Skip to main content

Memory Disruption Following Traumatic Brain Injury

  • Chapter
  • First Online:
The Neurobiological Basis of Memory

Abstract

Traumatic brain injury (TBI) is a major public health concern worldwide, and is the leading cause of disability and death in children and young adults. One of the most common consequences of TBI is cognitive impairment, including deficits in memory and executive function. Although some recovery of function is typical after injury, many individuals are left with lifelong memory problems. Therefore, it is important to understand how the brain’s memory systems are affected by various types of TBI. Such knowledge will improve our ability to understand what memory functions are most vulnerable to injury and then to use this information to develop more effective treatments and rehabilitation strategies to improve cognitive outcome. This chapter reviews studies of memory loss following TBI, with a focus on studies in animal models of brain injury and how results from these studies have shaped our understanding of the mechanisms and consequences of TBI on the brain’s memory systems. The chapter also considers how understanding the organization of multiple memory systems is shaping current research in the field, and describes recent studies based on the Kesner attribute model that provide new insights into how TBI affects memory and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J. H., Doyle, D., Ford, I., Gennarelli, T. A., Graham, D. I., & McLellan, D. R. (1989). Diffuse axonal injury in head injury: Definition, diagnosis and grading. Histopathology, 15(1), 49–59.

    Article  PubMed  Google Scholar 

  • Adelson, P. D., Dixon, C. E., Robichaud, P., & Kochanek, P. M. (1997). Motor and cognitive functional deficits following diffuse traumatic brain injury in the immature rat. Journal of Neurotrauma, 14(2), 99–108.

    Article  PubMed  Google Scholar 

  • Adelson, P. D., Dixon, C. E., & Kochanek, P. M. (2000). Long-term dysfunction following diffuse traumatic brain injury in the immature rat. Journal of Neurotrauma, 17(4), 273–282.

    Article  PubMed  Google Scholar 

  • Adelson, P. D., Fellows-Mayle, W., Kochanek, P. M., & Dixon, C. E. (2013). Morris water maze function and histologic characterization of two age-at-injury experimental models of controlled cortical impact in the immature rat. Child’s Nervous System, 29(1), 43–53.

    Article  PubMed  Google Scholar 

  • Aggleton, J. P., Blindt, H. S., & Rawlins, J. N. (1989). Effects of amygdaloid and amygdaloid-hippocampal lesions on object recognition and spatial working memory in rats. Behavioral Neuroscience, 103(5), 962–974.

    Article  PubMed  Google Scholar 

  • Aggleton, J. P., Keen, S., Warburton, E. C., & Bussey, T. J. (1997). Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat. Brain Research Bulletin, 43(3), 279–287.

    Article  PubMed  Google Scholar 

  • Albasser, M. M., Amin, E., Lin, T. C., Iordanova, M. D., & Aggleton, J. P. (2012). Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory. Behavioral Neuroscience, 126(5), 659–669.

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson, V., & Catroppa, C. (2007). Memory outcome at 5 years post-childhood traumatic brain injury. Brain Injury, 21(13–14), 1399–1409.

    Article  PubMed  Google Scholar 

  • Anderson, K. J., Miller, K. M., Fugaccia, I., & Scheff, S. W. (2005). Regional distribution of Fluoro-Jade B staining in the hippocampus following traumatic brain injury. Experimental Neurology, 193(1), 125–130.

    Article  PubMed  Google Scholar 

  • Avants, B., Duda, J. T., Kim, J., Zhang, H., Pluta, J., Gee, J. C., et al. (2008). Multivariate analysis of structural and diffusion imaging in traumatic brain injury. Academic Radiology, 15(11), 1360–1375.

    Article  PubMed  Google Scholar 

  • Baddeley, A. D. (1995). The psychology of memory. In A. D. Baddeley, B.A. Wilson, & F.N. Watts (Ed.), Handbook of memory disorders (pp. 3–25). Chichester: Wiley.

    Google Scholar 

  • Bao, Y. H., Bramlett, H. M., Atkins, C. M., Truettner, J. S., Lotocki, G., Alonso, O. F., et al. (2011). Post-traumatic seizures exacerbate histopathological damage after fluid-percussion brain ­injury. Journal of Neurotrauma, 28(1), 35–42.

    Article  PubMed Central  PubMed  Google Scholar 

  • Barkhoudarian, G., Hovda, D. A., & Giza, C. C. (2011). The molecular pathophysiology of ­concussive brain injury. Clinics in Sports Medicine, 30(1), 33–48, vii–iii.

    Article  PubMed  Google Scholar 

  • Barnes, C. A. (1979). Memory deficits associated with senescence: A neurophysiological and ­behavioral study in the rat. Journal of Comparative Physiological Psychology, 93(1), 74–104.

    Article  PubMed  Google Scholar 

  • Baxter, M. G., & Murray, E. A. (2001). Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatching-to-sample deficits in monkeys. Hippocampus, 11(1), 61–71.

    Article  PubMed  Google Scholar 

  • Beauchamp, M. H., Ditchfield, M., Maller, J. J., Catroppa, C., Godfrey, C., Rosenfeld, J. V.., et al. (2011). Hippocampus, amygdala and global brain changes 10 years after childhood traumatic brain injury. International Journal of Developmental Neuroscience, 29(2), 137–143.

    Article  PubMed  Google Scholar 

  • Beaumont, A., Marmarou, A., Czigner, A., Yamamoto, M., Demetriadou, K., Shirotani, T.., et al. (1999). The impact-acceleration model of head injury: Injury severity predicts motor and cognitive performance after trauma. Neurological Research, 21(8), 742–754.

    PubMed  Google Scholar 

  • Bergsneider, M., Hovda, D. A., Shalmon, E., Kelly, D. F., Vespa, P. M., Martin, N. A., et al. (1997). Cerebral hyperglycolysis following severe traumatic brain injury in humans: A positron emission tomography study. Journal of NeuroSurgery, 86(2), 241–251.

    Article  PubMed  Google Scholar 

  • Bergsneider, M., Hovda, D. A., McArthur, D. L., Etchepare, M., Huang, S. C., Sehati, N., et al. (2001). Metabolic recovery following human traumatic brain injury based on FDG-PET: Time course and relationship to neurological disability. The Journal of Head Trauma Rehabilitation, 16(2), 135–148.

    Article  PubMed  Google Scholar 

  • Berman, R. F., Verweij, B. H., & Muizelaar, J. P. (2000). Neurobehavioral protection by the ­neuronal calcium channel blocker ziconotide in a model of traumatic diffuse brain injury in rats. Journal of NeuroSurgery, 93(5), 821–828.

    Article  PubMed  Google Scholar 

  • Bigler, E. D., Blatter, D. D., Johnson, S. C., Anderson, C. V., Russo, A. A., Gale, S. D., et al. (1996). Traumatic brain injury, alcohol and quantitative neuroimaging: Preliminary findings. Brain Injury, 10(3), 197–206.

    Article  PubMed  Google Scholar 

  • Bigler, E. D., Blatter, D. D., Anderson, C. V., Johnson, S. C., Gale, S. D., Hopkins, R. O., et al. (1997). Hippocampal volume in normal aging and traumatic brain injury. AJNR. American Journal of Neuroradiology, 18(1), 11–23.

    PubMed  Google Scholar 

  • Bigler, E. D., McCauley, S. R., Wu, T. C., Yallampalli, R., Shah, S., MacLeod, M., et al. (2010). The temporal stem in traumatic brain injury: Preliminary findings. Brain Imaging and Behavior, 4(3–4), 270–282.

    Article  PubMed  Google Scholar 

  • Bramlett, H. M., Dietrich, W. D., & Green, E. J. (1999). Secondary hypoxia following moderate fluid percussion brain injury in rats exacerbates sensorimotor and cognitive deficits. Journal of Neurotrauma, 16(11), 1035–1047.

    Article  PubMed  Google Scholar 

  • Brody, D. L., Mac Donald, C., Kessens, C. C., Yuede, C., Parsadanian, M., Spinner, M., et al. (2007). Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. Journal of Neurotrauma, 24(4), 657–673.

    Article  PubMed Central  PubMed  Google Scholar 

  • Buki, A., Okonkwo, D. O., Wang, K. K., & Povlishock, J. T. (2000). Cytochrome c release and caspase activation in traumatic axonal injury. The Journal of Neuroscience, 20(8), 2825–2834.

    PubMed  Google Scholar 

  • Burgess, N. (2008). Spatial cognition and the brain. Annals of the New York Academy of Sciences, 1124, 77–97.

    Article  PubMed  Google Scholar 

  • Carbonell, W. S., Maris, D. O., McCall, T., & Grady, M. S. (1998). Adaptation of the fluid percussion injury model to the mouse. Journal of Neurotrauma, 15(3), 217–229.

    Article  PubMed  Google Scholar 

  • Catroppa, C., & Anderson, V. (2002). Recovery in memory function in the first year following TBI in children. Brain Injury, 16(5), 369–384.

    Article  PubMed  Google Scholar 

  • Cave, C. B., & Squire, L. R. (1991). Equivalent impairment of spatial and nonspatial memory ­following damage to the human hippocampus. Hippocampus, 1(3), 329–340.

    Article  PubMed  Google Scholar 

  • Cernak, I., Wang, Z., Jiang, J., Bian, X., & Savic, J. (2001). Cognitive deficits following blast injury-induced neurotrauma: Possible involvement of nitric oxide. Brain Injury, 15(7), 593–612.

    Article  PubMed  Google Scholar 

  • Chen, C. Y., Noble-Haeusslein, L. J., Ferriero, D., & Semple, B. D. (2013). Traumatic injury to the immature frontal lobe: A new murine model of long-term motor impairment in the absence of psychosocial or cognitive deficits. Developmental Neuroscience, 35, 474–490.

    PubMed Central  PubMed  Google Scholar 

  • Christensen, B. K., Colella, B., Inness, E., Hebert, D., Monette, G., Bayley, M., et al. (2008). Recovery of cognitive function after traumatic brain injury: A multilevel modeling analysis of Canadian outcomes. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl), S3–15.

    Article  PubMed  Google Scholar 

  • Clark, R. S., Kochanek, P. M., Dixon, C. E., Chen, M., Marion, D. W., Heineman, S.., et al. (1997). Early neuropathologic effects of mild or moderate hypoxemia after controlled cortical impact injury in rats. Journal of Neurotrauma, 14(4), 179–189.

    Article  PubMed  Google Scholar 

  • Colicos, M. A., Dixon, C. E., & Dash, P. K. (1996). Delayed, selective neuronal death following experimental cortical impact injury in rats: Possible role in memory deficits. Brain Research, 739(1–2), 111–119.

    Article  PubMed  Google Scholar 

  • Conti, A. C., Raghupathi, R., Trojanowski, J. Q., & McIntosh, T. K. (1998). Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. The Journal of Neuroscience, 18(15), 5663–5672.

    PubMed  Google Scholar 

  • D’Esposito, M., Verfaellie, M., Alexander, M. P., & Katz, D. I. (1995). Amnesia following ­traumatic bilateral fornix transection. Neurology, 45(8), 1546–1550.

    Article  PubMed  Google Scholar 

  • Dede, A. J., Wixted, J. T., Hopkins, R. O., & Squire, L. R. (2013). Hippocampal damage impairs recognition memory broadly, affecting both parameters in two prominent models of memory. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6577–6582.

    Article  PubMed Central  PubMed  Google Scholar 

  • DeFord, S. M., Wilson, M. S., Rice, A. C., Clausen, T., Rice, L. K., Barabnova, A., et al. (2002). Repeated mild brain injuries result in cognitive impairment in B6C3F1 mice. Journal of ­Neurotrauma, 19(4), 427–438.

    Article  PubMed  Google Scholar 

  • Di Stefano, G., Bachevalier, J., Levin, H. S., Song, J. X., Scheibel, R. S., & Fletcher, J. M. (2000). Volume of focal brain lesions and hippocampal formation in relation to memory function after closed head injury in children. Journal of Neurology, Neurosurgery, and Psychiatry, 69(2), 210–216.

    Article  PubMed  Google Scholar 

  • Dietrich, W. D., Alonso, O., Busto, R., & Finklestein, S. P. (1996). Posttreatment with intravenous basic fibroblast growth factor reduces histopathological damage following fluid-percussion brain injury in rats. Journal of Neurotrauma, 13(6), 309–316.

    PubMed  Google Scholar 

  • Dixon, C. E., Lighthall, J. W., & Anderson, T. E. (1988). Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. Journal of Neurotrauma, 5(2), 91–104.

    Article  PubMed  Google Scholar 

  • Dixon, C. E., Clifton, G. L., Lighthall, J. W., Yaghmai, A. A., & Hayes, R. L. (1991). A controlled cortical impact model of traumatic brain injury in the rat. Journal of Neuroscience Methods, 39(3), 253–262.

    Article  PubMed  Google Scholar 

  • Dodart, J. C., Mathis, C., & Ungerer, A. (1997). Scopolamine-induced deficits in a two-trial object recognition task in mice. Neuroreport, 8(5), 1173–1178.

    Article  PubMed  Google Scholar 

  • Doll, H., Truebel, H., Kipfmueller, F., Schaefer, U., Neugebauer, E. A., Wirth, S., et al. (2009). Pharyngeal selective brain cooling improves neurofunctional and neurocognitive outcome ­after fluid percussion brain injury in rats. Journal of Neurotrauma, 26(2), 235–242.

    Article  PubMed  Google Scholar 

  • Donkin, J. J., Cernak, I., Blumbergs, P. C., & Vink, R. (2011a). A substance P antagonist reduces axonal injury and improves neurologic outcome when administered up to 12 hours after ­traumatic brain injury. Journal of Neurotrauma, 28(2), 217–224.

    Article  PubMed  Google Scholar 

  • Donkin, J. J., Cernak, I., Blumbergs, P. C., & Vink, R. (2011b). A substance P antagonist reduces axonal injury and improves neurologic outcome when administered up to 12 hours after ­traumatic brain injury. Journal of Neurotrauma, 28(2), 217–224.

    Article  PubMed  Google Scholar 

  • Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152.

    Article  PubMed Central  PubMed  Google Scholar 

  • Eichenbaum, H., Sauvage, M., Fortin, N., Komorowski, R., & Lipton, P. (2012). Towards a ­functional organization of episodic memory in the medial temporal lobe. Neuroscience and Biobehavioral Reviews, 36(7), 1597–1608.

    Article  PubMed Central  PubMed  Google Scholar 

  • Engelborghs, K., Haseldonckx, M., Van Reempts, J., Van Rossem, K., Wouters, L., Borgers, M., et al. (2000). Impaired autoregulation of cerebral blood flow in an experimental model of traumatic brain injury. Journal of Neurotrauma, 17(8), 667–677.

    Article  PubMed  Google Scholar 

  • Ennaceur, A., & Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behavioural Brain Research, 31(1), 47–59.

    Article  PubMed  Google Scholar 

  • Ennaceur, A., Neave, N., & Aggleton, J. P. (1997). Spontaneous object recognition and object location memory in rats: The effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Experimental Brain Research, 113(3), 509–519.

    Article  PubMed  Google Scholar 

  • Enomoto, T., Osugi, T., Satoh, H., McIntosh, T. K., & Nabeshima, T. (2005). Pre-Injury magnesium treatment prevents traumatic brain injury-induced hippocampal ERK activation, neuronal loss, and cognitive dysfunction in the radial-arm maze test. Journal of Neurotrauma, 22(7), 783–792.

    Article  PubMed  Google Scholar 

  • Esbjornsson, E., Skoglund, T., Mitsis, M. K., Hofgren, C., Larsson, J., & Sunnerhagen, K. S. (2013). Cognitive impact of traumatic axonal injury (TAI) and return to work. Brain Injury, 27(5), 521–528.

    Article  PubMed  Google Scholar 

  • Ewert, J., Levin, H. S., Watson, M. G., & Kalisky, Z. (1989). Procedural memory during posttraumatic amnesia in survivors of severe closed head injury. Implications for rehabilitation. Archives of Neurology, 46(8), 911–916.

    Article  PubMed  Google Scholar 

  • Farmer, J. E., Kanne, S. M., Haut, J. S., Williams, J., Johnstone, B., & Kirk, K. (2002). Memory functioning following traumatic brain injury in children with premorbid learning problems. Developmental Neuropsychology, 22(2), 455–469.

    Article  PubMed  Google Scholar 

  • Faul, M., Xu, L., Wald, M. M., & Coronado, V. G. (Eds.). (2010). Traumatic brain injury in the United States: Emergency department visits, hospitalizations and deaths 2002–2006. Atlanta: U.S. Department of Health and Human Services.

    Google Scholar 

  • Fedor, M., Berman, R. F., Muizelaar, J. P., & Lyeth, B. G. (2010). Hippocampal theta dysfunction after lateral fluid percussion injury. Journal of Neurotrauma, 27(9), 1605–1615.

    Article  PubMed Central  PubMed  Google Scholar 

  • Feng, J. F., Zhao, X., Gurkoff, G. G., Van, K. C., Shahlaie, K., & Lyeth, B. G. (2012). Post-traumatic hypoxia exacerbates neuronal cell death in the hippocampus. Journal of Neurotrauma, 29(6), 1167–1179.

    Article  PubMed Central  PubMed  Google Scholar 

  • Foda, M. A., & Marmarou, A. (1994). A new model of diffuse brain injury in rats. Part II: Morphological characterization. Journal of NeuroSurgery, 80(2), 301–313.

    Article  PubMed  Google Scholar 

  • Folkerts, M. M., Berman, R. F., Muizelaar, J. P., & Rafols, J. A. (1998). Disruption of ­MAP-2 ­immunostaining in rat hippocampus after traumatic brain injury. Journal of Neurotrauma, 15(5), 349–363.

    Article  PubMed  Google Scholar 

  • Fortin, N. J., Agster, K. L., & Eichenbaum, H. B. (2002). Critical role of the hippocampus in memory for sequences of events. Nature Neuroscience, 5(5), 458–462.

    PubMed Central  PubMed  Google Scholar 

  • Fox, G. B., Fan, L., LeVasseur, R. A., & Faden, A. I. (1998). Effect of traumatic brain injury on mouse spatial and nonspatial learning in the Barnes circular maze. Journal of Neurotrauma, 15(12), 1037–1046.

    Article  PubMed  Google Scholar 

  • Fox, G. B., LeVasseur, R. A., & Faden, A. I. (1999). Behavioral responses of C57BL/6, FVB/N, and 129/SvEMS mouse strains to traumatic brain injury: Implications for gene targeting ­approaches to neurotrauma. Journal of Neurotrauma, 16(5), 377–389.

    Article  PubMed  Google Scholar 

  • Gallistel, C. R., & Cramer, A. E. (1996). Computations on metric maps in mammals: Getting oriented and choosing a multi-destination route. The Journal of Experimental Biology, 199 (1), 211–217.

    PubMed  Google Scholar 

  • Gennarelli, T. A., & Graham, D. I. (1998). Neuropathology of the head injuries. Semininars in Clinical Neuropsychiatry, 3(3), 160–175..

    Google Scholar 

  • Gilbert, P. E., & Kesner, R. P. (2004). Memory for objects and their locations: The role of the hippocampus in retention of object-place associations. Neurobiology of Learning and Memory, 81(1), 39–45..

    Article  PubMed  Google Scholar 

  • Goldstein, L. E., Fisher, A. M., Tagge, C. A., Zhang, X. L., Velisek, L., Sullivan, J. A., et al. (2012). Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Science Translational Medicine, 4(134), 134ra160.

    Article  Google Scholar 

  • Goodman, J. C., Cherian, L., Bryan, R. M. Jr., & Robertson, C. S. (1994). Lateral cortical impact injury in rats: Pathologic effects of varying cortical compression and impact velocity. Journal of Neurotrauma, 11(5), 587–597.

    Article  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J., Hunsaker, M. R., & Kesner, R. P. (2005). Dissociating the role of the parietal cortex and dorsal hippocampus for spatial information processing. Behavioral Neuroscience, 119(5), 1307–1315.

    Article  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J., Howard, B. P., Hunsaker, M. R., & Kesner, R. P. (2008a). ­Human ­topological task adapted for rats: Spatial information processes of the parietal cortex. ­Neurobiology of Learning and Memory, 90(2), 389–394.

    Article  PubMed Central  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J., Hunsaker, M. R., & Kesner, R. P. (2008b). The interactions and dissociations of the dorsal hippocampus subregions: How the dentate gyrus, CA3, and CA1 process spatial information. Behavioral Neuroscience, 122(1), 16–26.

    Article  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J., Gilbert, P. E., & Hopkins, R. O. (2009). The role of the human hippocampus in odor-place associative memory. Chemical Senses, 34(6), 513–521.

    Article  PubMed  Google Scholar 

  • Goodrich-Hunsaker, N. J., Livingstone, S. A., Skelton, R. W., & Hopkins, R. O. (2010). Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus, 20(4), 481–491.

    PubMed  Google Scholar 

  • Grady, M. S., Charleston, J. S., Maris, D., Witgen, B. M., & Lifshitz, J. (2003). Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: Analysis by stereological estimation. Journal of Neurotrauma, 20(10), 929–941.

    Article  PubMed  Google Scholar 

  • Greer, J. E., Hanell, A., McGinn, M. J., & Povlishock, J. T. (2013). Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathologica, 126(1), 59–74.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gurdjian, E. S., Lissner, H. R., Webster, J. E., Latimer, F. R., & Haddad, B. F. (1954). Studies on experimental concussion: Relation of physiologic effect to time duration of intracranial pressure increase at impact. Neurology, 4(9), 674–681.

