Skip to main content

Connecting Obesity and Reproductive Disorders

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Metabolic Syndrome

Abstract

Obesity predisposes to reproductive disorders in both women and men. Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age. PCOS prevalence is higher in women with obesity, associated with insulin resistance, glucose intolerance, sleep apnea, increased risk of cardiovascular diseases, and the commonest cause of anovulatory infertility. Obesity in men is linked to secondary hypogonadism and impaired semen quality and infertility. In addition, men with testosterone deficiency are prone to developing increased adiposity and reduced muscle mass, indicating a bidirectional relationship between obesity and hypogonadism. This review will focus on pathophysiology of PCOS and male obesity-associated hypogonadism, diagnostic approaches, and current therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hill JW, Elias CF. Neuroanatomical framework of the metabolic control of reproduction. Physiol Rev. 2018;98(4):2349–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahima RS. Body fat, leptin, and hypothalamic amenorrhea. N Engl J Med. 2004;351(10):959–62.

    Article  CAS  PubMed  Google Scholar 

  3. Frisch RE. Body fat, menarche, fitness and fertility. Hum Reprod. 1987;2(6):521–33.

    Article  CAS  PubMed  Google Scholar 

  4. Akinci B, Meral R, Oral EA. Phenotypic and genetic characteristics of lipodystrophy: pathophysiology, metabolic abnormalities, and comorbidities. Curr Diab Rep. 2018;18(12):143–9.

    Article  PubMed  Google Scholar 

  5. Boutari C, Pappas PD, Mintziori G, et al. The effect of underweight on female and male reproduction. Metabolism. 2020;107:154229.

    Article  CAS  PubMed  Google Scholar 

  6. Witchel SF, Azziz R, Oberfield SE. History of polycystic ovary syndrome, premature adrenarche, and hyperandrogenism in pediatric endocrinology. Horm Res Paediatr. 2022;95(6):557–67.

    Article  CAS  PubMed  Google Scholar 

  7. Vatier C, Christin-Maitre S, Vigouroux C. Role of insulin resistance on fertility – focus on polycystic ovary syndrome. Ann Endocrinol (Paris). 2022;83(3):199–202.

    Article  PubMed  Google Scholar 

  8. Practice Committee of the American Society for Reproductive Medicine. American Society for Reproductive Medicine position statement on qualifications for providing ultrasound procedures in reproductive medicine. Fertil Steril. 2022;118(4):668–70.

    Article  Google Scholar 

  9. Ahmed B, Konje JC. The epidemiology of obesity in reproduction. Best Pract Res Clin Obstet Gynaecol. 2023;89:102342.

    Article  PubMed  Google Scholar 

  10. Ameratunga D, Gebeh A, Amoako A. Obesity and male infertility. Best Pract Res Clin Obstet Gynaecol. 2023;90:102393.

    Article  PubMed  Google Scholar 

  11. WHO. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight Website.

  12. World obesity. https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023 Website.

  13. CDC. https://www.cdc.gov/nchs/fastats/obesity-overweight.htm Website.

  14. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–84.

    Article  PubMed  Google Scholar 

  15. Gambineri A, Patton L, Altieri P, et al. Polycystic ovary syndrome is a risk factor for type 2 diabetes: results from a long-term prospective study. Diabetes. 2012;61(9):2369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gibson-Helm M, Teede H, Dunaif A, Dokras A. Delayed diagnosis and a lack of information associated with dissatisfaction in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2017;102(2):604–12.

    PubMed  Google Scholar 

  17. Dokras A, Saini S, Gibson-Helm M, Schulkin J, Cooney L, Teede H. Gaps in knowledge among physicians regarding diagnostic criteria and management of polycystic ovary syndrome. Fertil Steril. 2017;107(6):1380–1386.e1.

    Article  PubMed  Google Scholar 

  18. Al Wattar BH, Bueno A, Martin MG, et al. Harmonizing research outcomes for polycystic ovary syndrome (HARP), a marathon not a sprint: current challenges and future research need. Hum Reprod. 2021;36(3):523–8.

    Article  PubMed  Google Scholar 

  19. Gorsic LK, Dapas M, Legro RS, Hayes MG, Urbanek M. Functional genetic variation in the anti-Mullerian hormone pathway in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019;104(7):2855–74.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brower MA, Hai Y, Jones MR, et al. Bidirectional Mendelian randomization to explore the causal relationships between body mass index and polycystic ovary syndrome. Hum Reprod. 2019;34(1):127–36.

    Article  CAS  PubMed  Google Scholar 

  21. Shrivastava S, Conigliaro RL. Polycystic ovarian syndrome. Med Clin North Am. 2023;107(2):227–34.

    Article  PubMed  Google Scholar 

  22. Risal S, Pei Y, Lu H, et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat Med. 2019;25(12):1894–904.

    Article  CAS  PubMed  Google Scholar 

  23. Ruth KS, Day FR, Tyrrell J, et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med. 2020;26(2):252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teede H, Misso M, Tassone EC, et al. Anti-Mullerian hormone in PCOS: a review informing international guidelines. Trends Endocrinol Metab. 2019;30(7):467–78.

    Article  CAS  PubMed  Google Scholar 

  25. Tay CT, Hart RJ, Hickey M, et al. Updated adolescent diagnostic criteria for polycystic ovary syndrome: impact on prevalence and longitudinal body mass index trajectories from birth to adulthood. BMC Med. 2020;18(1):389.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Risal S, Li C, Luo Q, et al. Transgenerational transmission of reproductive and metabolic dysfunction in the male progeny of polycystic ovary syndrome. Cell Rep Med. 2023;4(5):101035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim SS, Norman RJ, Davies MJ, Moran LJ. The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Rev. 2013;14(2):95–109.

    Article  CAS  PubMed  Google Scholar 

  28. Paixao L, Ramos RB, Lavarda A, Morsh DM, Spritzer PM. Animal models of hyperandrogenism and ovarian morphology changes as features of polycystic ovary syndrome: a systematic review. Reprod Biol Endocrinol. 2017;15(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Indran IR, Lee BH, Yong E. Cellular and animal studies: insights into pathophysiology and therapy of PCOS. Best Pract Res Clin Obstet Gynaecol. 2016;37:12–24.

    Article  PubMed  Google Scholar 

  30. Roland AV, Moenter SM. Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models. Front Neuroendocrinol. 2014;35(4):494–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosenfield RL, Ehrmann DA. The pathogenesis of Polycystic Ovary Syndrome (PCOS): the hypothesis of PCOS as functional ovarian Hyperandrogenism revisited. Endocr Rev. 2016;37(5):467–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wekker V, van Dammen L, Koning A, et al. Long-term cardiometabolic disease risk in women with PCOS: a systematic review and meta-analysis. Hum Reprod Update. 2020;26(6):942–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berni TR, Morgan CL, Rees DA. Women with polycystic ovary syndrome have an increased risk of major cardiovascular events: a population study. J Clin Endocrinol Metab. 2021;106(9):e3369–80.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bahri Khomami M, Joham AE, Boyle JA, et al. Increased maternal pregnancy complications in polycystic ovary syndrome appear to be independent of obesity-a systematic review, meta-analysis, and meta-regression. Obes Rev. 2019;20(5):659–74.

    Article  PubMed  Google Scholar 

  35. Valgeirsdottir H, Kunovac Kallak T, Sundstrom Poromaa I, et al. Polycystic ovary syndrome and risk of stillbirth: a nationwide register-based study. BJOG. 2021;128(13):2073–82.

    Article  CAS  PubMed  Google Scholar 

  36. Joham AE, Nanayakkara N, Ranasinha S, et al. Obesity, polycystic ovary syndrome and breastfeeding: an observational study. Acta Obstet Gynecol Scand. 2016;95(4):458–66.

    Article  PubMed  Google Scholar 

  37. Kakoly NS, Earnest A, Teede HJ, Moran LJ, Joham AE. The impact of obesity on the incidence of type 2 diabetes among women with polycystic ovary syndrome. Diabetes Care. 2019;42(4):560–7.

    Article  PubMed  Google Scholar 

  38. Ramezani Tehrani F, Montazeri SA, Hosseinpanah F, et al. Trend of cardio-metabolic risk factors in polycystic ovary syndrome: a population-based prospective cohort study. PLoS One. 2015;10(9):e0137609.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Paschou SA, Polyzos SA, Anagnostis P, et al. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Endocrine. 2020;67(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  40. Rocha ALL, Faria LC, Guimaraes TCM, et al. Non-alcoholic fatty liver disease in women with polycystic ovary syndrome: systematic review and meta-analysis. J Endocrinol Investig. 2017;40(12):1279–88.

    Article  CAS  Google Scholar 

  41. Asfari MM, Sarmini MT, Baidoun F, et al. Association of non-alcoholic fatty liver disease and polycystic ovarian syndrome. BMJ Open Gastroenterol. 2020;7(1):e000352. https://doi.org/10.1136/bmjgast-000352.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mantovani A, Petracca G, Csermely A, et al. Non-alcoholic fatty liver disease and risk of new-onset heart failure: an updated meta-analysis of about 11 million individuals. Gut. 2022.

    Google Scholar 

  43. Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH: mechanisms and treatment options. JHEP Rep. 2019;1(4):312–28.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang R, Kim BV, van Wely M, et al. Treatment strategies for women with WHO group II anovulation: systematic review and network meta-analysis. BMJ. 2017;356:j138.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Teede HJ, Tay CT, Laven JJE, et al. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. J Clin Endocrinol Metab. 2023.

    Google Scholar 

  46. Gapstur SM, Kopp P, Gann PH, Chiu BC, Colangelo LA, Liu K. Changes in BMI modulate age-associated changes in sex hormone binding globulin and total testosterone, but not bioavailable testosterone in young adult men: the CARDIA male hormone study. Int J Obes. 2007;31(4):685–91.

    Article  CAS  Google Scholar 

  47. Giagulli VA, Kaufman JM, Vermeulen A. Pathogenesis of the decreased androgen levels in obese men. J Clin Endocrinol Metab. 1994;79(4):997–1000.

    CAS  PubMed  Google Scholar 

  48. Veldhuis J, Yang R, Roelfsema F, Takahashi P. Proinflammatory cytokine infusion attenuates LH’s feedforward on testosterone secretion: modulation by age. J Clin Endocrinol Metab. 2016;101(2):539–49.

    Article  PubMed  Google Scholar 

  49. Vermeulen A, Kaufman JM, Deslypere JP, Thomas G. Attenuated luteinizing hormone (LH) pulse amplitude but normal LH pulse frequency, and its relation to plasma androgens in hypogonadism of obese men. J Clin Endocrinol Metab. 1993;76(5):1140–6.

    CAS  PubMed  Google Scholar 

  50. Glass AR, Swerdloff RS, Bray GA, Dahms WT, Atkinson RL. Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J Clin Endocrinol Metab. 1977;45(6):1211–9.

    Article  CAS  PubMed  Google Scholar 

  51. Schneider G, Kirschner MA, Berkowitz R, Ertel NH. Increased estrogen production in obese men. J Clin Endocrinol Metab. 1979;48(4):633–8.

    Article  CAS  PubMed  Google Scholar 

  52. Dias JP, Veldhuis JD, Carlson O, et al. Effects of transdermal testosterone gel or an aromatase inhibitor on serum concentration and pulsatility of growth hormone in older men with age-related low testosterone. Metabolism. 2017;69:143–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Hulsteijn LT, Pasquali R, Casanueva F, et al. Prevalence of endocrine disorders in obese patients: systematic review and meta-analysis. Eur J Endocrinol. 2020;182(1):11–21.

    Article  PubMed  Google Scholar 

  54. Gapstur SM, Gann PH, Kopp P, Colangelo L, Longcope C, Liu K. Serum androgen concentrations in young men: a longitudinal analysis of associations with age, obesity, and race. The CARDIA male hormone study. Cancer Epidemiol Biomark Prev. 2002;11(10 Pt 1):1041–7.

    CAS  Google Scholar 

  55. Molina-Vega M, Asenjo-Plaza M, Garcia-Ruiz MC, et al. Cross-sectional, primary care-based study of the prevalence of hypoandrogenemia in nondiabetic young men with obesity. Obesity (Silver Spring). 2019;27(10):1584–90.

    Article  CAS  PubMed  Google Scholar 

  56. Calderon B, Gomez-Martin JM, Vega-Pinero B, et al. Prevalence of male secondary hypogonadism in moderate to severe obesity and its relationship with insulin resistance and excess body weight. Andrology. 2016;4(1):62–7.

    Article  CAS  PubMed  Google Scholar 

  57. Travison TG, Araujo AB, Esche GR, McKinlay JB. The relationship between body composition and bone mineral content: threshold effects in a racially and ethnically diverse group of men. Osteoporos Int. 2008;19(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  58. Wu FCW, Tajar A, Pye SR, et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab. 2008;93(7):2737–45.

    Article  CAS  PubMed  Google Scholar 

  59. Camacho EM, Huhtaniemi IT, O’Neill TW, et al. Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European Male Ageing Study. Eur J Endocrinol. 2013;168(3):445–55.

    Article  CAS  PubMed  Google Scholar 

  60. Tajar A, Huhtaniemi IT, O’Neill TW, et al. Characteristics of androgen deficiency in late-onset hypogonadism: results from the European Male Aging Study (EMAS). J Clin Endocrinol Metab. 2012;97(5):1508–16.

    Article  CAS  PubMed  Google Scholar 

  61. Krasnoff JB, Basaria S, Pencina MJ, et al. Free testosterone levels are associated with mobility limitation and physical performance in community-dwelling men: the Framingham Offspring Study. J Clin Endocrinol Metab. 2010;95(6):2790–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu FCW, Tajar A, Beynon JM, et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med. 2010;363(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  63. Snyder PJ, Bhasin S, Cunningham GR, et al. Effects of testosterone treatment in older men. N Engl J Med. 2016;374(7):611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kley HK, Deselaers T, Peerenboom H. Evidence for hypogonadism in massively obese males due to decreased free testosterone. Horm Metab Res. 1981;13(11):639–41.

    Article  CAS  PubMed  Google Scholar 

  65. Chasland LC, Knuiman MW, Divitini ML, et al. Higher circulating androgens and higher physical activity levels are associated with less central adiposity and lower risk of cardiovascular death in older men. Clin Endocrinol. 2019;90(2):375–83.

    Article  CAS  Google Scholar 

  66. Tsai EC, Boyko EJ, Leonetti DL, Fujimoto WY. Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men. Int J Obes Relat Metab Disord. 2000;24(4):485–91.

    Article  CAS  PubMed  Google Scholar 

  67. Hamilton EJ, Gianatti E, Strauss BJ, et al. Increase in visceral and subcutaneous abdominal fat in men with prostate cancer treated with androgen deprivation therapy. Clin Endocrinol. 2011;74(3):377–83.

    Article  CAS  Google Scholar 

  68. Snyder PJ, Peachey H, Hannoush P, et al. Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J Clin Endocrinol Metab. 1999;84(8):2647–53.

    CAS  PubMed  Google Scholar 

  69. Marin P, Holmang S, Jonsson L, et al. The effects of testosterone treatment on body composition and metabolism in middle-aged obese men. Int J Obes Relat Metab Disord. 1992;16(12):991–7.

    CAS  PubMed  Google Scholar 

  70. Dias JP, Melvin D, Simonsick EM, et al. Effects of aromatase inhibition vs. testosterone in older men with low testosterone: randomized-controlled trial. Andrology. 2016;4(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  71. Yassin AA, Nettleship J, Almehmadi Y, Salman M, Saad F. Effects of continuous long-term testosterone therapy (TTh) on anthropometric, endocrine and metabolic parameters for up to 10 years in 115 hypogonadal elderly men: real-life experience from an observational registry study. Andrologia. 2016;48(7):793–9.

    Article  CAS  PubMed  Google Scholar 

  72. Saad F, Caliber M, Doros G, Haider KS, Haider A. Long-term treatment with testosterone undecanoate injections in men with hypogonadism alleviates erectile dysfunction and reduces risk of major adverse cardiovascular events, prostate cancer, and mortality. Aging Male. 2020;23(1):81–92.

    Article  CAS  PubMed  Google Scholar 

  73. Yassin A, Haider A, Haider KS, et al. Testosterone therapy in men with hypogonadism prevents progression from prediabetes to type 2 diabetes: eight-year data from a registry study. Diabetes Care. 2019;42(6):1104–11.

