Skip to main content

Modelling Shock Wave/Boundary Layer Interactions Using Advanced RANS Models

  • Conference paper
29th International Symposium on Shock Waves 2 (ISSW 2013)

Included in the following conference series:

Abstract

The efficient computational prediction of supersonic flow is of interest to both the aerospace and energy industries, with internal and external flow applications including flow through engines, intake ducts and nozzles

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rizzetta, D.P.: Evaluation of Explicit Algebraic Reynolds-Stress Models for Separated Supersonic Flows. AIAA Journal 36, 24–30 (1998)

    Article  ADS  Google Scholar 

  2. Liou, W.W., Huang, G., Shih, T.H.: Turbulence Model Assessment for Shock-Wave/Turbulent-Boundary-Layer Interaction in Transonic and Supersonic Flows. Computers and Fluids 29, 275–299 (2000)

    Article  Google Scholar 

  3. Launder, B.E., Sharma, B.I.: Application of the energy dissipation model of turbulence to the calculation of ows near a spinning disk. Letters in Heat and Mass Transfer 1, 131–138 (1974)

    Article  ADS  Google Scholar 

  4. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32, 1598–1605 (1994)

    Article  ADS  Google Scholar 

  5. Yap, C.R.: Turbulent heat and momentum transfer in recirculating and impinging flows; PhD thesis, Faculty of Technology. University of Manchester, UK (1987)

    Google Scholar 

  6. Laurence, D.R., Uribe, J.C., Utyuzhnikov, S.V.: A robust formulation of the v2-f model. Flow Turbulence and Combustion 73, 169–185 (2004)

    Article  Google Scholar 

  7. Craft, T.J., Launder, B.E., Suga, K.: Development and application of a cubic eddy-viscosity model of turbulence. International Journal of Heat and Fluid Flow 17, 108–115 (1996)

    Article  Google Scholar 

  8. OpenFOAM: The Open Source CFD Toolbox, User Guide, version 1.7 (2010), http://www.openfoam.com

  9. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. Journal of Computational Physics 160, 241–282 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  10. Greenshields, C.J., Weller, H.G., Gasparini, L., Reese, J.M.: Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. International Journal for Numerical Methods in Fluids 63, 1–21 (2010)

    MathSciNet  Google Scholar 

  11. Ringuette, M.J., Bookey, P., Wyckham, C., Smits, A.J.: Experimental Study of a Mach 3 Compression Ramp Interaction at Re θ  = 2400. AIAA Journal 47, 373–385 (2009)

    Article  ADS  Google Scholar 

  12. Wu, M., Martin, M.P.: Direct Numerical Simulation of Supersonic Turbulent Boundary Layer over a Compression Ramp. AIAA Journal 45, 879–889 (2007)

    Article  ADS  Google Scholar 

  13. Settles, G.S., Dodson, L.J.: Supersonic and Hypersonic Shock/Boundary-Layer Interaction Database. AIAA Journal 32, 1377–1383 (1994)

    Article  ADS  Google Scholar 

  14. Craft, T.J., Iacovides, H., Yoon, J.H.: Progress in the Use of Non-Linear Two-Equation Models in the Computation of Convective Heat-Transfer in Impinging and Separated Flows. Flow, Turbulence Combustion 63, 59–80 (1999)

    Article  Google Scholar 

  15. Deleuze, J.: Structure d’une couche limite turbulente soumise a une onde de choc incidente. Ph.D thesis, Universite Aix-Marseille II (1995)

    Google Scholar 

  16. Pirozzoli, S., Grasso, F.: Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25. Physics of Fluids 18, 065113 (2006)

    Google Scholar 

  17. Reda, D.C., Murphy, J.D.: Shock-Wave/Turbulent-Boundary-layer Interactions in Rectangular Channels. AIAA Journal 11, 139–140 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Asproulias, I., Revell, A.J., Craft, T.J. (2015). Modelling Shock Wave/Boundary Layer Interactions Using Advanced RANS Models. In: Bonazza, R., Ranjan, D. (eds) 29th International Symposium on Shock Waves 2. ISSW 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-16838-8_71

Download citation

Publish with us

Policies and ethics