    Article  PubMed  Google Scholar 

  • Gurkoff, G. G., Giza, C. C., & Hovda, D. A. (2006). Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death. Brain Research, 1077(1), 24–36.

    Article  PubMed  Google Scholar 

  • Gurkoff, G. G., Giza, C. C., Shin, D., Auvin, S., Sankar, R., & Hovda, D. A. (2009). Acute ­neuroprotection to pilocarpine-induced seizures is not sustained after traumatic brain injury in the developing rat. Neuroscience, 164(2), 862–876.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gurkoff, G., Shahlaie, K., Lyeth, B. G., & Berman, R. F. (2013a). Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals, 6(7), 788–812.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gurkoff, G. G., Feng, J. F., Van, K. C., Izadi, A., Ghiasvand, R., Shahlaie, K., et al. (2013b). NAAG peptidase inhibitor improves motor function and reduces cognitive dysfunction in a model of TBI with secondary hypoxia. Brain Research, 1515, 98–107.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gurkoff, G. G., Gahan, J. D., Ghiasvand, R. T., Hunsaker, M. R., Van, K., Feng, J. F., et al. (2013c). Evaluation of metric, topological, and temporal ordering memory tasks after lateral fluid ­percussion injury. Journal of Neurotrauma, 30(4), 292–300.

    Article  PubMed  Google Scholar 

  • Hallam, T. M., Floyd, C. L., Folkerts, M. M., Lee, L. L., Gong, Q. Z., Lyeth, B. G., et al. (2004). Comparison of behavioral deficits and acute neuronal degeneration in rat lateral fluid percussion and weight-drop brain injury models. Journal of Neurotrauma, 21(5), 521–539.

    Article  PubMed  Google Scholar 

  • Hamm, R. J., Dixon, C. E., Gbadebo, D. M., Singha, A. K., Jenkins, L. W., Lyeth, B. G., et al. (1992a). Cognitive deficits following traumatic brain injury produced by controlled cortical impact. Journal of Neurotrauma, 9(1), 11–20.

    Article  PubMed  Google Scholar 

  • Hamm, R. J., White-Gbadebo, D. M., Lyeth, B. G., Jenkins, L. W., & Hayes, R. L. (1992b). The effect of age on motor and cognitive deficits after traumatic brain injury in rats. Neurosurgery, 31(6), 1072–1077. discussion 1078.

    Article  PubMed  Google Scholar 

  • Hamm, R. J., Lyeth, B. G., Jenkins, L. W., O'Dell, D. M., & Pike, B. R. (1993). Selective cognitive impairment following traumatic brain injury in rats. Behavioural Brain Research, 59(1–2), 169–173.

    Article  PubMed  Google Scholar 

  • Hamm, R. J., Pike, B. R., Temple, M. D., O’Dell, D. M., & Lyeth, B. G. (1995). The effect of post-injury kindled seizures on cognitive performance of traumatically brain-injured rats. ­Experimental Neurology, 136(2), 143–148.

    Article  PubMed  Google Scholar 

  • Hamm, R. J., Temple, M. D., Pike, B. R., O'Dell, D. M., Buck, D. L., & Lyeth, B. G. (1996). Working memory deficits following traumatic brain injury in the rat. Journal of Neurotrauma, 13(6), 317–323.

    PubMed  Google Scholar 

  • Han, X., Tong, J., Zhang, J., Farahvar, A., Wang, E., Yang, J., et al (2011). Imipramine treatment improves cognitive outcome associated with enhanced hippocampal neurogenesis after traumatic brain injury in mice. Journal of Neurotrauma, 28(6), 995–1007.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hannay, H. J., Feldman, Z., Phan, P., Keyani, A., Panwar, N., Goodman, J. C., et al. (1999). ­Validation of a controlled cortical impact model of head injury in mice. Journal of Neurotrauma, 16(11), 1103–1114.

    Article  PubMed  Google Scholar 

  • Hart, J., Kraut, M. A., Womack, K. B., Strain, J., Didehbani, N., Bartz, E., et al. (2013). Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: A cross-sectional study. JAMA Neurology, 70(3), 326–335.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayes, R. L., Stalhammar, D., Povlishock, J. T., Allen, A. M., Galinat, B. J., Becker, D. P., et al. (1987). A new model of concussive brain injury in the cat produced by extradural fluid volume loading: II. Physiological and neuropathological observations. Brain Injury, 1(1), 93–112.

    Article  PubMed  Google Scholar 

  • Hicks, R. R., Smith, D. H., Lowenstein, D. H., Saint Marie, R., & McIntosh, T. K. (1993). Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. Journal of Neurotrauma, 10(4), 405–414.

    Article  PubMed  Google Scholar 

  • Hicks, R., Soares, H., Smith, D., & McIntosh, T. (1996). Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat. Acta Neuropathologica, 91(3), 236–246.

    Article  PubMed  Google Scholar 

  • Himanen, L., Portin, R., Isoniemi, H., Helenius, H., Kurki, T., & Tenovuo, O. (2005). Cognitive functions in relation to MRI findings 30 years after traumatic brain injury. Brain Injury, 19(2), 93–100.

    Article  PubMed  Google Scholar 

  • Hovda, D. A., Becker, D. P., & Katayama, Y. (1992). Secondary injury and acidosis. Journal of Neurotrauma, 9(Suppl 1), S47–60.

    Article  PubMed  Google Scholar 

  • Huh, J. W., Widing, A. G., & Raghupathi, R. (2007). Basic science; repetitive mild non-contusive brain trauma in immature rats exacerbates traumatic axonal injury and axonal calpain activation: A preliminary report. Journal of Neurotrauma, 24(1), 15–27.

    Article  PubMed  Google Scholar 

  • Hunsaker, M. R., & Kesner, R. P. (2008). Evaluating the differential roles of the dorsal dentate gyrus, dorsal CA3, and dorsal CA1 during a temporal ordering for spatial locations task. Hippocampus, 18(9), 955–964.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunsaker, M. R., & Kesner, R. P. (2009). Transecting the dorsal fornix results in novelty detection but not temporal ordering deficits in rats. Behavioural Brain Research, 201(1), 192–197.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunsaker, M. R., Lee, B., & Kesner, R. P. (2008a). Evaluating the temporal context of episodic memory: The role of CA3 and CA1. Behavioural Brain Research, 188(2), 310–315.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunsaker, M. R., Fieldsted, P. M., Rosenberg, J. S., & Kesner, R. P. (2008b). Dissociating the roles of dorsal and ventral CA1 for the temporal processing of spatial locations, visual objects, and odors. Behavioral Neuroscience, 122(3), 643–650.

    Article  PubMed  Google Scholar 

  • Hunsaker, M. R., Wenzel, H. J., Willemsen, R., & Berman, R. F. (2009). Progressive spatial processing deficits in a mouse model of the fragile X premutation. Behavioral Neuroscience, 123(6), 1315–1324.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunsaker, M. R., Goodrich-Hunsaker, N. J., Willemsen, R., & Berman, R. F. (2010). Temporal ordering deficits in female CGG KI mice heterozygous for the fragile X premutation. Behavioural Brain Research, 213(2), 263–268.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hylin, M. J., Orsi, S. A., Rozas, N. S., Hill, J. L., Zhao, J., Redell, J. B., et al. (2013). Repeated mild closed head injury impairs short-term visuospatial memory and complex learning. Journal of Neurotrauma, 30(9), 716–726..

