Skip to main content

The Effects of Taurine Administration Against Inflammation in Heavily Exercised Skeletal Muscle of Rats

  • Conference paper
Taurine 9

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 803))

Abstract

Taurine protects against tissue damage in a variety of models that share inflammation as a common pathogenic feature. Heavy exercise has been shown to cause inflammation and oxidative stress and to damage muscle tissue. High taurine levels are present in skeletal muscle and may play a role as a cellular defense against free radical-mediated damage. The aim of this study was to determine whether taurine injected in the abdomen alters markers of inflammation and free radical damage after varying degrees of heavy exercise. The effect of intra-abdominal administration of taurine 1 h before heavy exercise was examined. On a daily basis for 10 consecutive days, a speed of 20 m/min for 20 min. Muscle damage was associated with an increase in IL-6 and CD68 of the skeletal muscle. The immunoreactivities for IL-6 and CD68 are shown increase in the 20 min heavy exercise group. The increase in IL-6 and CD68 was suppressed in the 20 min heavy exercise group that received an intra-abdominal injection of taurine. Data from this study show that exercise-induced muscle inflammation is reduced in SOL and EDL of rats treated with taurine prior to exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD68:

Cluster of differentiation 68

EDL:

Extensor digitorum longus

IHC:

Immunohistochemistry

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

SOL:

Soleus

Tau:

Taurine

TNF-α:

Tumor necrosis factor-α

References

  • Barua M, Liu Y, Quinn MR (2001) Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: decreased NF-kappaB activation and IkappaB kinase activity. J Immunol 167(4):2275–2281

    Article  CAS  PubMed  Google Scholar 

  • Best TM, Fiebig R, Corr DT, Brickson S, Ji L (1999) Free radical activity, antioxidant enzyme, and glutathione changes with muscle stretch injury in rabbits. J Appl Physiol (1985) 87(1):74–82

    CAS  Google Scholar 

  • Brickson S, Hollander J, Corr DT, Ji LL, Best TM (2001) Oxidant production and immune response after stretch injury in skeletal muscle. Med Sci Sports Exerc 33(12):2010–2015

    Article  CAS  PubMed  Google Scholar 

  • Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des 16(8):906–914

    Article  CAS  PubMed  Google Scholar 

  • Dort J, Leblanc N, Maltais-Giguere J, Liaset B, Cote CH, Jacques H (2013) Beneficial effects of cod protein on inflammatory cell accumulation in rat skeletal muscle after injury are driven by its high levels of arginine, glycine, taurine and lysine. PLoS One 8(10):e77274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon RE, Heller RF (1992) Taurine protection of lungs in hamster models of oxidant injury: a morphologic time study of paraquat and bleomycin treatment. Adv Exp Med Biol 315:319–328

    Article  CAS  PubMed  Google Scholar 

  • Hansen SH, Andersen ML, Birkedal H, Cornett C, Wibrand F (2006) The important role of taurine in oxidative metabolism. Adv Exp Med Biol 583:129–135

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Obara T, Kim BK, Baba A (1986) Regulation of taurine transport in rat skeletal muscle. J Neurochem 47(1):158–163

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen JG, Smith LH (1968) Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48(2):424–511

    CAS  PubMed  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232

    Article  CAS  PubMed  Google Scholar 

  • Kim BK, Baba A, Iwata H (1986) Taurine transport in chronically stimulated fast- and slow-twitch muscles of the rat. Jpn J Pharmacol 42(3):441–446

    Article  CAS  PubMed  Google Scholar 

  • Lapointe BM, Frenette J, Cote CH (2002) Lengthening contraction-induced inflammation is linked to secondary damage but devoid of neutrophil invasion. J Appl Physiol (1985) 92(5):1995–2004

    Article  Google Scholar 

  • Ma N, Ding X, Miwa T, Semba R (2003) Immunohistochemical localization of taurine in the rat stomach. Adv Exp Med Biol 526:229–236

    Article  CAS  PubMed  Google Scholar 

  • Meeson AP, Hawke TJ, Graham S, Jiang N, Elterman J, Hutcheson K, Dimaio JM, Gallardo TD, Garry DJ (2004) Cellular and molecular regulation of skeletal muscle side population cells. Stem Cells 22(7):1305–1320

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Matsuzaki Y, Ikegami T, Miyakawa S, Doy M, Tanaka N, Bouscarel B (2004) Optimal and effective oral dose of taurine to prolong exercise performance in rat. Amino Acids 27(3–4):291–298

    Article  CAS  PubMed  Google Scholar 

  • Moyes CD (2003) Controlling muscle mitochondrial content. J Exp Biol 206(Pt 24):4385–4391

    Article  CAS  PubMed  Google Scholar 

  • Nikolaidis MG, Mougios V (2004) Effects of exercise on the fatty-acid composition of blood and tissue lipids. Sports Med 34(15):1051–1076

    Article  PubMed  Google Scholar 

  • Nikolaidis MG, Petridou A, Mougios V (2006) Comparison of the phospholipid and triacylglycerol fatty acid profile of rat serum, skeletal muscle and heart. Physiol Res 55(3):259–265

    CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Wright CE, Gaull GE (1985) Taurine protection of lymphoblastoid cells from iron-ascorbate induced damage. Biochem Pharmacol 34(12):2205–2207

    Article  CAS  PubMed  Google Scholar 

  • Pilon G, Ruzzin J, Rioux LE, Lavigne C, White PJ, Froyland L, Jacques H, Bryl P, Beaulieu L, Marette A (2011) Differential effects of various fish proteins in altering body weight, adiposity, inflammatory status, and insulin sensitivity in high-fat-fed rats. Metabolism 60(8):1122–1130

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Leibach FH, Mahesh VB, Han H, Yang-Feng T, Blakely RD, Ganapathy V (1994) Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta. Biochem J 300(Pt 3):893–900

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rudkowska I, Marcotte B, Pilon G, Lavigne C, Marette A, Vohl MC (1995) Fish nutrients decrease expression levels of tumor necrosis factor-alpha in cultured human macrophages. Physiol Genomics 40(3):189–194

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Kruger MJ, Smith RM, Myburgh KH (2008) The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med 38(11):947–969

    Article  PubMed  Google Scholar 

  • Sugiura H, Okita S, Kato T, Naka T, Kawanishi S, Ohnishi S, Oshida Y, Ma N (2013) Protection by taurine against INOS-dependent DNA damage in heavily exercised skeletal muscle by inhibition of the NF-kappaB signaling pathway. Adv Exp Med Biol 775:237–246

    Article  CAS  PubMed  Google Scholar 

  • Thurston JH, Hauhart RE, Dirgo JA (1980) Taurine: a role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci 26(19):1561–1568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ma M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kato, T., Okita, S., Wang, S., Tsunekawa, M., Ma, N. (2015). The Effects of Taurine Administration Against Inflammation in Heavily Exercised Skeletal Muscle of Rats. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_62

Download citation

Publish with us

Policies and ethics