Skip to main content

Advertisement

Log in

The relationship between body composition and bone mineral content: threshold effects in a racially and ethnically diverse group of men

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We examined BMC and body composition in 1,209 black, Hispanic, and white men. Weight, BMI, waist circumference, and fat mass were associated with BMC only up to certain thresholds, whereas lean mass exhibited more consistent associations. The protective influence of increased weight appears to be driven by lean mass.

Introduction

Reduced body size is associated with decreased bone mass and increased fracture risk, but associations in men and racially/ethnically diverse populations remain understudied. We examined bone mineral content (BMC) at the hip, spine, and forearm as a function of body weight, body mass index (BMI), waist circumference, fat mass (FM), and nonbone lean mass (LM).

Methods

The design was cross-sectional; 363 non-Hispanic black, 397 Hispanic, and 449 non-Hispanic white residents of greater Boston participated (N = 1,209, ages 30–79 y). BMC, LM, and FM were measured by DXA. Multiple linear regression was used to describe associations.

Results

Weight, BMI, waist circumference, and FM were associated with BMC only up to certain thresholds. LM, by contrast, displayed strong and consistent associations; in multivariate models, femoral neck BMC exhibited a 13% increase per 10 kg cross-sectional increase in LM. In models controlling for LM, positive associations between BMC and other body composition measures were eliminated. Results did not vary by race/ethnicity.

Conclusions

The protective effect of increased body size in maintaining bone mass is likely due to the influence of lean tissue. These results suggest that maintenance of lean mass is the most promising strategy in maintaining bone health with advancing age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. National Institutes of Health (2001) Osteoporosis prevention, diagnosis, and therapy. National Institutes of Health Consensus Development Conference Statement. Jama 285:785–795

    Google Scholar 

  2. Amin S (2003) Male osteoporosis: epidemiology and pathophysiology. Curr Osteoporos Rep 1:71–77

    Article  PubMed  Google Scholar 

  3. Amin S, Felson, DT (2001) Osteoporosis in men. Rheum Dis Clin North Am 27:19–47

    Article  PubMed  CAS  Google Scholar 

  4. Wright VJ (2006) Osteoporosis in men. J Am Acad Orthop Surg 14:347–353

    PubMed  Google Scholar 

  5. George A, Tracy JK, Meyer WA, Flores RH, Wilson PD, Hochberg MC (2003) Racial differences in bone mineral density in older men. J Bone Miner Res 18:2238–2244

    Article  PubMed  Google Scholar 

  6. Henry YM, Eastell R (2000) Ethnic and gender differences in bone mineral density and bone turnover in young adults: effect of bone size. Osteoporos Int 11:512–517

    Article  PubMed  CAS  Google Scholar 

  7. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC Jr, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  PubMed  CAS  Google Scholar 

  8. Tracy JK, Meyer WA, Flores RH, Wilson PD, Hochberg MC (2005) Racial differences in rate of decline in bone mass in older men: the Baltimore men’s osteoporosis study. J Bone Miner Res 20:1228–1234

    Article  PubMed  Google Scholar 

  9. Tracy JK, Meyer WA, Grigoryan M, Fan B, Flores RH, Genant HK, Resnik C, Hochberg MC (2006) Racial differences in the prevalence of vertebral fractures in older men: the Baltimore Men’s Osteoporosis Study. Osteoporos Int 17:99–104

    Article  PubMed  Google Scholar 

  10. Seeman E, Bianchi G, Khosla S, Kanis JA, Orwoll E (2006) Bone fragility in men - where are we? Osteoporos Int

  11. Heaney RP (1995) Bone mass, the mechanostat, and ethnic differences. J Clin Endocrinol Metab 80:2289–2290

    Article  PubMed  CAS  Google Scholar 

  12. Cauley JA (2002) The determinants of fracture in men. J Musculoskelet Neuronal Interact 2:220–221

    PubMed  CAS  Google Scholar 

  13. Araujo AB, Travison TG, Harris SS, Holick MF, Turner AK, McKinlay JB (2007) Race/ethnic differences in bone mineral density in men. Osteoporos Int [Epub ahead of print]

  14. Blank JB, Cawthon PM, Carrion-Petersen ML, Harper L, Johnson JP, Mitson E, Delay RR (2005) Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials 26:557–568