    Article  PubMed  Google Scholar 

  • Katayama, Y., Becker, D. P., Tamura, T., & Hovda, D. A. (1990). Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. Journal of NeuroSurgery, 73(6), 889–900.

    Article  PubMed  Google Scholar 

  • Kawamata, T., Katayama, Y., Hovda, D. A., Yoshino, A., & Becker, D. P. (1992). Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. Journal of Cerebral Blood Flow and Metabolism, 12(1), 12–24.

    Article  PubMed  Google Scholar 

  • Kelley, B. J., Lifshitz, J., & Povlishock, J. T. (2007). Neuroinflammatory responses after ­experimental diffuse traumatic brain injury. Journal of Neuropathology and Experimental Neurology, 66(11), 989–1001.

    Article  PubMed  Google Scholar 

  • Kesner, R. P. (2007). Neurological views of memory. In R. P. K. J. L. Martinez (Ed.), The neurobiology of learning and memory (2nd edn, pp. 271–304). San Diego: Academic.

    Chapter  Google Scholar 

  • Kesner, R. P. (2009a). The posterior parietal cortex and long-term memory representation of ­spatial information. Neurobiology of Learning and Memory, 91(2), 197–206.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kesner, R. P. (2009b). Tapestry of memory. Behavioral Neuroscience, 123(1), 1–13.

    Article  PubMed  Google Scholar 

  • Kesner, R. P. (2013). Role of the hippocampus in mediating interference as measured by pattern separation processes. Behavioural Processes, 93, 148–154.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Goodrich-Hunsaker, N. J. (2010). Developing an animal model of human amnesia: The role of the hippocampus. Neuropsychologia, 48(8), 2290–2302.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., DiMattia, B. V., & Crutcher, K. A. (1987). Evidence for neocortical involvement in reference memory. Behavioral and Neural Biology, 47(1), 40–53.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Hunsaker, M. R., & Ziegler, W. (2011). The role of the dorsal and ventral hippocampus in olfactory working memory. Neurobiology of Learning and Memory, 96(2), 361–366.

    Article  PubMed  Google Scholar 

  • Kline, A. E., Massucci, J. L., Marion, D. W., & Dixon, C. E. (2002). Attenuation of working memory and spatial acquisition deficits after a delayed and chronic bromocriptine treatment regimen in rats subjected to traumatic brain injury by controlled cortical impact. Journal of Neurotrauma, 19(4), 415–425.

    Article  PubMed  Google Scholar 

  • Kotapka, M. J., Graham, D. I., Adams, J. H., & Gennarelli, T. A. (1992). Hippocampal pathology in fatal non-missile human head injury. Acta Neuropathologica, 83(5), 530–534.

    Article  PubMed  Google Scholar 

  • Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J., Sweeney, J. A., & Little, D. M. (2007). White matter integrity and cognition in chronic traumatic brain injury: A diffusion tensor ­imaging study. Brain: A Journal of Neurology, 130(10), 2508–2519.

    Article  Google Scholar 

  • Kreipke, C. W., Rafols, J. A., Reynolds, C. A., Schafer, S., Marinica, A., Bedford, C., et al. (2011). Clazosentan, a novel endothelin A antagonist, improves cerebral blood flow and behavior after traumatic brain injury. Neurological Research, 33(2), 208–213.

    Article  PubMed  Google Scholar 

  • Lah, S., Epps, A., Levick, W., & Parry, L. (2011). Implicit and explicit memory outcome in children who have sustained severe traumatic brain injury: Impact of age at injury (preliminary findings). Brain Injury: [BI], 25(1), 44–52..

    Article  Google Scholar 

  • Laurer, H. L., Bareyre, F. M., Lee, V. M., Trojanowski, J. Q., Longhi, L., Hoover, R., et al. (2001). Mild head injury increasing the brain’s vulnerability to a second concussive impact. Journal of NeuroSurgery, 95(5), 859–870.

    Article  PubMed  Google Scholar 

  • Lee, D. J., Gurkoff, G. G., Izadi, A., Berman, R. F., Ekstrom, A. D., Muizelaar, J. P., et al. (2013). Medial septal nucleus theta frequency deep brain stimulation improves spatial working ­memory after traumatic brain injury. Journal of Neurotrauma, 30(2), 131–139.

    Article  PubMed  Google Scholar 

  • Lehnung, M., Leplow, B., Ekroll, V., Benz, B., Ritz, A., Mehdorn, M., et al. (2003). Recovery of spatial memory and persistence of spatial orientation deficits after traumatic brain injury ­during childhood. Brain Injury, 17(10), 855–869.

    Article  PubMed  Google Scholar 

  • Levin, H. S. (2003). Neuroplasticity following non-penetrating traumatic brain injury. Brain ­Injury, 17(8), 665–674.

    Article  PubMed  Google Scholar 

  • Levin, H. S., Fletcher, J. M., Kusnerik, L., Kufera, J. A., Lilly, M. A., Duffy, F. F., et al. (1996). Semantic memory following pediatric head injury: Relationship to age, severity of injury, and MRI. Cortex, 32(3), 461–478.

    Article  PubMed  Google Scholar 

  • Lifshitz, J., Kelley, B. J., & Povlishock, J. T. (2007). Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. Journal of Neuropathology and Experimental Neurology, 66(3), 218–229.

    Article  PubMed  Google Scholar 

  • Lighthall, J. W., Dixon, C. E., & Anderson, T. E. (1989). Experimental models of brain injury. Journal of Neurotrauma, 6(2), 83–97.

    Article  PubMed  Google Scholar 

  • Lima, F. D., Souza, M. A., Furian, A. F., Rambo, L. M., Ribeiro, L. R., Martignoni, F. V., et al. (2008). Na+, K+-ATPase activity impairment after experimental traumatic brain injury: ­Relationship to spatial learning deficits and oxidative stress. Behavioural Brain Research, 193(2), 306–310.

    Article  PubMed  Google Scholar 

  • Lindgren, S., & Rinder, L. (1965). Experimental studies in head injury. I. Some factors influencing results of model experiments. Biophysik, 2(5), 320–329.

    PubMed  Google Scholar 

  • Lindgren, S., & Rinder, L. (1966). Experimental studies in head injury. II. Pressure propagation in “percussion concussion”. Biophysik, 3(2), 174–180.

    Article  PubMed  Google Scholar 

  • Lindner, M. D., Plone, M. A., Cain, C. K., Frydel, B., Francis, J. M., Emerich, D. F., et al. (1998). Dissociable long-term cognitive deficits after frontal versus sensorimotor cortical contusions. Journal of Neurotrauma, 15(3), 199–216..

    Article  PubMed  Google Scholar 

  • Longhi, L., Saatman, K. E., Fujimoto, S., Raghupathi, R., Meaney, D. F., Davis, J., et al. (2005). Temporal window of vulnerability to repetitive experimental concussive brain injury.­ Neurosurgery, 56(2), 364–374; discussion 364–374.

