Skip to main content

The MRL Mouse: A Model of Regeneration and Cancer

  • Chapter
  • First Online:
Murine Models, Energy Balance, and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 10))

Abstract

The intersection of regeneration and cancer has long been hypothesized to be due to the well-established inverse relationship between the capacity to heal and the propensity for cancer.

The MRL mouse, a mammalian model of regeneration, provides an opportunity to experimentally explore this hypothesis. We present data relating to metabolism, inflammation, genetics, and diet, which not only support the hypothesis but also provide mechanistic insight linking these pro-carcinogenic traits.

In particular, this mouse has many elements of the tumor microenvironment such as a pro-inflammatory response, enhanced regenerative healing under a high-fat diet (HFD), an environment supportive of tumor growth, the use of a basal metabolism with aerobic glycolysis reminiscent of the Warburg effect, and although it is permissive for tumor transplantation, it is resistant to cancer induction. Genetic studies on the role of pro-inflammatory HFDs and regenerative capacity provide links to dissecting these relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JB, Dixon FJ. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978;148:1198–215.

    Google Scholar 

  2. Cohen, PL, Eisenberg, RA. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol. 1991;9:243–69.

    Article  CAS  PubMed  Google Scholar 

  3. Kono DH, Theofilopoulos AN. Genes and genetics of murine lupus. In: Theofilopoulos AN, Bona CA, editors. The molecular pathology of autoimmune diseases. New York: Taylor and Francis; 2002. pp. 353–75.

    Google Scholar 

  4. Murphy ED, Roths JB. A single gene model for massive lymphoproliferation with immune complex disease in the new mouse strain MRL. In: Seno S, Takaku F, Irino S, editors. Topics in hematology. Amsterdam: Excerpta Medica; 1977. pp. 69–72.

    Google Scholar 

  5. Theofilopoulos AN, Balderas RS, Gozes Y, Aguado MT, Hang L, Morrow PR, Dixon FJ. Association of lpr gene with graft-vs-host disease-like syndrome. J Exp Med. 1985;162:1–18.

    Google Scholar 

  6. Watson ML, Rao JK, Gilkeson GS, Ruiz P, Eicher EM, Pisetsky DS, Matsuzawa A, Rochelle JM, Seldin MF. Genetic analysis of MRL-lpr mice: relationship of Fas apoptosis gene to disease manifestations and renal disease-modifying loci. J Exp Med. 1992;176:1645–56.

    Google Scholar 

  7. Clark LD, Clark RK, Heber-Katz E. A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol. 1998;88:35–45.

    Google Scholar 

  8. Joseph J, Dyson M. Tissue replacement in the rabbit’s ear. Brit J Surgery. 1966;53:372–80.

    Google Scholar 

  9. Goss RJ, Grimes LN. Tissue interactions in the regeneration of rabbit ear holes. Am Zool. 1975;12:151–7.

    Google Scholar 

  10. ten Koppel PGJ, van Osch GJVM, Verwoerd CDA, Verwoerd-Verhoef HL. A new in vivo model for testing cartilage grafts and biomaterials: the `rabbit pinna punch-hole’ model. Biomaterials. 2001;22:1407–14.

    Google Scholar 

  11. Labandeira-Garcia J, Guerra-Seijas M. Intracellular lipids in rabbit ear cartilage during tissue regeneration. Acta Anat. 1986;127:249–54.

    Google Scholar 

  12. Stocum DL. The urodele limb regeneration blastema. Determination and organization of the morphogenetic field. Differentiation. 1984;27:13–28.

    Google Scholar 

  13. Brockes JP, Kumar A. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science. 2005;310:1919–23.

    Google Scholar 

  14. Gardiner DM, Bryant SV. Molecular mechanisms in the control of limb regeneration: the role of homeobox genes. Int J Dev Biol. 1996;40:797–805.

    Google Scholar 

  15. Edwards RG. From embryonic stem cells to blastema and MRL mice. Reprod Biomed Online. 2008;16:425–61.

    Google Scholar 

  16. Kench JA, Russell DM, Fadok VA, Young SK, Worthen GS, Jones-Carson J, Henson JE, Nemazee D. Aberrant wound healing and TGF-beta production in the autoimmune-prone MRL/+ mouse. Clin Immunol. 1999;92:300–10.

    Article  CAS  PubMed  Google Scholar 

  17. Blankenhorn EP, Bryan G, Kossenkov AV, Clark LD, Zhang XM, Chang C, Horng W, Pletscher LS, Cheverud JM, Showe LC, Heber-Katz E. Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mamm Genome. 2009;20:720–33.

    Google Scholar 

  18. Cheverud JM, Lawson HA, Bouckaert K, Kossenkov A, Showe L, Cort L, Blankenhorn EP, Bedelbaeva K, Gourevitch D, Arthur LM, Heber-Katz E. Genetics of murine external ear tissue regeneration is due to differences in cell cycle, dna repair, cell adhesion and migration, and fibrosis. Heredity. 2014;112:508–18.

    Google Scholar 

  19. Ueno M, Lyons BL, Burzenski LM, Gott B, Shaffer DJ, Roopenian DC, Shultz LD. Accelerated wound healing of alkali-burned corneas in MRL mice Is associated with a reduced inflammatory signature. Investige Ophthalmol V Sci. 2005;46:4097–106.

    Article  Google Scholar 

  20. Chadwick RB, Bu L, Yu H, Hu Y, Wergedal JE, Mohan S, Baylink DJ. Digit tip regrowth and differential gene expression in MRL/MpJ, DBA/2, and C57BL/6 mice. Wound Repair Regen. 2007;15:275–84.

    Article  PubMed  Google Scholar 

  21. Gourevitch DL, Clark L, Bedelbaeva K, Leferovich J, Heber-Katz E. Dynamic changes after murine digit amputation: The MRL mouse digit shows waves of tissue remodeling, growth, and apoptosis. Wound Repair Regen. 2009;17:447–55.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Leferovich JM, Bedelbaeva K, Samulewicz S, Zhang XM, Zwas D, Lankford EB, Heber-Katz E. Heart regeneration in adult MRL mice. Proc Natl Acad Sci U S A. 2001;98:9830–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Haris Naseem R, Meeson AP, Michael DiMaioJ, White MD, Kallhoff J, Humphries C, Goetsch SC, De Windt LJ, Williams MA, Garry MG, Garry DJ. Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. Physiol Genomics. 2007;30:44–52.

    Article  PubMed  Google Scholar 

  24. Alfaro MP, Pagni M, Vincent A, Atkinson J, Hill MF, Cates J, Davidson JM, Rottman J, Lee E, Young PP. The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci U S A. 2008;105:18366–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hampton DW, Seitz A, Chen P, Heber-Katz E, Fawcett JW. Altered CNS response to injury in the MRL/MpJ mouse. Neuroscience. 2004;127:821–32.

    Article  CAS  PubMed  Google Scholar 

  26. Baker KL, Daniels SB, Lennington JB, Lardaro T, Czap A, Notti RQ, Cooper O, Isacson O, Frasca S, Conover JC. Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse. J Comp Neurol. 2006;498:747–61.

    Article  PubMed  Google Scholar 

  27. Balu DT, Hodes GE, Anderson BT, Lucki I. Enhanced sensitivity of the MRL/MpJ mouse to the neuroplastic and behavioral effects of chronic antidepressant treatments. Neuropsychopharmacology. 2009;34:1764–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Thuret S, Toni N, Aigner S, Yeo GW, Gage FH. Hippocampus-dependent learning is associated with adult neurogenesis in MRL/MpJ mice. Hippocampus. 2009;19:658–69.

    Article  CAS  PubMed  Google Scholar 

  29. Thuret S, Thallmair M, Horky LL, Gage FH. Enhanced functional recovery in MRL/MpJ mice after spinal cord dorsal hemisection. PLoS ONE. 2012;7:e30904.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Buckley G, Metcalfe AD, Ferguson MWJ. Peripheral nerve regeneration in the MRL/MpJ ear wound model. J Anat. 2011;218:163–72.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Fitzgerald J, Rich C, Burkhardt D, Allen J, Herzka AS, Little CB. Evidence for articular cartilage regeneration in MRL/MpJ mice. Osteoarthr Cartil. 2008;16:1319–26.

    Article  CAS  PubMed  Google Scholar 

  32. Rai MF, Hashimoto S, Eric E, Johnson EE, Janiszak KL, Fitzgerald J, Ellen Heber- Katz E, Cheverud JM, Sandell LJ. Heritability of articular cartilage regeneration and its association with ear-wound healing. Arthritis Rheum. 2012;64:2300–10.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ward BD, Furman BD, Huebner JL, Kraus VB, Guilak F, Olson SA. Absence of posttraumatic arthritis following intra-articular fracture in the MRL/MpJ mouse. Arthritis Rheum. 2008;58:744–53.

    Article  PubMed  Google Scholar 

  34. Heydemann A, Swaggart KA, Kim GH, Holley-Cuthrell J, Hadhazy M, McNally EM. The superhealing MRL background improves muscular dystrophy. Skelet Muscle. 2012;2:26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Buhimschi CS, Zhao G, Sora N, Madri JA, Buhimschi IA. Myometrial wound healing post-Cesarean delivery in the MRL/MpJ mouse model of uterine scarring. Am J Pathol. 2010;177:197–207.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Tolba RH, Schildberg FA, Decker D, Abdullah Z, Buttner R, Minor T, Von Ruecker A. Mechanisms of improved wound healing in Murphy Roths Large (MRL) mice after skin transplantation. Wound Repair Regen. 2010;18:662–70.

    Article  PubMed  Google Scholar 

  37. Prehn RT. Regeneration versus neoplastic growth. Carcinogenesis. 1997;18:1439–44.

    Article  CAS  PubMed  Google Scholar 

  38. Prehn RT. Immunosurveillance, regeneration and oncogenesis. Prog Exp Tumor Res. 1971;14:1–24.

    CAS  PubMed  Google Scholar 

  39. Donaldson DJ, Mason JM. Cancer related aspects of regeneration research: a review. Growth. 1975;39:475–96.

    CAS  PubMed  Google Scholar 

  40. Brockes J. Regeneration and cancer. Biochim Biophys Acta. 1998;1377:M1–11.

    CAS  PubMed  Google Scholar 

  41. Del Rio-Tsonis K, Tsonis PA. Amphibian tissue regeneration, a model for cancer regulation. Int J Oncol. 1992;1:1261–4.

    Google Scholar 

  42. Tsonis PA, Del Rio-Tsonis K. Spontaneous neoplasms in amphibia. Tumour Biol. 1988;9:221–4.

    Article  CAS  PubMed  Google Scholar 

  43. Dinsmore CE, editor. A history of regeneration research: milestones in the evolution of a science. New York: Cambridge University Press; 1991.

    Google Scholar 

  44. Breedis C. Induction of accessory limbs and of sarcoma in the newt with carcinogenic substances. Cancer Res. 1965;12:861–6.

    Google Scholar 

  45. Zilakos NP, Tsonis PA, Del Rio-Tsonis K, Parchment RE. Newt squamous carcinoma proves phylogenetic conservation of tumors as caricatures of tissue renewal. Cancer Res. 1992;52:4858–65.

    CAS  PubMed  Google Scholar 

  46. Tsonis PA, Eguchi G. Carcinogens on regeneration. Effects of N-methyl-N’-nitro-N-nitrosoguanidine and 4-nitroquinoline-1-oxide on limb regeneration in adult newts. Differentiation. 1981;20:52–60.

    Article  CAS  PubMed  Google Scholar 

  47. Linell F. On the tumor promoting effect of a single mechanical trauma. Acta Pathol Microbiol Scand. 1947;71:1–100.

    CAS  Google Scholar 

  48. Ruben LN. The effects of implanting anuran cancer into regenerating adult urodele limbs. J Morphol. 1956;98:389–99.

    Article  Google Scholar 

  49. Seilern-Aspang F, Kratochwil K. Induction and differentiation of an epithelial tumor in the newt (Triturus cristatus). J Embryol Exp Morphol. 1962;10:337–56.

    CAS  PubMed  Google Scholar 

  50. Brinster RL. Effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med. 1974;140:1049–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Illmensee K, Mintz B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocytes. Proc Natl Acad Sci U S A. 1976;73:549–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Gerschenson M, Graves K, Carson SD, Wells RS, Pierce GB. Regulation of melanoma by the embryonic skin. Proc Natl Acad Sci U S A. 1986;83:7307–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Moroson H, Ioachim HL. Protection by grafts of embryonal rat tissues (teratomas) against induction and transplantation of malignant tumors. Cancer Res. 1995;55:3664–8.

    CAS  PubMed  Google Scholar 

  54. Karin de EV, Lidiya VK, Lisa MC. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 2005;7:41–23.

    Google Scholar 

  55. Arthur LM, Demarest RM, Clark L, Gourevitch D, Bedelbaeva K, Anderson R, Snyder A, Capobianco AJ, Lieberman P, Feigenbaum L, Heber-Katz E. Epimorphic Regeneration in Mice is p53-independent. Cell Cycle. 2010;9:3667–73.

    Article  CAS  PubMed  Google Scholar 

  56. De laCE1, García-Cao I, Herranz M, López P, García-Palencia P, Flores JM, Serrano M, Fernández-Piqueras J, Martín-Caballero J. Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene. 2006;25:4128–32.

    Article  Google Scholar 

  57. Gourevitch D, Kossenkov AV, Zhang Y, Clark, Chang C, Showe LC, Heber-Katz E. Inflammation and its correlates in regenerative wound healing: an alternate perspective. Adv Wound Care. 2014;3:592–603.

    Google Scholar 

  58. Takaya N, Katoh Y, Iwabuchi K, Hayashi I, Konishi H, Itoh S, Okumura K, Ra C, Nagaoka I, Daida H. Platelets activated by collagen through the immunoreceptor tyrosine-based activation motif in the Fc receptor gamma-chain play a pivotal role in the development of myocardial ischemia-reperfusion injury. J Mol Cell Cardiol. 2005;39:856–64.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng X, Jiang F, Katakowski M, Kalkanis SN, Hong X, Zhang X, Zhang ZG, Yang H, Chopp M. Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci. 2007;98:674–84.

    Article  CAS  PubMed  Google Scholar 

  60. Furukawa F, Yoshimasu T, Yamamoto Y, Kanazawa N, Tachibana T. Mast cells and histamine metabolism in skin lesions from MRL/MP-lpr/lpr mice. Autoimmun Rev. 2009;8:495–9.

    Article  CAS  PubMed  Google Scholar 

  61. Babic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 1999;19:2958–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Sonnylal S, Shi-Wen X, Leoni P, Naff K, Van Pelt CS, Nakamura H, Leask A, Abraham D, Bou-Gharios G, de Crombrugghe B. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum. 2010;62:1523–32.

    Article  PubMed  Google Scholar 

  63. Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, Fraley SI, Wong CM, Khoo US, Ng IO, Wirtz D, Semenza GL. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci U S A. 2011;108:16369–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Xia Z-W, Xu L-Q, Zhong W-W, JWei J-J, Li N-L, Shao J, Li Y-Z, Yu S-C, Zhang Z-L. Heme oxygenase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of Foxp3 T-regulatory cells, interleukin-10, and membrane-bound transforming growth factor-β1. Am J Pathol. 2007;171:1904–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Theoharis CT, Pio Conti. The JEKYLL and HYDE of tumor growth. Trends Immunol. 2004;25:235–41.

    Article  Google Scholar 

  66. De Franco M, Carneiro P, Peters L, Vorraro F, Borrego A, Ribeiro O, Starobinas N, Cabrera W, Ibanez O. Slc11a1 (Nramp1) alleles interact with acute inflammation loci to modulate woundhealing traits in mice. Mamm Genome. 2007;18:263–9.

    Article  PubMed  Google Scholar 

  67. Canhamero T, Valino Garcia L, De Franco M. Acute inflammation loci influence wound healing in mice. Adv Wound Care. 2014;3:582–91.

    Google Scholar 

  68. Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci. 2006;9:843–52.

    Article  CAS  PubMed  Google Scholar 

  69. Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science. 2012;338(6112):1353–6.

    Article  CAS  PubMed  Google Scholar 

  70. Wada K, Arita M, Nakajima A, Katayama K, Kudo C, Kamisaki Y, Serhan CN. Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J. 2006;20:1785–92.

    Article  CAS  Google Scholar 

  71. Goh YP, Henderson NC, Heredia JE, Red Eagle A, Odegaard JI, Lehwald N, Nguyen KD, Sheppard D, Mukundan L, Locksley RM, Chawla A. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc Natl Acad Sci U S A. 2013;110:9914–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Coussens LM, Werb ZZ. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211–7.

    Article  CAS  PubMed  Google Scholar 

  74. Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, Korets L, Lam J, Tawfik D, DeNardo DG, Naldini L, de Visser KE, De Palma M, Coussens LM. FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010;17:121–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010;2010:289645.

    PubMed Central  PubMed  Google Scholar 

  76. Kim KA1, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE. 2012;7:e47713.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. O’Neill LAJ, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493:346.