    Article  PubMed  Google Scholar 

  15. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC Jr, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  PubMed  CAS  Google Scholar 

  16. Orwoll E, Blank JB, Barrett-Connor E, Cauley J, Cummings S, Ensrud K, Lewis C, Cawthon PM, Marcus R, Marshall LM, McGowan J, Phipps K, Sherman S, Stefanick ML, Stone K (2005) Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study–a large observational study of the determinants of fracture in older men. Contemp Clin Trials 26:569–585

    Article  PubMed  Google Scholar 

  17. Cauley JA, Fullman RL, Stone KL, Zmuda JM, Bauer DC, Barrett-Connor E, Ensrud K, Lau EM, Orwoll ES (2005) Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int 16:1525–1537

    Article  PubMed  Google Scholar 

  18. Coin A, Sergi G, Beninca P, Lupoli L, Cinti G, Ferrara L, Benedetti G, Tomasi G, Pisent C, Enzi G (2000) Bone mineral density and body composition in underweight and normal elderly subjects. Osteoporos Int 11:1043–1050

    Article  PubMed  CAS  Google Scholar 

  19. Edelstein SL, Barrett-Connor E (1993) Relation between body size and bone mineral density in elderly men and women. Am J Epidemiol 138:160–169

    PubMed  CAS  Google Scholar 

  20. Huuskonen J, Vaisanen SB, Kroger H, Jurvelin C, Bouchard C, Alhava E, Rauramaa R (2000) Determinants of bone mineral density in middle aged men: a population-based study. Osteoporos Int 11:702–708

    Article  PubMed  CAS  Google Scholar 

  21. Kirchengast S, Peterson B, Hauser G, Knogler W (2001) Body composition characteristics are associated with the bone density of the proximal femur end in middle- and old-aged women and men. Maturitas 39:133–145

    Article  PubMed  CAS  Google Scholar 

  22. Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555

    Article  PubMed  CAS  Google Scholar 

  23. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  CAS  Google Scholar 

  24. Bakhireva LN, Barrett-Connor E, Kritz-Silverstein D, Morton DJ (2004) Modifiable predictors of bone loss in older men: a prospective study. Am J Prev Med 26:436–442

    Article  PubMed  Google Scholar 

  25. Ensrud KE, Fullman RL, Barrett-Connor E, Cauley JA, Stefanick ML, Fink HA, Lewis CE, Orwoll E (2005) Voluntary weight reduction in older men increases hip bone loss: the osteoporotic fractures in men study. J Clin Endocrinol Metab 90:1998–2004

    Article  PubMed  CAS  Google Scholar 

  26. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP (2000) Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:710–720

    Article  PubMed  CAS  Google Scholar 

  27. Bakker I, Twisk JW, Van Mechelen W, Kemper HC (2003) Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and women. J Clin Endocrinol Metab 88:2607–2613

    Article  PubMed  CAS  Google Scholar 

  28. Capozza RF, Cointry GR, Cure-Ramirez P, Ferretti JL, Cure-Cure C (2004) A DXA study of muscle-bone relationships in the whole body and limbs of 2512 normal men and pre- and post-menopausal women. Bone 35:283–295

    Article  PubMed  CAS  Google Scholar 

  29. Ferretti JL, Capozza RF, Cointry GR, Garcia SL, Plotkin H, Alvarez Filgueira ML, Zanchetta JR (1998) Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22:683–690

    Article  PubMed  CAS  Google Scholar 

  30. Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, Laird N, Brain JD, Cummings SR, Bouxsein ML, Rosen CJ, Xu X (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 83:146–154

    PubMed  CAS  Google Scholar 

  31. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    Article  PubMed  CAS  Google Scholar 

  32. Reid IR, Plank LD, Evans MC (1992) Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 75:779–782

    Article  PubMed  CAS  Google Scholar 

  33. Lim S, Joung H, Shin CS, Lee HK, Kim KS, Shin EK, Kim HY, Lim MK, Cho SI (2004) Body composition changes with age have gender-specific impacts on bone mineral density. Bone 35:792–798

    Article  PubMed  Google Scholar 

  34. Taaffe DR, Cauley JA, Danielson M, Nevitt MC, Lang TF, Bauer DC, Harris TB (2001) Race and sex effects on the association between muscle strength, soft tissue, and bone mineral density in healthy elders: the Health, Aging, and Body Composition Study. J Bone Miner Res 16:1343–1352