    Article  PubMed  Google Scholar 

  • Lowenstein, D. H., Thomas, M. J., Smith, D. H., & McIntosh, T. K. (1992). Selective vulnerability of dentate hilar neurons following traumatic brain injury: A potential mechanistic link between head trauma and disorders of the hippocampus. The Journal of Neuroscience, 12(12), 4846–4853.

    PubMed  Google Scholar 

  • Lyeth, B. G., Dixon, C. E., Jenkins, L. W., Hamm, R. J., Alberico, A., Young, H. F., et al. (1988). Effects of scopolamine treatment on long-term behavioral deficits following concussive brain injury to the rat. Brain Research, 452(1–2), 39–48.

    Article  PubMed  Google Scholar 

  • Lyeth, B. G., Jenkins, L. W., Hamm, R. J., Dixon, C. E., Phillips, L. L., Clifton, G. L., et al. (1990). Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Research, 526(2), 249–258.

    Article  PubMed  Google Scholar 

  • Lyeth, B. G., Gong, Q. Z., Shields, S., Muizelaar, J. P., & Berman, R. F. (2001). Group I metabotropic glutamate antagonist reduces acute neuronal degeneration and behavioral deficits after traumatic brain injury in rats. Experimental Neurology, 169(1), 191–199.

    Article  PubMed  Google Scholar 

  • Maas, A. I., Stocchetti, N., & Bullock, R. (2008). Moderate and severe traumatic brain injury in adults. Lancet Neurology, 7(8), 728–741.

    Article  PubMed  Google Scholar 

  • Maegele, M., Lippert-Gruener, M., Ester-Bode, T., Sauerland, S., Schafer, U., Molcany, M., et al. (2005). Reversal of neuromotor and cognitive dysfunction in an enriched environment ­combined with multimodal early onset stimulation after traumatic brain injury in rats. Journal of Neurotrauma, 22(7), 772–782.

    Article  PubMed  Google Scholar 

  • Manns, J. R., Hopkins, R. O., & Squire, L. R. (2003). Semantic memory and the human hippocampus. Neuron, 38(1), 127–133.

    Article  PubMed  Google Scholar 

  • Marmarou, A., Foda, M. A., van den Brink, W., Campbell, J., Kita, H., & Demetriadou, K. (1994). A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. Journal of NeuroSurgery, 80(2), 291–300.

    Article  PubMed  Google Scholar 

  • Marmarou, C. R., Walker, S. A., Davis, C. L., & Povlishock, J. T. (2005). Quantitative analysis of the relationship between intra- axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury. Journal of Neurotrauma, 22(10), 1066–1080.

    Article  PubMed  Google Scholar 

  • Marquez de la Plata, C. D., Garces, J., Shokri Kojori, E., Grinnan, J., Krishnan, K., Pidikiti, R., et al. (2011). Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Archives of Neurology, 68(1), 74–84.

    Article  PubMed Central  PubMed  Google Scholar 

  • Matser, J. T., Kessels, A. G., Jordan, B. D., Lezak, M. D., & Troost, J. (1998). Chronic traumatic brain injury in professional soccer players. Neurology, 51(3), 791–796.

    Article  PubMed  Google Scholar 

  • Maughan, P. H., Scholten, K. J., & Schmidt, R. H. (2000). Recovery of water maze performance in aged versus young rats after brain injury with the impact acceleration model. Journal of Neurotrauma, 17(12), 1141–1153.

    Article  PubMed  Google Scholar 

  • Mayer, C. L., Huber, B. R., & Peskind, E. (2013). Traumatic brain injury, neuroinflammation, and post-traumatic headaches. Headache, 53(9), 1523–1530.

    PubMed Central  PubMed  Google Scholar 

  • Mazzini, L., Cossa, F. M., Angelino, E., Campini, R., Pastore, I., & Monaco, F. (2003). Posttraumatic epilepsy: Neuroradiologic and neuropsychological assessment of long-term outcome. Epilepsia, 44(4), 569–574.

    Article  PubMed  Google Scholar 

  • McAllister, T. W., Flashman, L. A., Sparling, M. B., & Saykin, A. J. (2004). Working memory deficits after traumatic brain injury: Catecholaminergic mechanisms and prospects for treatment—a review. Brain Injury, 18(4), 331–350.

    Article  PubMed  Google Scholar 

  • McIntosh, T. K., Vink, R., Noble, L., Yamakami, I., Fernyak, S., Soares, H., et al. (1989). ­Traumatic brain injury in the rat: Characterization of a lateral fluid-percussion model. Neuroscience, 28(1), 233–244.

    Article  PubMed  Google Scholar 

  • McKee, A. C., Cantu, R. C., Nowinski, C. J., Hedley-Whyte, E. T., Gavett, B. E., Budson, A. E., et al. (2009). Chronic traumatic encephalopathy in athletes: Progressive tauopathy after repetitive head injury. Journal of Neuropathology and Experimental Neurology, 68(7), 709–735.

    Article  PubMed Central  PubMed  Google Scholar 

  • McWilliams, J., & Schmitter-Edgecombe, M. (2008). Semantic memory organization during the early stage of recovery from traumatic brain injury. Brain Injury, 22(3), 243–253.

    Article  PubMed  Google Scholar 

  • Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47–60.

    Article  PubMed  Google Scholar 

  • Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.

    Article  PubMed  Google Scholar 

  • Morris, R. G., Schenk, F., Tweedie, F., & Jarrard, L. E. (1990). Ibotenate lesions of hippocampus and/or subiculum: Dissociating components of allocentric spatial learning. The European Journal of Neuroscience, 2(12), 1016–1028.

    Article  PubMed  Google Scholar 

  • Morris, A. M., Churchwell, J. C., Kesner, R. P., & Gilbert, P. E. (2012). Selective lesions of the dentate gyrus produce disruptions in place learning for adjacent spatial locations. Neurobiology of Learning and Memory, 97(3), 326–331.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nadel, L. (1991). The hippocampus and space revisited. Hippocampus, 1(3), 221–229.

    Article  PubMed  Google Scholar 

  • Ng, K., Mikulis, D. J., Glazer, J., Kabani, N., Till, C., Greenberg, G., et al. (2008). Magnetic ­resonance imaging evidence of progression of subacute brain atrophy in moderate to severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl), ­S35–44.

    Article  PubMed  Google Scholar 

  • Olton, D. S., & Papas, B. C. (1979). Spatial memory and hippocampal function. Neuropsychologia, 17(6), 669–682.

    Article  PubMed  Google Scholar 

  • Olton, D. S., & Samuelson, R. J. (1976). Remembrance of places passed: Spatial memory in rats. Journal of Experimental Psychology: Animal Behavior Processes, 2, 97–116.

    Google Scholar 

  • Omalu, B. I., DeKosky, S. T., Minster, R. L., Kamboh, M. I., Hamilton, R. L., & Wecht, C. H. (2005). Chronic traumatic encephalopathy in a National Football League player. Neurosurgery, 57(1), 128–134; discussion 128–134.

    Article  PubMed  Google Scholar 

  • Omalu, B., Bailes, J., Hamilton, R. L., Kamboh, M. I., Hammers, J., Case, M., et al. (2011). Emerging histomorphologic phenotypes of chronic traumatic encephalopathy in American athletes. Neurosurgery, 69(1), 173–183. Discussion 183.