    Article  PubMed  Google Scholar 

  79. Naviaux RK, Le TP, Bedelbaeva K, Leferovich J, Gourevitch D, Sachadyn P, Zhang XM, Clark L, Heber-Katz E. Retained features of embryonic metabolism in the adult MRL mouse. Mol Genet Metab. 2009;96:133–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Katayama M, Zhong Z, Lai L, Sutovsky P, Prather RS, Schatten H. Mitochondrial distribution and microtubule organization in fertilized and cloned porcine embryos: implications for developmental potential. Dev Biol. 2006;299:206–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Lant B, Storey KB. An overview of stress response and hypometabolic strategies in Caenorhabditis elegans: conserved and contrasting signals with the mammalian system. Int J Biol Sci. 2010;6:9–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Storey KB, Storey JM. Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev Camb Philos Soc. 2004;79:207–33.

    Article  PubMed  Google Scholar 

  83. Sachadyn P, Zhang XM, Clark LD, Naviaux RK, Heber-Katz E. Naturally occurring mitochondrial DNA heteroplasmy in the MRL mouse. Mitochondrion. 2008;8:358–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Maniataki E, Mourelatos Z. Human mitochondrial tRNAMet is exported to the cytoplasm and associates with the Argonaute 2 protein. RNA. 2005;11:849–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Johnson KR, Zheng QY, Bykhovskaya Y, Spirina O, Fischel-Ghodsian N. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat Genet. 2001;27:191–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Jones SM, Jones TA, Johnson KR, Yu H, Erway LC, Zheng QY. A comparison of vestibular and auditory phenotypes in inbred mouse strains. Brain Res. 2006;1091:40–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Zhou X, Jen PH, Seburn KL, Frankel WN, Zheng QY. Auditory brainstem responses in 10 inbred strains of mice. Brain Res. 2006;1091:16–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  PubMed  Google Scholar 

  89. Lopez-Lazaro M. The Warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem. 2008;8:305–12.

    Article  CAS  PubMed  Google Scholar 

  90. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001.

    Article  CAS  PubMed  Google Scholar 

  91. McBrearty BA, Clark LD, Zhang XM, Blankenhorn EP, Heber-Katz E. Genetic analysis of a mammalian wound-healing trait. Proc Natl Acad Sci U S A. 1998;95:11792–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Masinde GL, Li X, Gu W, Davidson H, Mohan S, Baylink DJ. Identification of wound healing/regeneration quantitative trait loci (QTL) at multiple time points that explain seventy percent of variance in (MRL/MpJ and SJL/J) mice F2 population. Genome Res. 2001;11:2027–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Blankenhorn EP, Troutman S, Clark LD, Zhang XM, Chen P, Heber-Katz E. Sexually dimorphic genes regulate healing and regeneration in MRL mice. Mamm Genome. 2003;14:250–60.

    Article  PubMed  Google Scholar 

  94. Heber-Katz E, Chen P, Dvm LC, Zhang X-M, Troutman S, Blankenhorn EP. Regeneration in MRL mice: further genetic loci controlling the ear hole closure trait using MRL and M. m. castaneus mice. Wound Repair Regen. 2004;12:384–92.

    Article  PubMed  Google Scholar 

  95. Yu H, Mohan S, Masinde G, Baylink D. Mapping the dominant wound healing and soft tissue regeneration QTL in MRL x CAST. Mamm Genome. 2005;16:918–24.

    Article  CAS  PubMed  Google Scholar 

  96. Li XM, Gu WK, Masinde G, Hamilton-Ulland M, Xu SZ, Mohan S, Baylink D. Genetic control of the rate of wound healing in mice. Heredity. 2010;86:668–74.

    Article  Google Scholar 

  97. Blankenhorn E, Bryan G, Kossenkov A, Clark L, Zhang XM, Chang C, Horng W, Pletscher L, Cheverud J, Showe L, Heber-Katz E. Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mamm Genome. 2009;20:720–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Cheverud JM, Lawson HA, Funk R, Zhou J, Blankenhorn EP, Heber-Katz E. Healing quantitative trait loci in a combined cross analysis using related mouse strain crosses. Heredity. 2012;108:441–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Cheverud JM, Lawson HA, Bouckaert K, Kossenkov A, Showe L, Cort L, Blankenhorn EP, Bedelbaeva K, Gourevitch D, Arthur LM, Heber-Katz E. Genetics of murine external ear tissue regeneration is due to differences in cell cycle, dna repair, cell adhesion and migration, and fibrosis. Heredity. 2014;112:508–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Lawson HA, Cady JE, Partridge C, Wolf JB, Semenkovich CF, Cheverud JM. Genetic effects at pleiotropic loci are context-dependent with consequences for the maintenance of genetic variation in populations. PLoS Genet. 2011;7:e1002256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Tan M, Gu Q, He H, Pamarthy D, Semenza GL, Sun Y. SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1[alpha] ubiquitination and degradation. Oncogene. 2007;27:1404–11.

