Skip to main content

Advertisement

Log in

Phenotypic and Genetic Characteristics of Lipodystrophy: Pathophysiology, Metabolic Abnormalities, and Comorbidities

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (M-E Patti, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of review

This article focuses on recent progress in understanding the genetics of lipodystrophy syndromes, the pathophysiology of severe metabolic abnormalities caused by these syndromes, and causes of severe morbidity and a possible signal of increased mortality associated with lipodystrophy. An updated classification scheme is also presented.

Recent findings

Lipodystrophy encompasses a group of heterogeneous rare diseases characterized by generalized or partial lack of adipose tissue and associated metabolic abnormalities including altered lipid metabolism and insulin resistance. Recent advances in the field have led to the discovery of new genes associated with lipodystrophy and have also improved our understanding of adipose biology, including differentiation, lipid droplet assembly, and metabolism. Several registries have documented the natural history of the disease and the serious comorbidities that patients with lipodystrophy face. There is also evolving evidence for increased mortality rates associated with lipodystrophy.

Summary

Lipodystrophy syndromes represent a challenging cluster of diseases that lead to severe insulin resistance, a myriad of metabolic abnormalities, and serious morbidity. The understanding of these syndromes is evolving in parallel with the identification of novel disease-causing mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Garg A. Clinical review#: lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96(11):3313–25. https://doi.org/10.1210/jc.2011-1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. • Akinci B, Onay H, Demir T, Ozen S, Kayserili H, Akinci G, et al. Natural history of congenital generalized lipodystrophy: a nationwide study from Turkey. J Clin Endocrinol Metab. 2016;101(7):2759–67. https://doi.org/10.1210/jc.2016-1005 Data on natural history and disease burden of various subtypes of CGL in a metreleptin naïve cohort.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. • Akinci B, Onay H, Demir T, Savas-Erdeve S, Gen R, Simsir IY, et al. Clinical presentations, metabolic abnormalities and end-organ complications in patients with familial partial lipodystrophy. Metabolism. 2017;72:109–19. https://doi.org/10.1016/j.metabol.2017.04.010 A multicenter prospective observational study on clinical presentations, metabolic abnormalities, and end-organ complications in patients with FPLD.

    Article  CAS  PubMed  Google Scholar 

  4. Ajluni N, Meral R, Neidert AH, Brady GF, Buras E, McKenna B, et al. Spectrum of disease associated with partial lipodystrophy: lessons from a trial cohort. Clin Endocrinol. 2017;86(5):698–707. https://doi.org/10.1111/cen.13311.

    Article  CAS  Google Scholar 

  5. Garg A, Misra A. Lipodystrophies: rare disorders causing metabolic syndrome. Endocrinol Metab Clin N Am. 2004;33(2):305–31. https://doi.org/10.1016/j.ecl.2004.03.003.

    Article  CAS  Google Scholar 

  6. Robertson DA, Wright R. Cirrhosis in partial lipodystrophy. Postgrad Med J. 1989;65(763):318–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akinci B, Unlu SM, Celik A, Simsir IY, Sen S, Nur B, et al. Renal complications of lipodystrophy: a closer look at the natural history of kidney disease. Clin Endocrinol. 2018. https://doi.org/10.1111/cen.13732.

  8. Vantyghem MC, Pigny P, Maurage CA, Rouaix-Emery N, Stojkovic T, Cuisset JM, et al. Patients with familial partial lipodystrophy of the Dunnigan type due to a LMNA R482W mutation show muscular and cardiac abnormalities. J Clin Endocrinol Metab. 2004;89(11):5337–46. https://doi.org/10.1210/jc.2003-031658.

    Article  CAS  PubMed  Google Scholar 

  9. • Lima JG, Nobrega LHC, Lima NN, Dos Santos MCF, Silva PHD, Baracho MFP, et al. Causes of death in patients with Berardinelli-Seip congenital generalized lipodystrophy. PLoS One, This study evaluates the life expectancy and the causes of death of patients with CGL. 2018;13(6):e0199052. https://doi.org/10.1371/journal.pone.0199052.

  10. Chan JL, Oral EA. Clinical classification and treatment of congenital and acquired lipodystrophy. Endocr Pract. 2010;16(2):310–23. https://doi.org/10.4158/EP09154.RA.

    Article  PubMed  Google Scholar 

  11. • Brown RJ, Araujo-Vilar D, Cheung PT, Dunger D, Garg A, Jack M, et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J Clin Endocrinol Metab. 2016;101(12):4500–11. https://doi.org/10.1210/jc.2016-2466 A multisociety practice guideline summarizing the diagnosis and management of lipodystrophy syndromes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Handelsman Y, Oral EA, Bloomgarden ZT, Brown RJ, Chan JL, Einhorn D, et al. The clinical approach to the detection of lipodystrophy—an AACE consensus statement. Endocr Pract. 2013;19(1):107–16.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Garg A, Vinaitheerthan M, Weatherall PT, Bowcock AM. Phenotypic heterogeneity in patients with familial partial lipodystrophy (Dunnigan variety) related to the site of missense mutations in lamin a/c gene. J Clin Endocrinol Metab. 2001;86(1):59–65. https://doi.org/10.1210/jcem.86.1.7121.

    Article  CAS  PubMed  Google Scholar 

  14. Mory PB, Crispim F, Freire MB, Salles JE, Valerio CM, Godoy-Matos AF, et al. Phenotypic diversity in patients with lipodystrophy associated with LMNA mutations. Eur J Endocrinol. 2012;167(3):423–31. https://doi.org/10.1530/EJE-12-0268.

    Article  CAS  PubMed  Google Scholar 

  15. Patni N, Garg A. Congenital generalized lipodystrophies—new insights into metabolic dysfunction. Nat Rev Endocrinol. 2015;11(9):522–34. https://doi.org/10.1038/nrendo.2015.123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Subauste AR, Das AK, Li X, Elliott BG, Evans C, El Azzouny M, et al. Alterations in lipid signaling underlie lipodystrophy secondary to AGPAT2 mutations. Diabetes. 2012;61(11):2922–31. https://doi.org/10.2337/db12-0004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Agarwal AK, Arioglu E, De Almeida S, Akkoc N, Taylor SI, Bowcock AM, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21–3. https://doi.org/10.1038/ng880 The study shows that mutations in AGPAT2 cause congenital generalized lipodystrophy cause CGL by inhibiting triacylglycerol synthesis and storage in adipocytes.

    Article  CAS  PubMed  Google Scholar 

  18. Simha V, Garg A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab. 2003;88(11):5433–7. https://doi.org/10.1210/jc.2003-030835.

    Article  CAS  PubMed  Google Scholar 

  19. Cartwright BR, Goodman JM. Seipin: from human disease to molecular mechanism. J Lipid Res. 2012;53(6):1042–55. https://doi.org/10.1194/jlr.R023754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magre J, Delepine M, Khallouf E, Gedde-Dahl T Jr, Van Maldergem L, Sobel E, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001;28(4):365–70. https://doi.org/10.1038/ng585.

    Article  CAS  PubMed  Google Scholar 

  21. Kim CA, Delepine M, Boutet E, El Mourabit H, Le Lay S, Meier M, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab. 2008;93(4):1129–34. https://doi.org/10.1210/jc.2007-1328.

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119(9):2623–33. https://doi.org/10.1172/JCI38660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shastry S, Delgado MR, Dirik E, Turkmen M, Agarwal AK, Garg A. Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am J Med Genet A. 2010;152A(9):2245–53. https://doi.org/10.1002/ajmg.a.33578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akinci G, Topaloglu H, Akinci B, Onay H, Karadeniz C, Ergul Y, et al. Spectrum of clinical manifestations in two young Turkish patients with congenital generalized lipodystrophy type 4. Eur J Med Genet. 2016;59(6–7):320–4. https://doi.org/10.1016/j.ejmg.2016.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hussain I, Patni N, Ueda M, Sorkina E, Valerio CM, Cochran E, et al. A novel generalized lipodystrophy-associated progeroid syndrome due to recurrent heterozygous LMNA p.T10I mutation. J Clin Endocrinol Metab. 2017. https://doi.org/10.1210/jc.2017-02078.

  26. Patni N, Xing C, Agarwal AK, Garg A. Juvenile-onset generalized lipodystrophy due to a novel heterozygous missense LMNA mutation affecting lamin C. Am J Med Genet A. 2017;173(9):2517–21. https://doi.org/10.1002/ajmg.a.38341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dyment DA, Gibson WT, Huang L, Bassyouni H, Hegele RA, Innes AM. Biallelic mutations at PPARG cause a congenital, generalized lipodystrophy similar to the Berardinelli-Seip syndrome. Eur J Med Genet. 2014;57(9):524–6. https://doi.org/10.1016/j.ejmg.2014.06.006.

    Article  CAS  PubMed  Google Scholar 

  28. Lotta LA, Gulati P, Day FR, Payne F, Ongen H, van de Bunt M, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017;49(1):17–26. https://doi.org/10.1038/ng.3714.

    Article  CAS  PubMed  Google Scholar 

  29. Hegele RA, Joy TR, Al-Attar SA, Rutt BK. Thematic review series: adipocyte biology. Lipodystrophies: windows on adipose biology and metabolism. J Lipid Res. 2007;48(7):1433–44. https://doi.org/10.1194/jlr.R700004-JLR200.

    Article  CAS  PubMed  Google Scholar 

  30. • Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet. 2000;9(1):109–12 This study links lamin A/C R482Q mutation to FPLD.

    Article  CAS  PubMed  Google Scholar 

  31. Peters JM, Barnes R, Bennett L, Gitomer WM, Bowcock AM, Garg A. Localization of the gene for familial partial lipodystrophy (Dunnigan variety) to chromosome 1q21-22. Nat Genet. 1998;18(3):292–5. https://doi.org/10.1038/ng0398-292.

    Article  CAS  PubMed  Google Scholar 

  32. Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3. https://doi.org/10.1038/47254.

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002;87(1):408–11. https://doi.org/10.1210/jcem.87.1.8290.

    Article  CAS  PubMed  Google Scholar 

  34. Gandotra S, Lim K, Girousse A, Saudek V, O'Rahilly S, Savage DB. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem. 2011;286(40):34998–5006. https://doi.org/10.1074/jbc.M111.278853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rubio-Cabezas O, Puri V, Murano I, Saudek V, Semple RK, Dash S, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1(5):280–7. https://doi.org/10.1002/emmm.200900037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farhan SM, Robinson JF, McIntyre AD, Marrosu MG, Ticca AF, Loddo S, et al. A novel LIPE nonsense mutation found using exome sequencing in siblings with late-onset familial partial lipodystrophy. Can J Cardiol. 2014;30(12):1649–54. https://doi.org/10.1016/j.cjca.2014.09.007.

    Article  PubMed  Google Scholar 

  37. Rocha N, Bulger DA, Frontini A, Titheradge H, Gribsholt SB, Knox R, et al. Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression. elife. 2017;6. https://doi.org/10.7554/eLife.23813.

  38. George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004;304(5675):1325–8. https://doi.org/10.1126/science.1096706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garg A, Sankella S, Xing C, Agarwal AK. Whole-exome sequencing identifies ADRA2A mutation in atypical familial partial lipodystrophy. JCI Insight. 2016;1(9). https://doi.org/10.1172/jci.insight.86870.

