Skip to main content

Hybrid RANS-LES Turbulence Modelling in Aeroelastic Problems, Test Case 3 from the Second AIAA Aeroelastic Prediction Workshop

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling (HRLM 2016)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 137))

Included in the following conference series:

  • 1977 Accesses

Abstract

Prediction of the dynamic response of aircraft in the entire flight envelope is necessary in order to define stability margins in any possible operative situation, in particular where the flow is strongly affected by compressibility and viscous effects. Complex flow phenomena appear such as shock induced boundary layer separations, characterized by multiple turbulent time and lenghtscales. Aeroelasticists traditionally prefer the URANS approach; however, hybrid RANS-LES simulations are increasingly popular, at least among researchers. The Second AIAA Aeroelastic Prediction Workshop has proposed a test case, Test Case 3, where the flow physics may benefit from the higher physical consistence of RANS-LES modelling. A number of considerations, prompted by the discussions with the organizers and participants, are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsinober, A.: The Essence of Turbulence as a Physical Phenomenon (2014)

    Google Scholar 

  2. Dansberry, B.E., Durham, M.H., Bennett, R.M., Turnock, D.L., Silva, E.A., Jose A., Rivera, Jr.: Physical Properties of the Benchmark Models Program Supercritical Wing, vol. 4457. Citeseer (1993)

    Google Scholar 

  3. Fureby, C.: Towards the use of large eddy simulation in engineering. Prog. Aerosp. Sci. 44(6), 381–396 (2008)

    Google Scholar 

  4. Spode, C., Molina, E., Silva, R.G., Silva, C.: Plans and suggestions of a verification case to the aiaa aeroelastic prediction workshop. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum. American Institute of Aeronautics and Astronautics, AIAA, p. 0188, 9–13 Jan 2017

    Google Scholar 

  5. Raveh, D.E.: Numerical study of an oscillating airfoil in transonic buffeting flows. AIAA J. 47(3), 505–515 (2009)

    Google Scholar 

  6. Schuster, D.M., Heeg, J., Wieseman, C., Chwalowski, P.: Analysis of test case computations and experiments for the aeroelastic prediction workshop. In: AIAA Paper 2013, vol. 788 (2013)

    Google Scholar 

  7. Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press (2007)

    Google Scholar 

  8. Jack, R.: Edwards. Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: a survey of recent results. Prog. Aerosp. Sci. 44(6), 447–465 (2008)

    Google Scholar 

  9. Housman, J.A., Kiris, C.C.: Overset grid simulations for the second aiaa aeroelastic prediction workshop. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, p. 0640. American Institute of Aeronautics and Astronautics, AIAA, 9–13 Jan 2017

    Google Scholar 

  10. Heeg, J., Chwalowski, P.: Investigation of the transonic flutter boundary of the benchmark supercritical wing. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, p. 0191. American Institute of Aeronautics and Astronautics, AIAA, 9–13 Jan 2017

    Google Scholar 

  11. Heeg, J., Chwalowski, P., Raveh, D., Jirasek, A., Dalenbring, M.: Overview and data comparisons from the 2nd aeroelastic prediction workshop. In: AIAA Paper 2016-3121 (2016)

    Google Scholar 

  12. Heeg, J., Chwalowski, P., Schuster, D.M., Raveh, D., Jirasek, A., Dalenbring, M.: Plans and example results for the 2nd AIAA Aeroelastic Prediction Workshop. In: AIAA Paper (2015)

    Google Scholar 

  13. Fröhlich, J., von Terzi, D.: Hybrid les/rans methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44(5), 349–377 (2008)

    Google Scholar 

  14. Righi, M., Da Ronch, A., Mazzacchi, F.: Analysis of resolved turbulent scales of motion in aeroelastic problems. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, p. 0189. American Institute of Aeronautics and Astronautics, AIAA, 9–13 Jan 2017

    Google Scholar 

  15. Iovnovich, M., Raveh, D.E.: Reynolds-averaged Navier-Stokes study of the shock-buffet instability mechanism. AIAA J. 50(4), 880–890 (2012)

    Google Scholar 

  16. Bendiksen, O.O.: Review of unsteady transonic aerodynamics: theory and applications. Progr. Aerosp. Sci. 47(2), 135–167 (2011)

    Google Scholar 

  17. Chwalowski, P., Heeg, J., Biedron, R.T.: Numerical investigation of the benchmark supercritical wing in transonic flow. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, p. 0190. American Institute of Aeronautics and Astronautics, AIAA, 9–13 Jan 2017

    Google Scholar 

  18. Eliasson, P.: Edge, a navier-stokes solver for unstructured grids, scientific report foi-r–0298–se. Technical report, Computational Aerodynamics Department, Aeronautics Division, FOI 2001

    Google Scholar 

  19. Spalart, P.R., Allmaras, S.R.: A one equation turbulence model for aerodinamic flows. AIAA J. 94 (1992)

    Google Scholar 

  20. Spalart, P.R.: Philosophies and fallacies in turbulence modeling. Prog. Aerosp. Sci. 74, 1–15 (2015)

    Google Scholar 

  21. Sagaut, P., Deck, S.: Large eddy simulation for aerodynamics: status and perspectives. Philos. Trans. R. Soc. Lon. A Math. Phys. Eng. Sci. 367(1899), 2849–2860 (2009)

    Google Scholar 

  22. Bisplinghoff, R.L., Ashley, H.: Principles of Aeroelasticity. Courier Corporation (2013)

    Google Scholar 

  23. Carrese, R., Marzocca, P., Levinski, O., Joseph, N.: Investigation of supercritical airfoil dynamic response due to transonic buffet. AIAA Paper 2016-1552 (2016)

    Google Scholar 

  24. Deck, S., Terracol, M.: Multiscale and Multiresolution Approaches in Turbulence. World Scientific (2006)

    Google Scholar 

  25. Deck, S.: Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1566 (2005)

    Google Scholar 

  26. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoret. Comput. Fluid Dyn. 20(3), 181–195 (2006)

    Google Scholar 

  27. Wallin, S., Johansson, A.V.: A new explicit algebraic Reynolds stress turbulence model for 3 D flow. In: Symposium on Turbulent Shear Flows, 11 th, Grenoble, France, pp. 13–13 (1997)

    Google Scholar 

  28. Wallin, S., Johansson, A.V.: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89–132 (2000)

    Google Scholar 

  29. Economon, T.D., Palacios, F., Copeland, S.R., Lukaczyk, T.W., Alonso, J.J.: Su2: an open-source suite for multiphysics simulation and design. AIAA J. 54(3), 828–846 (2015)

    Google Scholar 

  30. Silva, W.A., Chwalowski, P., Perry III, B.: Evaluation of linear, inviscid, viscous, and reduced-order modelling aeroelastic solutions of the agard 445.6 wing using root locus analysis. Int. J. Comput. Fluid Dyn. 28(3-4), 122–139 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Righi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Righi, M. (2018). Hybrid RANS-LES Turbulence Modelling in Aeroelastic Problems, Test Case 3 from the Second AIAA Aeroelastic Prediction Workshop. In: Hoarau, Y., Peng, SH., Schwamborn, D., Revell, A. (eds) Progress in Hybrid RANS-LES Modelling. HRLM 2016. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-319-70031-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70031-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70030-4

  • Online ISBN: 978-3-319-70031-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics