Skip to main content
Log in

White Matter Integrity Following Traumatic Brain Injury: The Association with Severity of Injury and Cognitive Functioning

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) frequently results in impairments of memory, speed of information processing, and executive functions that may persist over many years. Diffuse axonal injury is one of the key pathologies following TBI, causing cognitive impairments due to the disruption of cortical white matter pathways. The current study examined the association between injury severity, cognition, and fractional anisotropy (FA) following TBI. Two diffusion tensor imaging techniques—region-of-interest tractography and tract-based spatial statistics—were used to assess the FA of white matter tracts. This study examined the comparability of these two approaches as they relate to injury severity and cognitive performance. Sixty-eight participants with mild-to-severe TBI, and 25 healthy controls, underwent diffusion tensor imaging analysis. A subsample of 36 individuals with TBI also completed cognitive assessment. Results showed reduction in FA values for those with moderate and severe TBI, compared to controls and individuals with mild TBI. Although FA tended to be lower for individuals with mild TBI no significant differences were found compared to controls. Information processing speed and executive abilities were most strongly associated with the FA of white matter tracts. The results highlight similarities and differences between region-of-interest tractography and tract-based spatial statistics approaches, and suggest that they may be used together to explore pathology following TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggleton JP (2008) Understanding anterograde amnesia: disconnections and hidden lesions. Q J Exp Psychol 61:1441–1471

    Article  Google Scholar 

  • Aggleton JP, Brown MW (1999) Episodic memory, amnesia and the hippocampal-anterior thalamic axis. Behav Brain Sci 22:425–444

    PubMed  CAS  Google Scholar 

  • Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME (2002) Diffusion tensor mr imaging in diffuse axonal injury. Am J Neuroradiol 23:794–802

    PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  • Baddeley A, Emslie H, Nimmo-Smith I (1994) Doors and people. Thames Valley Test Company, Bury St Edmunds

    Google Scholar 

  • Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344

    Article  PubMed  CAS  Google Scholar 

  • Basser PJ, Mattiello J, Lebihan D (1994) Mr diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  PubMed  CAS  Google Scholar 

  • Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757

    Article  PubMed  CAS  Google Scholar 

  • Benson RR, Meda SA, Vasudevan S, Kou ZF, Govindarajan KA, Hanks RA et al (2007) Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury. J Neurotrauma 24:446–459

    Article  PubMed  Google Scholar 

  • Benton AL, Hamsher K, Rey GJ (1994) Multilingual aphasia examination, 3rd edn. AJA Associates, Iowa Cita

    Google Scholar 

  • Bigler ED (2001) The lesion(s) in traumatic brain injury: implications for clinical neuropsychology. Arch Clin Neuropsychol 16:95–131

    PubMed  CAS  Google Scholar 

  • Bigler ED, McCauley SR, Wu TC, Yallampalli R, Shah S, MacLeod M et al (2010) The temporal stem in traumatic brain injury: preliminary findings. Brain Imaging Behav 4:270–282

    Article  PubMed  Google Scholar 

  • Bookstein FL (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14:1454–1462

    Article  PubMed  CAS  Google Scholar 

  • Bucur B, Madden DJ, Spaniol J, Provenzale JM, Cabeza R, White LE et al (2008) Age-related slowing of memory retrieval: contributions of perceptual speed and cerebral white matter integrity. Neurobiol Aging 29:1070–1079

    Article  PubMed  Google Scholar 

  • Buki A, Povlishock JT (2006) All roads lead to disconnection? Traumatic axonal injury revisited. Acta Neurochir 148:181–193

    Article  PubMed  CAS  Google Scholar 

  • Burgess PW, Shallice T (1997) The Hayling and Brixton tests. Thames Valley Test Company, Bury St Edmunds

    Google Scholar 

  • Coughhlan AK, Oddy M, Crawford JR (2007) Birt memory and information processing battery London. Brain injury rehabilitation trust, Wakefield

    Google Scholar 

  • Davatzikos C (2004) Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage 23:17–20

    Article  PubMed  Google Scholar 

  • Dikmen SS, Machamer JE, Winn HR, Temkin NR (1995) Neuropsychological outcome at 1-year post head injury. Neuropsychology 9:80–90

    Article  Google Scholar 

  • Draper K, Ponsford J (2008) Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology 22:618–625

    Article  PubMed  Google Scholar 

  • Fling BW, Chapekis M, Reuter-Lorenz PA, Anguera J, Bo J, Langan J et al (2011) Age differences in callosal contributions to cognitive processes. Neuropsychologia 49:2564–2569

    Article  PubMed  Google Scholar 

  • Foxe JJ, Simpson GV (2002) Flow of activation from v1 to frontal cortex in humans: a framework for defining “early” visual processing. Exp Brain Res 142:139–150

    Article  PubMed  Google Scholar 

  • Geary EK, Kraus MF, Pliskin NH, Little DM (2010) Verbal learning differences in chronic mild traumatic brain injury. J Int Neuropsychol Soc 16:506–516

    Article  PubMed  Google Scholar 

  • Gennarelli TA, Thibault LE, Graham DI (1998) Diffuse axonal injury: an important form of traumatic brain damage. Neuroscientist 4:202–215

    Article  Google Scholar 

  • Huisman TAGM, Sorensen AG, Hergan K, Gonzalez RG, Schaefer PW (2003) Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr 27:5–11

    Article  PubMed  Google Scholar 

  • Jiang H, van Zijl PCM, Kim J, Pearlson GD, Mori S (2006) Dtistudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 81:106–116

    Article  PubMed  Google Scholar 

  • Johansen-Berg H, Behrens TEJ, Sillery E, Ciccarelli O, Thompson AJ, Smith SM et al (2005) Functional–anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex 15:31–39

    Article  PubMed  Google Scholar 

  • Jones DK, Griffin LD, Alexander DC, Catani M, Horsfield MA, Howard R et al (2002) Spatial normalization and averaging of diffusion tensor MRI data sets. Neuroimage 17:592–617

    Article  PubMed  Google Scholar 

  • Jones DK, Symms MR, Cercignani M, Howard RJ (2005) The effect of filter size on VBM analyses of DT-MRI data. Neuroimage 26:546–554

    Article  PubMed  Google Scholar 

  • Kennedy MR, Wozniak JR, Muetzel RL, Mueller BA, Chiou HH, Pantekoek K et al (2009) White matter and neurocognitive changes in adults with chronic traumatic brain injury. J Int Neuropsychol Soc 15:130–136

    Article  PubMed  Google Scholar 

  • Kinnunen KM, Greenwood R, Powell JH, Leech R, Hawkins PC, Bonnelle V et al (2011) White matter damage and cognitive impairment after traumatic brain injury. Brain 134:449–463

    Article  PubMed  Google Scholar 

  • Konrad A, Vucurevic G, Musso F, Stoeter P, Winterer G (2009) Correlation of brain white matter diffusion anisotropy and mean diffusivity with reaction time in an oddball task. Neuropsychobiology 60:55–66

    Article  PubMed  Google Scholar 

  • Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM (2007) White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain 130:2508–2519

    Article  PubMed  Google Scholar 

  • Kumar R, Husain M, Gupta RK, Hasan KM, Haris M, Agarwal AK et al (2009) Serial changes in the white matter diffusion tensor imaging metrics in moderate traumatic brain injury and correlation with neuro-cognitive function. J Neurotrauma 26:481–495

    Article  PubMed  Google Scholar 

  • Levin HS (2003) Neuroplasticity following non-penetrating traumatic brain injury. Brain Inj 17:665–674

    Article  PubMed  Google Scholar 

  • Levin HS, Wilde E, Troyanskaya M, Petersen NJ, Scheibel R, Newsome M et al (2010) Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. J Neurotrauma 27:683–694

    Article  PubMed  Google Scholar 

  • Lipton ML, Gellella E, Lo C, Gold T, Ardekani BA, Shifteh K et al (2008) Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. J Neurotrauma 25:1335–1342

    Article  PubMed  Google Scholar 

  • Little DM, Kraus MF, Joseph J, Geary EK, Susmaras T, Zhou XJ et al (2010) Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology 74:558–564

    Article  PubMed  CAS  Google Scholar 

  • Lo C, Shifteh K, Gold T, Bello JA, Lipton ML (2009) Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. J Comput Assist Tomogr 33:293–297

    Article  PubMed  Google Scholar 

  • Mayer AR, Ling J, Mannell MV, Gasparovic C, Phillips JP, Doezema D et al (2010) A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology 74:643–650

    Article  PubMed  CAS  Google Scholar 

  • Messé A, Caplain S, Paradot G, Garrigue D, Mineo J-F, Ares GS et al (2011) Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum Brain Mapp 32:999–1011

    Article  PubMed  Google Scholar 

  • Metzler-Baddeley C, Jones DK, Belaroussi B, Aggleton JP, O’Sullivan MJ (2011) Frontotemporal connections in episodic memory and aging: a diffusion MRI tractography study. J Neurosci 31:13236–13245

    Article  PubMed  CAS  Google Scholar 

  • Miles L, Grossman RI, Johnson G, Babb JS, Diller L, Inglese M (2008) Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj 22:115–122

    Article  PubMed  Google Scholar 

  • Mori S, van Zijl PCM (2002) Fiber tracking: principles and strategies: a technical review. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  • Mori S, Wakana S, Van Zijl PCM (2005) MRI atlas of human white matter. Elsevier, Amsterdam

    Google Scholar 

  • Nakayama N, Okumura A, Shinoda J, Yasokawa YT, Miwa K, Yoshimura SI et al (2006) Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. J Neurol Neurosurg Psychiatry 77:6

    Google Scholar 

  • Newcombe VFJ, Williams GB, Nortje J, Bradley PG, Harding SG, Smielewski P et al (2007) Analysis of acute traumatic axonal injury using diffusion tensor imaging. Br J Neurosurg 21:340–348

    Article  PubMed  CAS  Google Scholar 

  • Niogi SN, Mukherjee P, Ghajar J, Johnson C, Kolster RA, Sarkar R et al (2008a) Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3t diffusion tensor imaging study of mild traumatic brain injury. Am J Neuroradiol 29:967–973

    Article  PubMed  CAS  Google Scholar 

  • Niogi SN, Mukherjee P, Ghajar J, Johnson CE, Kolster R, Lee H et al (2008b) Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain 131:3209–3221

    Article  PubMed  Google Scholar 

  • Park H-J, Kubicki M, Shenton ME, Guimond A, McCarley RW, Maier SE et al (2003) Spatial normalization of diffusion tensor MRI using multiple channels. Neuroimage 20:1995–2009

    Article  PubMed  Google Scholar 

  • Ponsford J, Olver JH, Curran C (1995a) A profile of outcome: 2 years after traumatic brain injury. Brain Inj 9:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ponsford J, Olver JH, Ng K (1995b) Prediction of employment status 2 years after traumatic brain injury. Brain Inj 9:11–20

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT, Christman CW (1994) The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. US Government Printing Office, Washington, Dc

    Google Scholar 

  • Povlishock JT, Jenkins LW (1995) Are the pathobiological changes evoked by traumatic brain injury immediate and irreversible? Brain Pathol 5:415–426

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT, Katz DI (2005) Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil 20:76–94

    Article  PubMed  Google Scholar 

  • Reitan RM, Wolfson D (1988) The Halstead–Reitan neuropsychological test battery. Neuropsychology Press, Tucson

    Google Scholar 

  • Rugg-Gunn FJ, Symms MR, Barker GJ, Greenwood R, Duncan JS (2001) Diffusion imaging shows abnormalities after blunt head trauma when conventional magnetic resonance imaging normal. J Neurol Neurosurg Psychiatry 70:530–533

    Article  PubMed  CAS  Google Scholar 

  • Salmond CH, Menon DK, Chatfield DA, Williams GB, Pena A, Sahakian BJ et al (2006) Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. Neuroimage 29:117–124

    Article  PubMed  CAS  Google Scholar 

  • Scheid R, Preul C, Gruber O, Wiggins C, von Cramon DY (2003) Diffuse axonal injury associated with chronic traumatic brain injury: evidence from t2*-weighted gradient-echo imaging at 3 t. Am J Neuroradiol 24:1049–1056

    PubMed  Google Scholar 

  • Schretlen DJ, Shapiro AM (2003) A quantitative review of the effects of traumatic brain injury on cognitive functioning. Int Rev Psych 15:341–349

    Article  Google Scholar 

  • Shenton ME, Hamoda HM, Schneiderman JS, Bouix S, Paternak O, Rathi Y et al (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6:137–192

    Article  PubMed  CAS  Google Scholar 

  • Sidaros A, Engberg AW, Sidaros K, Liptrot MG, Herning M, Petersen P et al (2008) Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain 131:559–572

    Article  PubMed  Google Scholar 

  • Smith A (1973) Symbol digit modalities test. Western Psychological Services, Los Angeles

    Google Scholar 

  • Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83–98

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H et al (2004) Advances in functional and structural mr image analysis and implementation as fsl. Neuroimage 23:S208–S219

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  • Smith SM, Johansen-Berg H, Jenkinson M, Rueckert D, Nichols TE, Miller KL et al (2007) Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc 2:499–503

    Article  PubMed  Google Scholar 

  • Sugiyama K, Kondo T, Oouchida Y, Suzukamo Y, Higano S, Endo M et al (2009) Clinical utility of diffusion tensor imaging for evaluating patients with diffuse axonal injury and cognitive disorders in the chronic stage. J Neurotrauma 26:1879–1890

    Article  PubMed  Google Scholar 

  • Toth A, Kovacs N, Perlaki G, Orsi G, Aradi M, Komaromy H et al (2013) Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference? J Neurotrauma 30:2–10

    Article  PubMed  Google Scholar 

  • Turken U, Whitfield-Gabrieli S, Bammer R, Baldo JV, Dronkers NF et al (2008) Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage 42:1032–1044

    Article  PubMed  Google Scholar 

  • Wechsler D (1997) Wechsler memory scale, 3rd edn. The Psychological Corporation, San Antonio

    Google Scholar 

  • Wechsler D (2008) Wechsler adult intelligence scale, 4th edn. Pearson, San Antonio

    Google Scholar 

  • Xu J, Rasmussen IA, Lagopoulos J, Haberg A (2007) Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J Neurotrauma 24:753–765

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the staff of Healthcare Imaging MRI facility at the Epworth Hospital, Melbourne, Victoria.

Conflict of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gershon Spitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitz, G., Maller, J.J., O’Sullivan, R. et al. White Matter Integrity Following Traumatic Brain Injury: The Association with Severity of Injury and Cognitive Functioning. Brain Topogr 26, 648–660 (2013). https://doi.org/10.1007/s10548-013-0283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0283-0

Keywords

Navigation