    Article  CAS  PubMed  Google Scholar 

  74. Haider KS, Haider A, Saad F, et al. Remission of type 2 diabetes following long-term treatment with injectable testosterone undecanoate in patients with hypogonadism and type 2 diabetes: 11-year data from a real-world registry study. Diabetes Obes Metab. 2020;22(11):2055–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Saad F, Doros G, Haider KS, Haider A. Hypogonadal men with moderate-to-severe lower urinary tract symptoms have a more severe cardiometabolic risk profile and benefit more from testosterone therapy than men with mild lower urinary tract symptoms. Investig Clin Urol. 2018;59(6):399–409.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Macdonald AA, Stewart AW, Farquhar CM. Body mass index in relation to semen quality and reproductive hormones in New Zealand men: a cross-sectional study in fertility clinics. Hum Reprod. 2013;28(12):3178–87.

    Article  CAS  PubMed  Google Scholar 

  77. Sermondade N, Faure C, Fezeu L, et al. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum Reprod Update. 2013;19(3):221–31.

    Article  CAS  PubMed  Google Scholar 

  78. Hammiche F, Laven JSE, Twigt JM, Boellaard WPA, Steegers EAP, Steegers-Theunissen RP. Body mass index and central adiposity are associated with sperm quality in men of subfertile couples. Hum Reprod. 2012;27(8):2365–72.

    Article  PubMed  Google Scholar 

  79. Guo D, Wu W, Tang Q, et al. The impact of BMI on sperm parameters and the metabolite changes of seminal plasma concomitantly. Oncotarget. 2017;8(30):48619–34.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Eisenberg ML, Kim S, Chen Z, Sundaram R, Schisterman EF, Louis GMB. The relationship between male BMI and waist circumference on semen quality: data from the LIFE study. Hum Reprod. 2015;30(2):493–4.

    Article  PubMed  Google Scholar 

  81. Bakos HW, Mitchell M, Setchell BP, Lane M. The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int J Androl. 2011;34(5 Pt 1):402–10.

    Article  CAS  PubMed  Google Scholar 

  82. Campbell JM, Lane M, Owens JA, Bakos HW. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod Biomed Online. 2015;31(5):593–604.

    Article  PubMed  Google Scholar 

  83. Merhi ZO, Keltz J, Zapantis A, et al. Male adiposity impairs clinical pregnancy rate by in vitro fertilization without affecting day 3 embryo quality. Obesity (Silver Spring). 2013;21(8):1608–12.

    Article  PubMed  Google Scholar 

  84. Houfflyn S, Matthys C, Soubry A. Male obesity: epigenetic origin and effects in sperm and offspring. Curr Mol Biol Rep. 2017;3(4):288–96.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Andersen E, Juhl CR, Kjoller ET, et al. Sperm count is increased by diet-induced weight loss and maintained by exercise or GLP-1 analogue treatment: a randomized controlled trial. Hum Reprod. 2022;37(7):1414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Collins CE, Jensen ME, Young MD, Callister R, Plotnikoff RC, Morgan PJ. Improvement in erectile function following weight loss in obese men: the SHED-IT randomized controlled trial. Obes Res Clin Pract. 2013;7(6):450.

    Article  Google Scholar 

  87. Hakonsen LB, Thulstrup AM, Aggerholm AS, et al. Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men. Reprod Health. 2011;8:24.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Di Vincenzo A, Busetto L, Vettor R, Rossato M. Obesity, male reproductive function and bariatric surgery. Front Endocrinol (Lausanne). 2018;9:769.

    Article  PubMed  Google Scholar 

  89. Chen G, Sun L, Jiang S, et al. Effects of bariatric surgery on testosterone level and sexual function in men with obesity: a retrospective study. Front Endocrinol (Lausanne). 2023;13:1036243.

    Article  PubMed  Google Scholar 

  90. El Bardisi H, Majzoub A, Arafa M, et al. Effect of bariatric surgery on semen parameters and sex hormone concentrations: a prospective study. Reprod Biomed Online. 2016;33(5):606–11.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

RSA is supported by Bloomberg Distinguished Professorship. JPD is supported by National Institutes of Health grant K01-AG079680.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rexford S. Ahima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahima, R.S., Dias, J.P. (2024). Connecting Obesity and Reproductive Disorders. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-12125-3_54-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12125-3_54-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12125-3

  • Online ISBN: 978-3-319-12125-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Connecting Obesity and Reproductive Disorders
    Published:
    23 November 2023

    DOI: https://doi.org/10.1007/978-3-319-12125-3_54-2

  2. Original

    Connecting Obesity and Reproductive Disorders
    Published:
    03 November 2023

    DOI: https://doi.org/10.1007/978-3-319-12125-3_54-1