    Article  PubMed  Google Scholar 

  102. Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin.Cell Biol. 2001;13:167–71.

    Article  CAS  PubMed  Google Scholar 

  103. Weidemann A, Johnson RS. Biology of HIF-1alpha. Cell Death Differ. 2008;15:621–7.

    Article  CAS  PubMed  Google Scholar 

  104. Chen X, Barozzi I, Termanini A, Prosperini E, Recchiuti A, Dalli J, Mietton F, Matteoli G, Hiebert S, Natoli G. Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A. 2012;109:E2865–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Wu MZ, Tsai YP, Yang MH, Huang CH, Chang SY, Chang CC, Teng SC, Wu KJ. Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell. 2011;43:811–22.

    Article  CAS  PubMed  Google Scholar 

  106. Razidlo DF, Whitney TJ, Casper ME, McGee-Lawrence ME, Stensgard BA, Li X, Secreto FJ, Knutson SK, Hiebert SW, Westendorf JJ. Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat. PLoS ONE. 2010;J5:e11492

    Article  Google Scholar 

  107. Kim HC, Choi KC, Choi HK, Kang HB, Kim MJ, Lee YH, Lee OH, Lee J, Kim YJ, Jun W, Jeong JW, Yoon HG. HDAC3 selectively represses CREB3-mediated transcription and migration of metastatic breast cancer cells. Cell Mol Life Sci. 2010;67:3499–510.

    Article  CAS  PubMed  Google Scholar 

  108. Smith G, Ng MT, Shepherd L, Herrington CS, Gourley C, Ferguson MJ, Wolf CR. Individuality in FGF1 expression significantly influences platinum resistance and progression free survival in ovarian cancer. Br J Cancer. 2012;107:1327–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Hutley L, Shurety W, Newell F, McGeary R, Pelton N, Grant J, Herington A, Cameron D, Whitehead J, Prins J. Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes. 2004;53:3097–106.

    Article  CAS  PubMed  Google Scholar 

  110. Jonker JW, Suh JM, Atkins AR, Ahmadian M, Li P, Whyte J, He M, Juguilon H, Yin YQ, Phillips CT, Yu RT, Olefsky JM, Henry RR, Downes M, Evans RM. A PPARγ-FGF1 axis is required for adaptive adipose remodeling and metabolic homeostasis. Nature. 2012;485:391–411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Bansal GS, Yiangou C, Coope RC, Gomm JJ, Luqmani YA, Coombes RC, Johnston CL. Expression of fibroblast growth factor 1 is lower in breast cancer than in the normal human breast. Br J Cancer. 1995;72:1420–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Yoshimura N, Sano H, Hashiramoto A, Yamada R, Nakajima H, Kondo M, Oka T. The expression and localization of fibroblast growth factor-1 (FGF-1) and FGF receptor-1 (FGFR-1) in human breast cancer. Clin Immunol Immunopathol. 1998;89:28–34.

    Article  CAS  PubMed  Google Scholar 

  113. Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications. Nat Protoc. 2000;4:1350–62.

    Article  Google Scholar 

Download references

Acknowledgements

Funding Declaration

The authors declare no competing interests in the studies discussed in this chapter. Funds for this research were supported by the national institutes of health (NIDCR and NIGMS) and the department of defense (DARPA). This research was also supported by a grant from the PA Department of Health Commonwealth Universal Research Enhancement (CURE) Program and from the PA Breast Cancer Coalition. Support for shared resources utilized in these studies was provided by the Cancer Center Support Grant (CCSG) CA010815 to The Wistar Institute EHK is supported by a grant from NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Heber-Katz PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heber-Katz, E., Naviaux, R. (2015). The MRL Mouse: A Model of Regeneration and Cancer. In: Berger, N. (eds) Murine Models, Energy Balance, and Cancer. Energy Balance and Cancer, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-16733-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16733-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16732-9

  • Online ISBN: 978-3-319-16733-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics