Skip to main content
Log in

Fabrication of self-organized TiO2 nanotube arrays for photocatalytic reduction of CO2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The photocatalytic conversion of CO2 and H2O to alcohols was achieved using self-organized TiO2 nanotube arrays (TNAs), which were prepared by electrochemical anodization of Ti foils in 1 M (NH4)2SO4 electrolyte containing 0.5 wt% NH4F. Experimental results revealed that the morphology and structure of self-organized TNAs could be strongly influenced by the applied voltage and anodization temperature, and the optimized TNAs were prepared by electrochemical anodization of Ti foils under optimal conditions (i.e., at 20 V for 2 h at 30 °C). The as-prepared TNAs were amorphous and could be transformed to anatase phase during the thermal treatment at 450 °C in air for 3 h. By using the annealed TNAs as a photocatalyst, the photocatalytic reduction of CO2 to alcohol, predominately methanol and ethanol, was demonstrated under Xenon lamp illumination. Based on the photocatalytic measurements, the production rates of methanol and ethanol were calculated to be ∼10 and ∼9 nmol cm−2 h−1, respectively. In addition, the formation mechanism of methanol and ethanol was also tentatively proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lagowski JJ (1973) Modern inorganic chemistry. Marcel Dekker, New York

    Google Scholar 

  2. Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Catal Today 45:221–227

    Article  CAS  Google Scholar 

  3. Inoue T, Fujishima A, Konishi S, Honda K (1979) Nature 277:637–638

    Article  CAS  Google Scholar 

  4. Thampi KR, Kiwi J, Grätzel M (1987) Nature 327:506–508

    Article  CAS  Google Scholar 

  5. Cook RL, MacDuff RC, Sammells AF (1988) J Electrochem Soc 135:3069–3070

    Article  CAS  Google Scholar 

  6. Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) J Electroanal Chem 396:21–26

    Article  Google Scholar 

  7. Tseng IH, Wu JCS, Chou HY (2004) J Catal 221:432–440

    Article  CAS  Google Scholar 

  8. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) ACS Nanosci 4:1259–1278

    Article  CAS  Google Scholar 

  9. Linsebigler AL, Lu GQ, Yates JT Jr (1995) Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  10. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1–21

    Article  CAS  Google Scholar 

  11. Li JH, Zhang JZ (2009) Coord Chem Rev 253:3015–3041

    Article  CAS  Google Scholar 

  12. Wang C, Thompson RL, Baltrus J, Matranga C (2010) J Phys Chem Lett 1:48–53

    Article  CAS  Google Scholar 

  13. Ishitani O, Inoue C, Suzuki Y, Ibusuki T (1993) J Photochem Photobiol A 72:269–271

    Article  CAS  Google Scholar 

  14. Adachi K, Ohta K, Mijuma T (1994) Sol Energy 53:187–190

    Article  CAS  Google Scholar 

  15. Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) J Phys Chem B 101:2632–2636

    Article  CAS  Google Scholar 

  16. Dimitrijevic NM, Vijayan BK, Poluektov OG, Rajh T, Gray KA, He H, Zapol P (2011) J Am Chem Soc 133:3964–3971

    Article  CAS  Google Scholar 

  17. Wu CS, Wu TH, Chu T, Huang H, Tsai D (2008) Top Catal 47:131–136

    Article  CAS  Google Scholar 

  18. Xia XH, Jia ZJ, Yu Y, Liang Y, Wang Z, Ma LL (2007) Carbon 45:717–721

    Article  CAS  Google Scholar 

  19. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  20. Xi GC, Ouyang SX, Ye JH (2011) Chem Eur J 17:9057–9061

    Article  CAS  Google Scholar 

  21. Varghese OK, Paulose M, Grimes CA (2009) Nat Nanotechnol 4:592–597

    Article  CAS  Google Scholar 

  22. Wang G, Wang Q, Lu W, Li JH (2006) J Phys Chem B 110:22029–22034

    Article  CAS  Google Scholar 

  23. Han XG, Kuang Q, Jin MS, Xie ZX, Zheng LS (2009) J Am Chem Soc 131:3152–3153

    Article  CAS  Google Scholar 

  24. Li HX, Bian ZF, Zhu J, Zhang DQ, Li GS, Huo YN, Li H, Lu YF (2007) J Am Chem Soc 129:8406–8407

    Article  CAS  Google Scholar 

  25. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331–3334

    Article  CAS  Google Scholar 

  26. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) Curr Opin Solid State Mater Sci 11:3–18

    Article  CAS  Google Scholar 

  27. Shankar K, Bandara J, Paulose M, Wietasch H, Varghese OK, Mor GK, LaTempa TJ, Grimes CA (2008) Nano Lett 8:1654–1659

    Article  CAS  Google Scholar 

  28. Paulose M, Mor GK, Varghese OK, Shankar K, Grimes CA (2006) J Photochem Photobiol A 178:8–15

    Article  CAS  Google Scholar 

  29. Koci K, Mateju K, Obalova L, Krejcikova S, Lacny Z, Placha D, Capek L, Hospodkova A, Solcova O (2010) Appl Catal, B 96:239–244

    Article  CAS  Google Scholar 

  30. Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Small 3:300–304

    Article  CAS  Google Scholar 

  31. Mun KS, Alvarez SD, Choi WY, Sailor MJ (2010) ACS Nano 4:2070–2076

    Article  CAS  Google Scholar 

  32. Zhao RR, Xu MZ, Wang J, Chen GN (2010) Electrochim Acta 55:5647–5651

    Article  CAS  Google Scholar 

  33. Chen D, Zhang H, Li X, Li JH (2010) Anal Chem 82:2253–2261

    Article  CAS  Google Scholar 

  34. Varghese K, Paulose M, LaTempa TJ, Grimes CA (2009) Nano Lett 9:731–737

    Article  CAS  Google Scholar 

  35. Raja KS, Smith YR, Kondamudi N, Manivannan A, Misra M, Subramanian V (2011) Electrochem Solid-State Lett 14:F5–F8

    Article  CAS  Google Scholar 

  36. Feng XJ, Sloppy JD, LaTempa TJ, Paulose M, Komarneni S, Bao NZ, Grimes CA (2011) J Mater Chem 21:13429–13433

    Article  CAS  Google Scholar 

  37. Cao G, Rabenberg LK, Nunn CM, Mallouk TE (1991) Chem Mater 3:149–156

    Article  CAS  Google Scholar 

  38. Hussain ST, Siddiqa A (2011) Int J Environ Sci Technol 8:351–362

    CAS  Google Scholar 

  39. Egerton TA, Tooley IR (2004) J Phys Chem B 108:5066–5072

    Article  CAS  Google Scholar 

  40. Shimizu K, Tsuji Y, Hatamachi T, Toda K, Kodama T, Sato M, Kitayama Y (2004) Phys Chem Chem Phys 6:1064–1069

    Article  CAS  Google Scholar 

  41. Li XK, Pan HQ, Li W, Zhuang ZJ (2012) Appl Catal A 413–414:103–108

    Google Scholar 

  42. Ishibashi K, Fijishima A, Watanabe T, Hashimoto K (2000) J Phys Chem B 104:4934–4938

    Article  CAS  Google Scholar 

  43. Lo CC, Hung CH, Yuan CS, Hung YL (2007) Chin J Catal 28:528–534

    Article  CAS  Google Scholar 

  44. Zhang QH, Han WD, Hong YJ, Yu JG (2009) Catal Today 148:335–340

    Article  CAS  Google Scholar 

  45. Centi G, Perathoner S, Wine G, Gangeria M (2007) Green Chem 9:671–678

    Article  CAS  Google Scholar 

  46. Takeda H, Ishitani O (2010) Coord Chem Rev 254:346–354

    Article  CAS  Google Scholar 

  47. Indrakanti VP, Schobert HH, Kubicki JD (2009) Energy Fuel 23:5247–5256

    Article  CAS  Google Scholar 

  48. Koci K, Obalova L, Matejova L, Placha D, Lacny Z, Jirkovsky J, Solcova O (2009) Appl Catal, B 89:494–502

    Article  CAS  Google Scholar 

  49. Tseng IH, Chang WC, Wu JCS (2002) Appl Catal, B 37:37–48

    Article  CAS  Google Scholar 

  50. Asi MA, He C, Su MH, Xia DH, Lin L, Deng HQ, Xiong Y, Qiu RL, Li XZ (2011) Catal Today 175:256–263

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (nos. 51072189, 21003111, and 11075147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Chen or Yuexiang Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 5548 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ping, G., Wang, C., Chen, D. et al. Fabrication of self-organized TiO2 nanotube arrays for photocatalytic reduction of CO2 . J Solid State Electrochem 17, 2503–2510 (2013). https://doi.org/10.1007/s10008-013-2143-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2143-y

Keywords

Navigation