Y-Q (2012b) One-pot synthesis of rutile TiO2 nanoparticle modified anatase TiO2 nanorods toward enhanced photocatalytic reduction of CO2 into hydrocarbon fuels. Catal Commun 29:185–188. doi:10.1016/j.catcom.2012.10.010

    Article  CAS  Google Scholar 

  • Wang P-Q, Bai Y, Luo P-Y, Liu J-Y (2013a) Graphene-WO3 nanobelt composite: elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels. Catal Commun 38:82–85. doi:10.1016/j.catcom.2013.04.020

    Article  CAS  Google Scholar 

  • Wang Y, Chen Y, Zuo Y, Wang F, Yao J, Li B, Kang S, Li X, Cui L (2013b) Hierarchically mesostructured TiO2/graphitic carbon composite as a new efficient photocatalyst for the reduction of CO2 under simulated solar irradiation. Catal Sci Technol 3:3286–3291. doi:10.1039/c3cy00524k

    Article  CAS  Google Scholar 

  • Wang Y, Li B, Zhang C, Cui L, Kang S, Li X, Zhou L (2013c) Ordered mesoporous CeO2-TiO2 composites: highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl Catal B 130–131:277–284. doi:10.1016/j.apcatb.2012.11.019

    Article  CAS  Google Scholar 

  • Wang Y, Wang F, Chen Y, Zhang D, Li B, Kang S, Li X, Cui L (2014) Enhanced photocatalytic performance of ordered mesoporous Fe-doped CeO2 catalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl Catal B 147:602–609. doi:10.1016/j.apcatb.2013.09.036

    Article  CAS  Google Scholar 

  • Wu C, Zhou Y, Zou Z (2011) Research progress in photocatalytic conversion of CO2 to hydrocarbons. Chin J Catal 32:1565–1572. doi:10.3724/SP.J.1088.2011.10509

    Article  CAS  Google Scholar 

  • Xie S, Wang Y, Zhang Q, Fan W, Deng W, Wang Y (2013) Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO. Chem Commun 49:2451–2453. doi:10.1039/c3cc00107e

    Article  CAS  Google Scholar 

  • Xu H, Ouyang S, Li P, Kako T, Ye J (2013) High-active anatase TiO2 nanosheets exposed with 95 % {100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl Mater Interfaces 5:1348–1354. doi:10.1021/am302631b

    Article  CAS  Google Scholar 

  • Yan SC, Ouyang SX, Gao J, Yang M, Feng JY, Fan XX, Wan LJ, Li ZS, Ye JH, Zhou Y (2010) A room‐temperature reactive‐template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angew Chem Int Ed 49:6400–6404. doi:10.1002/anie.201003270

    Article  CAS  Google Scholar 

  • Yazdanpour N, Sharifnia S (2013) Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified TiO2. Sol Energy Mater Sol Cells 118:1–8. doi:10.1016/j.solmat.2013.07.051

    Article  CAS  Google Scholar 

  • Yin S, Swift T, Ge Q (2011) Adsorption and activation of CO2 over the Cu–Co catalyst supported on partially hydroxylated γ-Al2O3. Catal Today 165:10–18. doi:10.1016/j.cattod.2010.12.025

    Article  CAS  Google Scholar 

  • Yu J, Dow A, Pingali S (2013) The energy efficiency of carbon dioxide fixation by a hydrogen-oxidizing bacterium. Int J Hydrog Energy 38:8683–8690. doi:10.1016/j.ijhydene.2013.04.153

    Article  CAS  Google Scholar 

  • Yu J, Jin J, Cheng B, Jaroniec M (2014) A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A 2:3407–3416. doi:10.1039/c3ta14493c

    Article  CAS  Google Scholar 

  • Yuan J, Hao C (2013) Solar-driven photoelectrochemical reduction of carbon dioxide to methanol at CuInS2 thin film photocathode. Sol Energy Mater Sol C 108:170–174. doi:10.1016/j.solmat.2012.09.024

    Article  CAS  Google Scholar 

  • Zhang Q, Zuo Y-Z, Han M-H, Wang J-F, Jin Y, Wei F (2010) Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catal Today 150:55–60. doi:10.1016/j.cattod.2009.05.018

    Article  CAS  Google Scholar 

  • Zhang N, Ouyang S, Li P, Zhang Y, Xi G, Kako T, Ye J (2011) Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chem Commun 47:2041–2043. doi:10.1039/c0cc04687f

    Article  CAS  Google Scholar 

  • Zhang Z, Wang Z, Cao S-W, Xue C (2013) Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J Phys Chem C 117:25939–25947. doi:10.1021/jp409311x

    Article  CAS  Google Scholar 

  • Zhao H, Liu L, Andino JM, Li Y (2013) Bicrystalline TiO2 with controllable anatase-brookite phase content for enhanced CO2 photoreduction to fuels. J Mater Chem A 1:8209–8216. doi:10.1039/c3ta11226h

    Article  CAS  Google Scholar 

  • Zhou Y, Tian Z, Zhao Z, Liu Q, Kou J, Chen X, Gao J, Yan S, Zou Z (2011) High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl Mater Interfaces 3:3594–3601. doi:10.1021/am2008147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21006013, 21425627), Guangxi Zhuang Autonomous Region special funding of distinguished experts, and the Open Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2013K012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zu-zeng Qin or Hong-bing Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Qin, Zz., Su, Tm., Ji, Hb., Jiang, Yx. (2015). Photocatalytic Reduction of Carbon Dioxide. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Hydrogen Production and Remediation of Carbon and Pollutants. Environmental Chemistry for a Sustainable World, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-19375-5_2

Download citation

Publish with us

Policies and ethics