    Article  PubMed  Google Scholar 

  • Peruzzaro, S. T., Gallagher, J., Dunkerson, J., Fluharty, S., Mudd, D., Hoane, M. R., et al. (2013). The impact of enriched environment and transplantation of murine cortical embryonic stem cells on recovery from controlled cortical contusion injury. Restorative Neurology and Neuroscience, 31(4), 431–450.

    PubMed  Google Scholar 

  • Prins, M. L., & Hovda, D. A. (1998). Traumatic brain injury in the developing rat: Effects of maturation on Morris water maze acquisition. Journal of Neurotrauma, 15(10), 799–811.

    Article  PubMed  Google Scholar 

  • Prins, M. L., Hales, A., Reger, M., Giza, C. C., & Hovda, D. A. (2010). Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Developmental Neuroscience, 32(5–6), 510–518.

    PubMed Central  PubMed  Google Scholar 

  • Prins, M. L., Alexander, D., Giza, C. C., & Hovda, D. A. (2013). Repeated mild traumatic brain injury: Mechanisms of cerebral vulnerability. Journal of Neurotrauma, 30(1), 30–38.

    Article  PubMed Central  PubMed  Google Scholar 

  • Reger, M. L., Hovda, D. A., & Giza, C. C. (2009). Ontogeny of Rat Recognition Memory measured by the novel object recognition task. Developmental Psychobiology, 51(8), 672–678.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rinder, L. (1969). “Concussive response” and intracranial pressure changes at sudden extradural fluid volume input in rabbits. Acta Physiologica Scandinavica, 76(3), 352–360.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79(1), 1–48.

    Article  PubMed  Google Scholar 

  • Saatman, K. E., Duhaime, A. C., Bullock, R., Maas, A. I., Valadka, A., Manley, G. T., et al. (2008). Classification of traumatic brain injury for targeted therapies. Journal of Neurotrauma, 25(7), 719–738.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanders, M. J., Dietrich, W. D., & Green, E. J. (1999). Cognitive function following traumatic brain injury: Effects of injury severity and recovery period in a parasagittal fluid-percussive injury model. Journal of Neurotrauma, 16(10), 915–925.

    Article  PubMed  Google Scholar 

  • Sanders, M. J., Sick, T. J., Perez-Pinzon, M. A., Dietrich, W. D., & Green, E. J. (2000). Chronic failure in the maintenance of long-term potentiation following fluid percussion injury in the rat. Brain Research, 861(1), 69–76.

    Article  PubMed  Google Scholar 

  • Sanders, M. J., Dietrich, W. D., & Green, E. J. (2001). Behavioral, electrophysiological, and ­histopathological consequences of mild fluid-percussion injury in the rat. Brain Research, 904(1), 141–144.

    Article  PubMed  Google Scholar 

  • Scafidi, S., Racz, J., Hazelton, J., McKenna, M. C., & Fiskum, G. (2010). Neuroprotection by acetyl-L-carnitine after traumatic injury to the immature rat brain. Developmental Neuroscience, 32(5–6), 480–487.

    PubMed  Google Scholar 

  • Scheid, R., Walther, K., Guthke, T., Preul, C., & von Cramon, D. Y. (2006). Cognitive sequelae of diffuse axonal injury. Archives of Neurology, 63(3), 418–424.

    Article  PubMed  Google Scholar 

  • Shahlaie, K., Lyeth, B. G., Gurkoff, G. G., Muizelaar, J. P., & Berman, R. F. (2010). Neuroprotective effects of selective N-type VGCC blockade on stretch-injury-induced calcium dynamics in cortical neurons. Journal of Neurotrauma, 27(1), 175–187.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shahlaie, K., Gurkoff, G. G., Lyeth, B. G., Muizelaar, J. P., & Berman, R. F. (2013). Neuroprotective effects of SNX-185 in an in vitro model of TBI with a second insult. Restorative Neurology and Neuroscience, 31(2), 141–153.

    PubMed  Google Scholar 

  • Shenaq, M., Kassem, H., Peng, C., Schafer, S., Ding, J. Y., Fredrickson, V., et al. (2012). Neuronal damage and functional deficits are ameliorated by inhibition of aquaporin and HIF1alpha after traumatic brain injury (TBI). Journal of the Neurological Sciences, 323(1–2), 134–140.

    Article  PubMed  Google Scholar 

  • Siopi, E., Llufriu-Daben, G., Fanucchi, F., Plotkine, M., Marchand-Leroux, C., & Jafarian-Tehrani, M. (2012). Evaluation of late cognitive impairment and anxiety states following traumatic brain injury in mice: The effect of minocycline. Neuroscience Letters, 511(2), 110–115.

    Article  PubMed  Google Scholar 

  • Skelton, R. W., Bukach, C. M., Laurance, H. E., Thomas, K. G., & Jacobs, J. W. (2000). Humans with traumatic brain injuries show place-learning deficits in computer-generated virtual space. Journal of Clinical and Experimental Neuropsychology, 22(2), 157–175.

    Article  PubMed  Google Scholar 

  • Smith, D. H., Okiyama, K., Thomas, M. J., Claussen, B., & McIntosh, T. K. (1991). Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. ­Journal of Neurotrauma, 8(4), 259–269..

    Article  PubMed  Google Scholar 

  • Smith, D. H., Soares, H. D., Pierce, J. S., Perlman, K. G., Saatman, K. E., Meaney, D. F., et al. (1995). A model of parasagittal controlled cortical impact in the mouse: Cognitive and histopathologic effects. Journal of Neurotrauma, 12(2), 169–178.

    Article  PubMed  Google Scholar 

  • Smith, D. H., Chen, X. H., Pierce, J. E., Wolf, J. A., Trojanowski, J. Q., Graham, D. I., et al. (1997). Progressive atrophy and neuron death for one year following brain trauma in the rat. Journal of Neurotrauma, 14(10), 715–727..

    Article  PubMed  Google Scholar 

  • Smith, D. H., Meaney, D. F., & Shull, W. H. (2003). Diffuse axonal injury in head trauma. The Journal of Head Trauma Rehabilitation, 18(4), 307–316.

    Article  PubMed  Google Scholar 

  • Soblosky, J. S., Tabor, S. L., Matthews, M. A., Davidson, J. F., Chorney, D. A., & Carey, M. E. (1996). Reference memory and allocentric spatial localization deficits after unilateral cortical brain injury in the rat. Behavioural Brain Research, 80(1–2), 185–194.

    Article  PubMed  Google Scholar 

  • Spitz, G., Maller, J. J., O’Sullivan, R., & Ponsford, J. L. (2013). White matter integrity following traumatic brain injury: The association with severity of injury and cognitive functioning. Brain Topography, 26(4), 648–660.

    Article  PubMed  Google Scholar 

  • Squire, L. R., & Wixted, J. T. (2011). The cognitive neuroscience of human memory since H.M. Annual Review of Neuroscience, 34, 259–288.

    Article  PubMed Central  PubMed  Google Scholar 

  • Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253(5026), 1380–1386.

    Article  PubMed  Google Scholar 

  • Stalhammar, D., Galinat, B. J., Allen, A. M., Becker, D. P., Stonnington, H. H., & Hayes, R. L. (1987). A new model of concussive brain injury in the cat produced by extradural fluid volume loading: I. Biomechanical properties. Brain Injury, 1(1), 73–91.