  40. Cao H, Alston L, Ruschman J, Hegele RA. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008;7:3. https://doi.org/10.1186/1476-511X-7-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Payne F, Lim K, Girousse A, Brown RJ, Kory N, Robbins A, et al. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc Natl Acad Sci U S A. 2014;111(24):8901–6. https://doi.org/10.1073/pnas.1408523111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Simha V, Garg A. Body fat distribution and metabolic derangements in patients with familial partial lipodystrophy associated with mandibuloacral dysplasia. J Clin Endocrinol Metab. 2002;87(2):776–85. https://doi.org/10.1210/jcem.87.2.8258.

    Article  CAS  PubMed  Google Scholar 

  43. Novelli G, Muchir A, Sangiuolo F, Helbling-Leclerc A, D'Apice MR, Massart C, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet. 2002;71(2):426–31. https://doi.org/10.1086/341908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Agarwal AK, Fryns JP, Auchus RJ, Garg A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet. 2003;12(16):1995–2001.

    Article  CAS  PubMed  Google Scholar 

  45. Weedon MN, Ellard S, Prindle MJ, Caswell R, Lango Allen H, Oram R, et al. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet. 2013;45(8):947–50. https://doi.org/10.1038/ng.2670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pelosini C, Martinelli S, Ceccarini G, Magno S, Barone I, Basolo A, et al. Identification of a novel mutation in the polymerase delta 1 (POLD1) gene in a lipodystrophic patient affected by mandibular hypoplasia, deafness, progeroid features (MDPL) syndrome. Metabolism. 2014;63(11):1385–9. https://doi.org/10.1016/j.metabol.2014.07.010.

    Article  CAS  PubMed  Google Scholar 

  47. Donadille B, D'Anella P, Auclair M, Uhrhammer N, Sorel M, Grigorescu R, et al. Partial lipodystrophy with severe insulin resistance and adult progeria Werner syndrome. Orphanet J Rare Dis. 2013;8:106. https://doi.org/10.1186/1750-1172-8-106.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Graul-Neumann LM, Kienitz T, Robinson PN, Baasanjav S, Karow B, Gillessen-Kaesbach G, et al. Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy associated with a novel frameshift mutation at the 3′ terminus of the FBN1-gene. Am J Med Genet A. 2010;152A(11):2749–55. https://doi.org/10.1002/ajmg.a.33690.

    Article  CAS  PubMed  Google Scholar 

  49. Takenouchi T, Hida M, Sakamoto Y, Torii C, Kosaki R, Takahashi T et al. Severe congenital lipodystrophy and a progeroid appearance: mutation in the penultimate exon of FBN1 causing a recognizable phenotype. Am J Med Genet A 2013;161A(12):3057–3062. doi:https://doi.org/10.1002/ajmg.a.36157.

  50. Cabanillas R, Cadinanos J, Villameytide JA, Perez M, Longo J, Richard JM, et al. Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am J Med Genet A. 2011;155A(11):2617–25. https://doi.org/10.1002/ajmg.a.34249.

    Article  CAS  PubMed  Google Scholar 

  51. Masotti A, Uva P, Davis-Keppen L, Basel-Vanagaite L, Cohen L, Pisaneschi E, et al. Keppen-Lubinsky syndrome is caused by mutations in the inwardly rectifying K+ channel encoded by KCNJ6. Am J Hum Genet. 2015;96(2):295–300. https://doi.org/10.1016/j.ajhg.2014.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lessel D, Vaz B, Halder S, Lockhart PJ, Marinovic-Terzic I, Lopez-Mosqueda J, et al. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet. 2014;46(11):1239–44. https://doi.org/10.1038/ng.3103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chudasama KK, Winnay J, Johansson S, Claudi T, Konig R, Haldorsen I, et al. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Am J Hum Genet. 2013;93(1):150–7. https://doi.org/10.1016/j.ajhg.2013.05.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thauvin-Robinet C, Auclair M, Duplomb L, Caron-Debarle M, Avila M, St-Onge J, et al. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am J Hum Genet. 2013;93(1):141–9. https://doi.org/10.1016/j.ajhg.2013.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD, Sousa AB, et al. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet. 2010;87(6):866–72. https://doi.org/10.1016/j.ajhg.2010.10.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I, Nishizawa M, et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest. 2011;121(10):4150–60. https://doi.org/10.1172/JCI58414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu Y, Ramot Y, Torrelo A, Paller AS, Si N, Babay S, et al. Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 2012;64(3):895–907. https://doi.org/10.1002/art.33368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kluk J, Rustin M, Brogan PA, Omoyinmi E, Rowczenio DM, Willcocks LC, et al. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome: a report of a novel mutation and review of the literature. Br J Dermatol. 2014;170(1):215–7. https://doi.org/10.1111/bjd.12600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bourne SC, Townsend KN, Shyr C, Matthews A, Lear SA, Attariwala R, et al. Optic atrophy, cataracts, lipodystrophy/lipoatrophy, and peripheral neuropathy caused by a de novo OPA3 mutation. Cold Spring Harb Mol Case Stud. 2017;3(1):a001156. https://doi.org/10.1101/mcs.a001156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pinheiro M, Freire-Maia N, Chautard-Freire-Maia EA, Araujo LM, Liberman B. AREDYLD: a syndrome combining an acrorenal field defect, ectodermal dysplasia, lipoatrophic diabetes, and other manifestations. Am J Med Genet. 1983;16(1):29–33. https://doi.org/10.1002/ajmg.1320160106.

    Article  CAS  PubMed  Google Scholar 

  61. Misra A, Garg A. Clinical features and metabolic derangements in acquired generalized lipodystrophy: case reports and review of the literature. Medicine (Baltimore). 2003;82(2):129–46.

    Article  Google Scholar 

  62. Sorkina E, Frolova E, Rusinova D, Polyakova S, Roslavtseva E, Vasilyev E, et al. Progressive generalized lipodystrophy as a manifestation of autoimmune Polyglandular syndrome type 1. J Clin Endocrinol Metab. 2016;101(4):1344–7. https://doi.org/10.1210/jc.2015-3722.

    Article  CAS  PubMed  Google Scholar 

  63. Lockemer HE, Sumpter KM, Cope-Yokoyama S, Garg A. A novel paraneoplastic syndrome with acquired lipodystrophy and chronic inflammatory demyelinating polyneuropathy in an adolescent male with craniopharyngioma. J Pediatr Endocrinol Metab. 2018;31(4):479–83. https://doi.org/10.1515/jpem-2017-0222.

    Article  PubMed  Google Scholar 

  64. Patni N, Alves C, von Schnurbein J, Wabitsch M, Tannin G, Rakheja D, et al. A novel syndrome of generalized lipodystrophy associated with pilocytic astrocytoma. J Clin Endocrinol Metab. 2015;100(10):3603–6. https://doi.org/10.1210/jc.2015-2476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Misra A, Peethambaram A, Garg A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine (Baltimore). 2004;83(1):18–34. https://doi.org/10.1097/01.md.0000111061.69212.59.

    Article  CAS  Google Scholar 

  66. Akinci B, Koseoglu FD, Onay H, Yavuz S, Altay C, Simsir IY, et al. Acquired partial lipodystrophy is associated with increased risk for developing metabolic abnormalities. Metabolism. 2015;64(9):1086–95. https://doi.org/10.1016/j.metabol.2015.06.004.

    Article  CAS  PubMed  Google Scholar 

  67. Adachi M, Asakura Y, Muroya K, Goto H, Kigasawa H. Abnormal adipose tissue distribution with unfavorable metabolic profile in five children following hematopoietic stem cell transplantation: a new etiology for acquired partial lipodystrophy. Clin Pediatr Endocrinol. 2013;22(4):53–64. https://doi.org/10.1292/cpe.22.53.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ceccarini G, Ferrari F, Santini F. Acquired partial lipodystrophy after bone marrow transplant during childhood: a novel syndrome to be added to the disease classification list. J Endocrinol Investig. 2017;40(11):1273–4. https://doi.org/10.1007/s40618-017-0731-x.

    Article  CAS  Google Scholar 

  69. Garg A, Wilson R, Barnes R, Arioglu E, Zaidi Z, Gurakan F, et al. A gene for congenital generalized lipodystrophy maps to human chromosome 9q34. J Clin Endocrinol Metab. 1999;84(9):3390–4. https://doi.org/10.1210/jcem.84.9.6103.

    Article  CAS  PubMed  Google Scholar 

  70. Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell. 2015;26(4):726–39. https://doi.org/10.1091/mbc.E14-08-1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yurekli B, Ozdemir Kutbay N, Altay C, Unlu SM, Sen S, Onay H et al. A new type of familial partial lipodystrophy: distinctive fat distribution and proteinuria. Endocr Res. 2018:1–6. https://doi.org/10.1080/07435800.2018.1470188.

  72. Iwanishi M, Ito-Kobayashi J, Washiyama M, Kusakabe T, Ebihara K. Clinical characteristics, phenotype of lipodystrophy and a genetic analysis of six diabetic Japanese women with familial partial lipodystrophy in a diabetic outpatient clinic. Intern Med. 2018. https://doi.org/10.2169/internalmedicine.0225-17.

  73. Sleilati GG, Leff T, Bonnett JW, Hegele RA. Efficacy and safety of pioglitazone in treatment of a patient with an atypical partial lipodystrophy syndrome. Endocr Pract. 2007;13(6):656–61. https://doi.org/10.4158/EP.13.6.656.

    Article  PubMed  Google Scholar 

  74. Iwanishi M, Ebihara K, Kusakabe T, Harada S, Ito-Kobayashi J, Tsuji A, et al. Premature atherosclerosis in a Japanese diabetic patient with atypical familial partial lipodystrophy and hypertriglyceridemia. Intern Med. 2012;51(18):2573–9.

    Article  PubMed  Google Scholar 

  75. Iwanishi M, Ebihara K, Kusakabe T, Washiyama M, Ito-Kobayashi J, Nakamura F, et al. Primary intestinal follicular lymphoma and premature atherosclerosis in a Japanese diabetic patient with atypical familial partial lipodystrophy. Intern Med. 2014;53(8):851–8.

    Article  PubMed  Google Scholar 

  76. Rocha N, Payne F, Huang-Doran I, Sleigh A, Fawcett K, Adams C, et al. The metabolic syndrome- associated small G protein ARL15 plays a role in adipocyte differentiation and adiponectin secretion. Sci Rep. 2017;7(1):17593. https://doi.org/10.1038/s41598-017-17746-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Haque WA, Oral EA, Dietz K, Bowcock AM, Agarwal AK, Garg A. Risk factors for diabetes in familial partial lipodystrophy, Dunnigan variety. Diabetes Care. 2003;26(5):1350–5.

    Article  CAS  PubMed  Google Scholar 

  78. Jeru I, Vatier C, Araujo-Vilar D, Vigouroux C, Lascols O. Clinical utility gene card for: familial partial lipodystrophy. Eur J Hum Genet. 2017;25(2). https://doi.org/10.1038/ejhg.2016.102.

  79. Joy T, Kennedy BA, Al-Attar S, Rutt BK, Hegele RA. Predicting abdominal adipose tissue among women with familial partial lipodystrophy. Metabolism. 2009;58(6):828–34. https://doi.org/10.1016/j.metabol.2009.03.001.

    Article  CAS  PubMed  Google Scholar 

  80. Chan D, McIntyre AD, Hegele RA, Don-Wauchope AC. Familial partial lipodystrophy presenting as metabolic syndrome. J Clin Lipidol. 2016;10(6):1488–91. https://doi.org/10.1016/j.jacl.2016.08.012.

    Article  PubMed  Google Scholar 

  81. Sasaki H, Yanagi K, Ugi S, Kobayashi K, Ohkubo K, Tajiri Y, et al. Definitive diagnosis of mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome caused by a recurrent de novo mutation in the POLD1 gene. Endocr J. 2018;65(2):227–38. https://doi.org/10.1507/endocrj.EJ17-0287.

    Article  PubMed  Google Scholar 

  82. Akinci B, Sahinoz, M, Oral EA. Lipodystrophy syndromes: presentation and treatment. In: De Groot LJ CG, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.;2018.

  83. Sorkina E, Frolova E, Rusinova D, Polyakova S, Roslavtseva E, Vasilyev E, et al. Progressive generalized lipodystrophy as a manifestation of autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab. 2016;101(4):1344–7. https://doi.org/10.1210/jc.2015-3722.

    Article  CAS  PubMed  Google Scholar 

  84. Pope E, Janson A, Khambalia A, Feldman B. Childhood acquired lipodystrophy: a retrospective study. J Am Acad Dermatol. 2006;55(6):947–50. https://doi.org/10.1016/j.jaad.2006.05.005.

    Article  PubMed  Google Scholar 

  85. Adachi M, Oto Y, Muroya K, Hanakawa J, Asakura Y, Goto H. Partial lipodystrophy in patients who have undergone hematopoietic stem cell transplantation during childhood: an institutional cross-sectional survey. Clin Pediatr Endocrinol. 2017;26(2):99–108. https://doi.org/10.1297/cpe.26.99.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kimura L, Alvarez G, Li N, Pawlikowska-Haddal A, Moore TB, Casillas J, et al. Temporary resolution of insulin requirement in acquired partial lipodystrophy associated with chronic graft-versus-host disease. Pediatr Blood Cancer. 2017;64(7). https://doi.org/10.1002/pbc.26427.

  87. Halpern B, Nery M, PMAA. First case report of acquired generalized lipodystrophy associated with common variable immunodeficiency. J Clin Endocrinol Metab. 2018. https://doi.org/10.1210/jc.2018-00494.

  88. Savage DB, Semple RK, Clatworthy MR, Lyons PA, Morgan BP, Cochran EK, et al. Complement abnormalities in acquired lipodystrophy revisited. J Clin Endocrinol Metab. 2009;94(1):10–6. https://doi.org/10.1210/jc.2008-1703.

    Article  CAS  PubMed  Google Scholar 

  89. Wong EK, Anderson HE, Herbert AP, Challis RC, Brown P, Reis GS, et al. Characterization of a factor H mutation that perturbs the alternative pathway of complement in a family with membranoproliferative GN. J Am Soc Nephrol. 2014;25(11):2425–33. https://doi.org/10.1681/ASN.2013070732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu X, Hutson I, Akk AM, Mascharak S, Pham CTN, Hourcade DE, et al. Contribution of adipose-derived factor D/adipsin to complement alternative pathway activation: lessons from lipodystrophy. J Immunol. 2018;200(8):2786–97. https://doi.org/10.4049/jimmunol.1701668.

    Article  CAS  PubMed  Google Scholar 

  91. Eren E, Ozkan TB, Cakir ED, Saglam H, Tarim O. Acquired generalized lipodystrophy associated with autoimmune hepatitis and low serum C4 level. J Clin Res Pediatr Endocrinol. 2010;2(1):39–42. https://doi.org/10.4274/jcrpe.v2i1.39.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chiquette E, Oral EA, Garg A, Araujo-Vilar D, Dhankhar P. Estimating the prevalence of generalized and partial lipodystrophy: findings and challenges. Diabetes Metab Syndr Obes. 2017;10:375–83. https://doi.org/10.2147/DMSO.S130810.

    Article  PubMed  PubMed Central  Google Scholar 

  93. de Azevedo Medeiros LB, Candido Dantas VK, Craveiro Sarmento AS, Agnez-Lima LF, Meireles AL, Xavier Nobre TT, et al. High prevalence of Berardinelli-Seip congenital lipodystrophy in Rio Grande do Norte State, Northeast Brazil. Diabetol Metab Syndr. 2017;9:80. https://doi.org/10.1186/s13098-017-0280-7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Haque WA, Shimomura I, Matsuzawa Y, Garg A. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395. https://doi.org/10.1210/jcem.87.5.8624.

    Article  CAS  PubMed  Google Scholar 

  95. Girousse A, Virtue S, Hart D, Vidal-Puig A, Murgatroyd PR, Mouisel E, et al. Surplus fat rapidly increases fat oxidation and insulin resistance in lipodystrophic mice. Mol Metab. 2018;13:24–9. https://doi.org/10.1016/j.molmet.2018.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Poitout V. Glucolipotoxicity of the pancreatic beta-cell: myth or reality? Biochem Soc Trans. 2008;36(Pt 5):901–4. https://doi.org/10.1042/BST0360901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Joy TR, Hegele RA. Prevalence of reproductive abnormalities among women with familial partial lipodystrophy. Endocr Pract. 2008;14(9):1126–32. https://doi.org/10.4158/EP.14.9.1126.

    Article  PubMed  Google Scholar 

  98. Oral EA, Ruiz E, Andewelt A, Sebring N, Wagner AJ, Depaoli AM, et al. Effect of leptin replacement on pituitary hormone regulation in patients with severe lipodystrophy. J Clin Endocrinol Metab. 2002;87(7):3110–7. https://doi.org/10.1210/jcem.87.7.8591.

    Article  CAS  PubMed  Google Scholar 

  99. Ajluni N, Dar M, Xu J, Neidert AH, Oral EA. Efficacy and safety of metreleptin in patients with partial lipodystrophy: lessons from an expanded access program. J Diabetes Metab. 2016;7(3). https://doi.org/10.4172/2155-6156.1000659.

  100. Shea SA, Hilton MF, Orlova C, Ayers RT, Mantzoros CS. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab. 2005;90(5):2537–44. https://doi.org/10.1210/jc.2004-2232.

    Article  CAS  PubMed  Google Scholar 

  101. Caron A, Lee S, Elmquist JK, Gautron L. Leptin and brain-adipose crosstalks. Nat Rev Neurosci. 2018;19(3):153–65. https://doi.org/10.1038/nrn.2018.7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vaisse C, Halaas JL, Horvath CM, Darnell JE Jr, Stoffel M, Friedman JM. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet. 1996;14(1):95–7. https://doi.org/10.1038/ng0996-95.

    Article  CAS  PubMed  Google Scholar 

  103. Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC. Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci U S A. 1996;93(13):6231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Muoio DM, Lynis DG. Peripheral metabolic actions of leptin. Best Pract Res Clin Endocrinol Metab. 2002;16(4):653–66.

    Article  CAS  PubMed  Google Scholar 

  105. Cawthorne MA, Morton NM, Pallett AL, Liu YL, Emilsson V. Peripheral metabolic actions of leptin. Proc Nutr Soc. 1998;57(3):449–53.

    Article  CAS  PubMed  Google Scholar 

  106. D'Souza AM, Neumann UH, Glavas MM, Kieffer TJ. The glucoregulatory actions of leptin. Mol Metab. 2017;6(9):1052–65. https://doi.org/10.1016/j.molmet.2017.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Triantafyllou GA, Paschou SA, Mantzoros CS. Leptin and hormones: energy homeostasis. Endocrinol Metab Clin N Am. 2016;45(3):633–45. https://doi.org/10.1016/j.ecl.2016.04.012.

    Article  Google Scholar 

  108. Meek TH, Morton GJ. The role of leptin in diabetes: metabolic effects. Diabetologia. 2016;59(5):928–32. https://doi.org/10.1007/s00125-016-3898-3.

    Article  CAS  PubMed  Google Scholar 

  109. Lee Y, Ravazzola M, Park BH, Bashmakov YK, Orci L, Unger RH. Metabolic mechanisms of failure of intraportally transplanted pancreatic beta-cells in rats: role of lipotoxicity and prevention by leptin. Diabetes. 2007;56(9):2295–301. https://doi.org/10.2337/db07-0460.

    Article  CAS  PubMed  Google Scholar 

  110. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5. https://doi.org/10.1056/NEJM199602013340503.

    Article  CAS  PubMed  Google Scholar 

  111. Herbst KL, Tannock LR, Deeb SS, Purnell JQ, Brunzell JD, Chait A. Kobberling type of familial partial lipodystrophy: an underrecognized syndrome. Diabetes Care. 2003;26(6):1819–24.

    Article  PubMed  Google Scholar 

  112. Musso C, Cochran E, Moran SA, Skarulis MC, Oral EA, Taylor S, et al. Clinical course of genetic diseases of the insulin receptor (type A and Rabson-Mendenhall syndromes): a 30-year prospective. Medicine (Baltimore). 2004;83(4):209–22.

    Article  CAS  Google Scholar 

  113. Oral EA, Chan JL. Rationale for leptin-replacement therapy for severe lipodystrophy. Endocr Pract. 2010;16(2):324–33. https://doi.org/10.4158/EP09155.RA.

    Article  PubMed  Google Scholar 

  114. Melvin A, O'Rahilly S, Savage DB. Genetic syndromes of severe insulin resistance. Curr Opin Genet Dev. 2018;50:60–7. https://doi.org/10.1016/j.gde.2018.02.002.

    Article  CAS  PubMed  Google Scholar 

  115. McDuffie JR, Riggs PA, Calis KA, Freedman RJ, Oral EA, DePaoli AM, et al. Effects of exogenous leptin on satiety and satiation in patients with lipodystrophy and leptin insufficiency. J Clin Endocrinol Metab. 2004;89(9):4258–63. https://doi.org/10.1210/jc.2003-031868.

    Article  CAS  PubMed  Google Scholar 

  116. Bluher M, Mantzoros CS. From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism. 2015;64(1):131–45. https://doi.org/10.1016/j.metabol.2014.10.016.

    Article  CAS  PubMed  Google Scholar 

  117. Savage DB. Mouse models of inherited lipodystrophy. Dis Model Mech. 2009;2(11–12):554–62. https://doi.org/10.1242/dmm.002907.

    Article  CAS  PubMed  Google Scholar 

  118. Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, et al. Life without white fat: a transgenic mouse. Genes Dev. 1998;12(20):3168–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Reitman ML, Gavrilova O. A-ZIP/F-1 mice lacking white fat: a model for understanding lipoatrophic diabetes. Int J Obes Relat Metab Disord. 2000;24(Suppl 4):S11–4.

    Article  CAS  PubMed  Google Scholar 

  120. •• Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105(3):271–8. https://doi.org/10.1172/JCI7901 The study shows that metabolic aspects of lipodystrophic mice can be reversed by adipose tissue implantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang Z, Turer E, Li X, Zhan X, Choi M, Tang M, et al. Insulin resistance and diabetes caused by genetic or diet-induced KBTBD2 deficiency in mice. Proc Natl Acad Sci U S A. 2016;113(42):E6418–E26. https://doi.org/10.1073/pnas.1614467113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell. 2008;135(2):240–9. https://doi.org/10.1016/j.cell.2008.09.036.

    Article  CAS  PubMed  Google Scholar 

  123. Colombo C, Cutson JJ, Yamauchi T, Vinson C, Kadowaki T, Gavrilova O, et al. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes. 2002;51(9):2727–33.

    Article  CAS  PubMed  Google Scholar 

  124. •• Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401(6748):73–6. https://doi.org/10.1038/43448 This study demonstrates that insulin resistance can be overcome by the administration of recombinant leptin in lipodystrophic mice.