    Article  PubMed  CAS  Google Scholar 

  35. Van Langendonck L, Claessens AL, Lefevre J, Thomis M, Philippaerts R, Delvaux K, Lysens R, Vanden Eynde B, Beunen G (2002) Association between bone mineral density (DXA), body structure, and body composition in middle-aged men. Am J Hum Biol 14:735–742

    Article  PubMed  Google Scholar 

  36. Khosla S, Atkinson EJ, Riggs BL, Melton LJ 3rd (1996) Relationship between body composition and bone mass in women. J Bone Miner Res 11:857–863

    Article  PubMed  CAS  Google Scholar 

  37. Stewart KJ, Deregis JR, Turner KL, Bacher AC, Sung J, Hees PS, Tayback M, Ouyang P (2002) Fitness, fatness and activity as predictors of bone mineral density in older persons. J Intern Med 252:381–388

    Article  PubMed  CAS  Google Scholar 

  38. Pluijm SM, Visser M, Smit JH, Popp-Snijders C, Roos JC, Lips P (2001) Determinants of bone mineral density in older men and women: body composition as mediator. J Bone Miner Res 16:2142–2151

    Article  PubMed  CAS  Google Scholar 

  39. Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, McClung M, Hosking D, Yates AJ, Christiansen C (1999) Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res 14:1622–1627

    Article  PubMed  CAS  Google Scholar 

  40. Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37:474–481

    Article  PubMed  CAS  Google Scholar 

  41. Wu F, Ames R, Clearwater J, Evans MC, Gamble G, Reid IR (2002) Prospective 10-year study of the determinants of bone density and bone loss in normal postmenopausal women, including the effect of hormone replacement therapy. Clin Endocrinol (Oxf) 56:703–711

    Article  CAS  Google Scholar 

  42. McKinlay JB, Link, CL (2007 [Epub ahead of print]) Measuring the Urologic Iceberg: Design and Implementation of The Boston Area Community Health (BACH) Survey. Eur Urol

  43. Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA (1999) The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol 52:643–651

    Article  PubMed  CAS  Google Scholar 

  44. Reuben DB, Siu AL (1990) An objective measure of physical function of elderly outpatients. The Physical Performance Test. J Am Geriatr Soc 38:1105–1112

    PubMed  CAS  Google Scholar 

  45. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49:M85–94

    PubMed  CAS  Google Scholar 

  46. Wallman K (1997) Data on race and ethnicity: Revising the federal standard. Am Stat 31–35

  47. Kish L (1965) Sampling Organizations And Groups Of Unequal Sizes. Am Sociol Rev 30:564–572

    Article  PubMed  CAS  Google Scholar 

  48. Hastie TJ, Tibshurani, RJ (1990) Generalized additive models. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  49. Chen Z, Lohman TG, Stini WA, Ritenbaugh C, Aickin M (1997) Fat or lean tissue mass: which one is the major determinant of bone mineral mass in healthy postmenopausal women? J Bone Miner Res 12:144–151

    Article  PubMed  CAS  Google Scholar 

  50. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275:1081–1101

    Article  PubMed  Google Scholar 

  51. Frost HM (1996) Perspectives: a proposed general model of the "mechanostat" (suggestions from a new skeletal-biologic paradigm). Anat Rec 244:139–147

    Article  PubMed  CAS  Google Scholar 

  52. Seeman E (2001) Clinical review 137: Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584

    Article  PubMed  CAS  Google Scholar 

  53. Bolotin HH (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness. Bone 28:548–555

    Article  PubMed  CAS  Google Scholar 

  54. Bolotin HH, Sievanen, H, Grashuis, JL (2003) Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res 18:1020–1027

    Article  PubMed  CAS  Google Scholar 

  55. Morley JE (2006) Is weight loss harmful to older men? Aging Male 9:135–137

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The BACH/Bone study was supported by grant AG 20727 from the National Institute on Aging (NIA). The parent study (BACH) was supported by grant DK 56842 from the National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Travison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Travison, T.G., Araujo, A.B., Esche, G.R. et al. The relationship between body composition and bone mineral content: threshold effects in a racially and ethnically diverse group of men. Osteoporos Int 19, 29–38 (2008). https://doi.org/10.1007/s00198-007-0431-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0431-z

Keywords

Navigation