Skip to main content

The Important Role of Taurine in Oxidative Metabolism

  • Conference paper
Taurine 6

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 583))

1. Abstract

Several studies have demonstrated that especially high taurine concentrations are found in tissues with high oxidative activity, whereas lower concentrations are found in tissues with primary glycolytic activity. Based on such observations, we have studied if taurine is involved in mitochondrial oxidation. Several pieces of information have demonstrated taurine localisation in the mitochondria. We have developed a general biochemical model with preliminary data demonstrating the important role of taurine as mitochondrial matrix buffer for stabilising the mitochondrial oxidation. The model can have far-reaching perspectives, e.g., explaining the often-suggested anti-oxidative role of taurine, in contrast to the fact that taurine is very difficult to chemically oxidise. By stabilising the environment in the mitochondria, taurine will prevent leakage of the reactive compounds formed in the reactive mitochondrial environment and thus indirectly act as an antioxidant. Consequently, the model represents a new concept for understanding mitochondrial dysfunction by emphasising the importance of taurine for providing sufficient pH buffering in the mitochondrial matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  • Aristoy, M. C. and Toldrá, F., 1998, Concentration of free amino acids and dipeptides in porcine skeletal muscles with different oxidative patterns, Meat Sci. 50:327–332.

    Article  CAS  Google Scholar 

  • Bergmeyer, H. U., 1974, Methods of Enzymatic Analysis, 2nd edn, vol. 2, Verlag Chemie, Weinheim, pp. 624–627.

    Google Scholar 

  • Beynon, R. J. and Easterby, J. S., 1996, Buffer Solutions, IRL Press at Oxford University Press, Oxford, UK.

    Google Scholar 

  • Cornet, M. and Bousset, J., 1999, Free amino acids and dipeptides in porcine muscles: differences between ‘red’ and ‘white’ muscles, Meat Sci. 51:215–219.

    Article  CAS  Google Scholar 

  • Deutsch, A. and Eggleton, P., 1938, The titration constants of anserine, carnosine and some related compounds, Biochem. J. 32:209–211.

    PubMed  CAS  Google Scholar 

  • Ghisla, S. and Thorpe, C., 2004, Acyl-CoA dehydrogenases, Eur. J. Biochem. 271:494–508.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, S. H., 2001, The role of taurine in diabetes and the development of diabetic complications, Diab. Metab. Res. Rev. 17:330–346.

    Article  CAS  Google Scholar 

  • Hansen, S. H., 2003, Taurine homeostasis and its importance for physiological functions, in: Metabolic and Therapeutic Aspects of Amino Acids in Clinical Nutrition, L. A. Cynober, ed., CRC Press, Boca Raton, pp. 739–747.

    Google Scholar 

  • Hansen, S. H., Andersen, M. L., Birkedal, H., Cornett, C., Ghisla, S., Gradinaru, R., and Wibrand, F., 2005, Mitochondrial pH gradient and oxidation stabilised by matrix buffering. A role for taurine in animal cells, Submitted.

    Google Scholar 

  • Huxtable, R. J., 1992, Physiological actions of taurine, Physiol. Rev. 72:101–163.

    PubMed  CAS  Google Scholar 

  • Jacobsen, J. G. Smith, L. H., 1968, Biochemistry and physiology of taurine and taurine derivatives, Physiol. Rev. 48:424–511.

    PubMed  CAS  Google Scholar 

  • Llopis, J., McCafferty, J. M., Miyawaki, A., Farquhar, M. G., and Tsien, R. Y., 1998, Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins, Proc. Natl. Acad. Sci. USA 95:6803–6808.

    Article  PubMed  CAS  Google Scholar 

  • Lobo, M. V. T., Alonso, F. J. M. and Martín del Río, R., 2000, Immunocytochemical localization of taurine in different muscle cells types of the dog and rat, Histochem. J. 32:53–61.

    Article  PubMed  CAS  Google Scholar 

  • Lombardini, J. B., 1997, Identification of a specific protein in the mitochondrial fraction of the heart whose phosphorylations is inhibited by taurine. Amino Acids 12:139–144.

    Article  CAS  Google Scholar 

  • Lowell, B. B. and Shulman, G. I., 2005, Mitochondrial dysfunction and type 2 diabetes, Science 307:384–387.

    Article  PubMed  CAS  Google Scholar 

  • Ottersen O. P., 1988, Quantitative assessment of taurine-like immunoreactivity in different cell types and processes in rat cerebellum: an electronmicroscopic study based on a postembedding immunogold labelling procedure, Anat. Embryol. (Berl.) 178:407–421.

    Article  CAS  Google Scholar 

  • Reinsch, J., Katz, A., Wean, J., Aprahamian, G., and McFarland, J. T., 1980, The deuterium isotope effect upon the reaction of fatty acyl-CoA dehydrogenase and butyryl-CoA, J. Biol. Chem. 255:9093–9097.

    PubMed  CAS  Google Scholar 

  • Schmidt, J., Reinsch, J., and McFarland, J. T., 1981, Mechanistic studies on fatty acyl-CoA dehydrogenase, J. Biol. Chem. 256:11667–11670.

    PubMed  CAS  Google Scholar 

  • Suzuki, T., Suzuki, T., Wada, T., Saigo, K., and Watanabe, K., 2002, Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases, EMBO J. 21:6581–6589.

    Article  PubMed  CAS  Google Scholar 

  • Terauchi, A. and Nagata, T., 1993. Observation on incorporation of 3H-taurine in mouse skeletal muscle cells by light and electron microscopic radioautography, Cell. Mol. Biol. 39:397–404.

    PubMed  CAS  Google Scholar 

  • Voss, J. W., Pedersen, S. F., Christensen, S. T., and Lambert, I. H., 2004. Regulation of the expression and subcellular localization of the taurine transporter TauT in mouse NIH3T3 fibroblasts, Eur. J. Biochem. 271:4646–4658.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Hansen, S.H., Andersen, M.L., Birkedal, H., Cornett, C., Wibrand, F. (2006). The Important Role of Taurine in Oxidative Metabolism. In: Oja, S.S., Saransaari, P. (eds) Taurine 6. Advances in Experimental Medicine and Biology, vol 583. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33504-9_13

Download citation

Publish with us

Policies and ethics