    Article  CAS  PubMed  Google Scholar 

  125. Fernandez-Galilea M, Tapia P, Cautivo K, Morselli E, Cortes VA. AGPAT2 deficiency impairs adipogenic differentiation in primary cultured preadipocytes in a non-autophagy or apoptosis dependent mechanism. Biochem Biophys Res Commun. 2015;467(1):39–45. https://doi.org/10.1016/j.bbrc.2015.09.128.

    Article  CAS  PubMed  Google Scholar 

  126. Pelosi M, Testet E, Le Lay S, Dugail I, Tang X, Mabilleau G, et al. Normal human adipose tissue functions and differentiation in patients with biallelic LPIN1 inactivating mutations. J Lipid Res. 2017;58(12):2348–64. https://doi.org/10.1194/jlr.P075440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Alexaki A, Clarke BA, Gavrilova O, Ma Y, Zhu H, Ma X, et al. De novo sphingolipid biosynthesis is required for adipocyte survival and metabolic homeostasis. J Biol Chem. 2017;292(9):3929–39. https://doi.org/10.1074/jbc.M116.756460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Perepelina K, Dmitrieva R, Ignatieva E, Borodkina A, Kostareva A, Malashicheva A. Lamin A/C mutation associated with lipodystrophy influences adipogenic differentiation of stem cells through interaction with Notch signaling. Biochem Cell Biol. 2018;96(3):342–8. https://doi.org/10.1139/bcb-2017-0210.

    Article  CAS  PubMed  Google Scholar 

  129. Oldenburg A, Briand N, Sorensen AL, Cahyani I, Shah A, Moskaug JO, et al. A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. J Cell Biol. 2017;216(9):2731–43. https://doi.org/10.1083/jcb.201701043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Elzeneini E, Wickstrom SA. Lipodystrophic laminopathy: lamin A mutation relaxes chromatin architecture to impair adipogenesis. J Cell Biol. 2017;216(9):2607–10. https://doi.org/10.1083/jcb.201707090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Friesen M, Cowan CA. FPLD2 LMNA mutation R482W dysregulates iPSC-derived adipocyte function and lipid metabolism. Biochem Biophys Res Commun. 2018;495(1):254–60. https://doi.org/10.1016/j.bbrc.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  132. Captur G, Arbustini E, Bonne G, Syrris P, Mills K, Wahbi K, et al. Lamin and the heart. Heart. 2018;104(6):468–79. https://doi.org/10.1136/heartjnl-2017-312338.

    Article  PubMed  Google Scholar 

  133. Mestroni L, Taylor MR. Lamin A/C gene and the heart: how genetics may impact clinical care. J Am Coll Cardiol. 2008;52(15):1261–2. https://doi.org/10.1016/j.jacc.2008.07.021.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Carboni N, Mateddu A, Marrosu G, Cocco E, Marrosu MG. Genetic and clinical characteristics of skeletal and cardiac muscle in patients with lamin A/C gene mutations. Muscle Nerve. 2013;48(2):161–70. https://doi.org/10.1002/mus.23827.

    Article  CAS  PubMed  Google Scholar 

  135. Mercuri E, Brown SC, Nihoyannopoulos P, Poulton J, Kinali M, Richard P, et al. Extreme variability of skeletal and cardiac muscle involvement in patients with mutations in exon 11 of the lamin A/C gene. Muscle Nerve. 2005;31(5):602–9. https://doi.org/10.1002/mus.20293.

    Article  CAS  PubMed  Google Scholar 

  136. Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev. 2006;20(4):486–500. https://doi.org/10.1101/gad.1364906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hoorntje ET, Bollen IA, Barge-Schaapveld DQ, van Tienen FH, Te Meerman GJ, Jansweijer JA, et al. Lamin A/C-related cardiac disease: late onset with a variable and mild phenotype in a large cohort of patients with the lamin A/C p.(Arg331Gln) founder mutation. Circ Cardiovasc Genet. 2017;10(4). https://doi.org/10.1161/CIRCGENETICS.116.001631.

  138. Guillin-Amarelle C, Fernandez-Pombo A, Sanchez-Iglesias S, Araujo-Vilar D. Lipodystrophic laminopathies: diagnostic clues. Nucleus. 2018;9(1):249–60. https://doi.org/10.1080/19491034.2018.1454167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Akinci B, Unlu SM, Celik A, Simsir IY, Sen S, Nur B, et al. Renal complications of lipodystrophy: a closer look at the natural history of kidney disease. Clin Endocrinol. 2018;89(1):65–75. https://doi.org/10.1111/cen.13732.

    Article  CAS  Google Scholar 

  140. Pongsakul N, Vinaiphat A, Chanchaem P, Fong-Ngern K, Thongboonkerd V. Lamin A/C in renal tubular cells is important for tissue repair, cell proliferation, and calcium oxalate crystal adhesion, and is associated with potential crystal receptors. FASEB J. 2016;30(10):3368–77. https://doi.org/10.1096/fj.201600426R.

    Article  CAS  PubMed  Google Scholar 

  141. Thong KM, Xu Y, Cook J, Takou A, Wagner B, Kawar B, et al. Cosegregation of focal segmental glomerulosclerosis in a family with familial partial lipodystrophy due to a mutation in LMNA. Nephron Clin Pract. 2013;124(1–2):31–7. https://doi.org/10.1159/000354716.

    Article  CAS  PubMed  Google Scholar 

  142. Ito D, Suzuki N. Molecular pathogenesis of seipin/BSCL2-related motor neuron diseases. Ann Neurol. 2007;61(3):237–50. https://doi.org/10.1002/ana.21070.

    Article  CAS  PubMed  Google Scholar 

  143. Guillen-Navarro E, Sanchez-Iglesias S, Domingo-Jimenez R, Victoria B, Ruiz-Riquelme A, Rabano A, et al. A new seipin-associated neurodegenerative syndrome. J Med Genet. 2013;50(6):401–9. https://doi.org/10.1136/jmedgenet-2013-101525.