    Article  PubMed  Google Scholar 

  • Strangman, G. E., O’Neil-Pirozzi, T. M., Supelana, C., Goldstein, R., Katz, D. I., & Glenn, M. B. (2010). Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury. Frontiers in Human Neuroscience, 4, 182.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sullivan, H. G., Martinez, J., Becker, D. P., Miller, J. D., Griffith, R., & Wist, A. O. (1976). Fluid-percussion model of mechanical brain injury in the cat. Journal of NeuroSurgery, 45(5), 521–534.

    Article  PubMed  Google Scholar 

  • Sutherland, R. J., Kolb, B., & Whishaw, I. Q. (1982). Spatial mapping: Definitive disruption by hippocampal or medial frontal cortical damage in the rat. Neuroscience Letters, 31(3), 271–276.

    Article  PubMed  Google Scholar 

  • Swan, A. A., Chandrashekar, R., Beare, J., & Hoane, M. R. (2011). Preclinical efficacy testing in middle-aged rats: Nicotinamide, a novel neuroprotectant, demonstrates diminished preclinical efficacy after controlled cortical impact. Journal of Neurotrauma, 28(3), 431–440.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tavazzi, B., Signoretti, S., Lazzarino, G., Amorini, A. M., Delfini, R., Cimatti, M., et al. (2005). Cerebral oxidative stress and depression of energy metabolism correlate with severity of ­diffuse brain injury in rats. Neurosurgery, 56(3), 582–589; discussion 582–589.

    Article  PubMed  Google Scholar 

  • Theriault, M., De Beaumont, L., Tremblay, S., Lassonde, M., & Jolicoeur, P. (2011). Cumulative effects of concussions in athletes revealed by electrophysiological abnormalities on visual working memory. Journal of Clinical and Experimental Neuropsychology, 33(1), 30–41.

    Article  PubMed  Google Scholar 

  • Thurman, D. J., Alverson, C., Dunn, K. A., Guerrero, J., & Sniezek, J. E. (1999). Traumatic brain injury in the United States: A public health perspective. The Journal of Head Trauma Rehabilitation, 14(6), 602–615..

    Article  PubMed  Google Scholar 

  • Tulving, E. (1983). Elements of episodic memory. New York: Oxford University Press.

    Google Scholar 

  • Vanderploeg, R. D., Crowell, T. A., & Curtiss, G. (2001). Verbal learning and memory deficits in traumatic brain injury: Encoding, consolidation, and retrieval. Journal of Clinical and Experimental Neuropsychology, 23(2), 185–195.

    Article  PubMed  Google Scholar 

  • Vink, R., Mullins, P. G., Temple, M. D., Bao, W., & Faden, A. I. (2001). Small shifts in craniotomy position in the lateral fluid percussion injury model are associated with differential lesion ­development. Journal of Neurotrauma, 18(8), 839–847.

    Article  PubMed  Google Scholar 

  • Vonder Haar, C., Friend, D. M., Mudd, D. B., & Smith, J. S. (2013). Successive bilateral frontal controlled cortical impact injuries show behavioral savings. Behavioural Brain Research, 240, 153–159.

    Article  PubMed  Google Scholar 

  • Wakade, C., Sukumari-Ramesh, S., Laird, M. D., Dhandapani, K. M., & Vender, J. R. (2010). Delayed reduction in hippocampal postsynaptic density protein-95 expression temporally correlates with cognitive dysfunction following controlled cortical impact in mice. Journal of NeuroSurgery, 113(6), 1195–1201.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, T., Chou, D. Y., Ding, J. Y., Fredrickson, V., Peng, C., Schafer, S., et al. (2013a). Reduction of brain edema and expression of aquaporins with acute ethanol treatment after traumatic brain injury. Journal of NeuroSurgery, 118(2), 390–396.

    Article  PubMed  Google Scholar 

  • Wang, T., Van, K. C., Gavitt, B. J., Grayson, J. K., Lu, Y. C., Lyeth, B. G., et al. (2013b). Effect of fish oil supplementation in a rat model of multiple mild traumatic brain injuries. Restorative Neurology Neuroscience, 31(5), 647–659.

    PubMed  Google Scholar 

  • Warner, M. A., Youn, T. S., Davis, T., Chandra, A., Marquez de la, Plata, C., Moore, C., et al. (2010). Regionally selective atrophy after traumatic axonal injury. Archives of neurology, 67(11), 1336–1344..

    Google Scholar 

  • Whalen, M. J., Carlos, T. M., Dixon, C. E., Schiding, J. K., Clark, R. S., Baum, E., et al. (1999). Effect of traumatic brain injury in mice deficient in intercellular adhesion molecule-1: Assessment of histopathologic and functional outcome. Journal of Neurotrauma, 16(4), 299–309..

    Article  PubMed  Google Scholar 

  • Xiong, Y., Mahmood, A., & Chopp, M. (2013). Animal models of traumatic brain injury. Nature Reviews. Neuroscience, 14(2), 128–142.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoshino, A., Hovda, D. A., Kawamata, T., Katayama, Y., & Becker, D. P. (1991). Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: Evidence of a ­­hyper- and subsequent hypometabolic state. Brain Research, 561(1), 106–119.

    Article  PubMed  Google Scholar 

  • Zakaria, N., Kallakuri, S., Bandaru, S., & Cavanaugh, J. M. (2012). Temporal assessment of traumatic axonal injury in the rat corpus callosum and optic chiasm. Brain Research, 1467, 81–90.

    Article  PubMed  Google Scholar 

  • Zanier, E. R., Lee, S. M., Vespa, P. M., Giza, C. C., & Hovda, D. A. (2003). Increased hippocampal CA3 vulnerability to low-level kainic acid following lateral fluid percussion injury. Journal of Neurotrauma, 20(5), 409–420.

    Article  PubMed  Google Scholar 

  • Zohar, O., Schreiber, S., Getslev, V., Schwartz, J. P., Mullins, P. G., & Pick, C. G. (2003). ­Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience, 118(4), 949–955.

    Article  PubMed  Google Scholar 

  • Zohar, O., Rubovitch, V., Milman, A., Schreiber, S., & Pick, C. G. (2011). Behavioral ­consequences of minimal traumatic brain injury in mice. Acta Neurobiologiae Experimentalis, 71(1), 36–45.

    PubMed  Google Scholar 

  • Zola, S. M., & Squire, L. R. (2001). Relationship between magnitude of damage to the hippocampus and impaired recognition memory in monkeys. Hippocampus, 11(2), 92–98.

    Article  PubMed  Google Scholar 

  • Zwienenberg, M., Gong, Q. Z., Berman, R. F., Muizelaar, J. P., & Lyeth, B. G. (2001). The effect of groups II and III metabotropic glutamate receptor activation on neuronal injury in a rodent model of traumatic brain injury. Neurosurgery, 48(5), 1119–1126. Discussion 1126–1117.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Berman PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berman, R., Lyeth, B., Shahlaie, K., Gurkoff, G. (2016). Memory Disruption Following Traumatic Brain Injury. In: Jackson, P., Chiba, A., Berman, R., Ragozzino, M. (eds) The Neurobiological Basis of Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-15759-7_13

Download citation

Publish with us

Policies and ethics