    Article  CAS  PubMed  Google Scholar 

  144. Lima JG, Nobrega LHC, Lima NN, Dos Santos MCF, Baracho MFP, Winzenrieth R, et al. Normal bone density and trabecular bone score, but high serum sclerostin in congenital generalized lipodystrophy. Bone. 2017;101:21–5. https://doi.org/10.1016/j.bone.2017.03.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fernandez-Pombo A, Ossandon-Otero JA, Guillin-Amarelle C, Sanchez-Iglesias S, Castro AI, Gonzalez-Mendez B, et al. Bone mineral density in familial partial lipodystrophy. Clin Endocrinol. 2018;88(1):44–50. https://doi.org/10.1111/cen.13504.

    Article  CAS  Google Scholar 

  146. Fleckenstein JL, Garg A, Bonte FJ, Vuitch MF, Peshock RM. The skeleton in congenital, generalized lipodystrophy: evaluation using whole-body radiographic surveys, magnetic resonance imaging and technetium-99m bone scintigraphy. Skelet Radiol. 1992;21(6):381–6.

    Article  CAS  Google Scholar 

  147. Vouillarmet J, Laville M. A case of familial partial lipodystrophy: from clinical phenotype to genetics. Can J Diabetes. 2016;40(5):376–8. https://doi.org/10.1016/j.jcjd.2015.12.007.

    Article  PubMed  Google Scholar 

  148. Simha V, Agarwal AK, Oral EA, Fryns JP, Garg A. Genetic and phenotypic heterogeneity in patients with mandibuloacral dysplasia-associated lipodystrophy. J Clin Endocrinol Metab. 2003;88(6):2821–4. https://doi.org/10.1210/jc.2002-021575.

    Article  CAS  PubMed  Google Scholar 

  149. Young SG, Jung HJ, Lee JM, Fong LG. Nuclear lamins and neurobiology. Mol Cell Biol. 2014;34(15):2776–85. https://doi.org/10.1128/MCB.00486-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Miehle K, Ebert T, Kralisch S, Hoffmann A, Kratzsch J, Schlogl H, et al. Progranulin is increased in human and murine lipodystrophy. Diabetes Res Clin Pract. 2016;120:1–7. https://doi.org/10.1016/j.diabres.2016.07.017.

    Article  CAS  PubMed  Google Scholar 

  151. Hegele RA, Kraw ME, Ban MR, Miskie BA, Huff MW, Cao H. Elevated serum C-reactive protein and free fatty acids among nondiabetic carriers of missense mutations in the gene encoding lamin A/C (LMNA) with partial lipodystrophy. Arterioscler Thromb Vasc Biol. 2003;23(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  152. Akinci G, Topaloglu H, Demir T, Danyeli AE, Talim B, Keskin FE, et al. Clinical spectra of neuromuscular manifestations in patients with lipodystrophy: a multicenter study. Neuromuscul Disord. 2017;27(10):923–30. https://doi.org/10.1016/j.nmd.2017.05.015.

    Article  PubMed  Google Scholar 

  153. Miehle K, Ebert T, Kralisch S, Hoffmann A, Kratzsch J, Schlogl H, et al. Serum concentrations of fetuin B in lipodystrophic patients. Cytokine. 2018;106:165–8. https://doi.org/10.1016/j.cyto.2017.10.028.

    Article  CAS  PubMed  Google Scholar 

  154. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093–103. https://doi.org/10.1172/JCI15693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Oral EA, Javor ED, Ding L, Uzel G, Cochran EK, Young JR, et al. Leptin replacement therapy modulates circulating lymphocyte subsets and cytokine responsiveness in severe lipodystrophy. J Clin Endocrinol Metab. 2006;91(2):621–8. https://doi.org/10.1210/jc.2005-1220.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our patients who have inspired us for the last two decades. In addition, the clinical research team at UM comprised of Nevin Ajluni, MD, Adam Neidert, MS, Rita Hench, BS, Diana Rus, BS, and Jelal Eldin Abdel Wahab, MD provided invaluable support for the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Arioglu Oral.

Ethics declarations

Conflict of Interest

Baris Akinci has attended Scientific Advisory Board Meetings organized by Aegerion Pharmaceuticals and has received honoraria as a speaker from AstraZeneca, Lilly, MSD, Novartis, Novo Nordisk, Boehringer-Ingelheim, Servier, and Sanofi-Aventis.

Rasimcan Meral declares that he has no conflict of interest.

Elif Arioglu Oral reports the following conflicts: Grant support: Aegerion Pharmaceuticals, Ionis Pharmaceuticals, Akcea Therapeutics, Gemphire Therapeutics (current), GI Dynamics, and AstraZeneca (the past 2 years). Consultant or advisor: AstraZeneca and BMS (Past), Thera Therapeutics, Regeneron, and Aegerion (current). Drug support: Aegerion Pharmaceuticals, Akcea Therapeutics, and Rhythm Pharmaceuticals. Other support: Boehringer Ingelheim (the past 2 years) and Aegerion Pharmaceuticals (current). She also has two patents: one patent is currently with Aegerion for the use of metreleptin for the treatment of lipodystrophy syndromes (issued and licensed, but she has not received any royalties, they go to the NIH), and the second patent is for the use of metreleptin in the treatment of NASH.

Human and Animal Rights and Informed Consent

This article does not contain any active studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinci, B., Meral, R. & Oral, E.A. Phenotypic and Genetic Characteristics of Lipodystrophy: Pathophysiology, Metabolic Abnormalities, and Comorbidities. Curr Diab Rep 18, 143 (2018). https://doi.org/10.1007/s11892-018-1099-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1099-9

Keywords

Navigation