Skip to main content
Log in

Numerical solution of the linearized fixed gravimetric boundary-value problem

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The fixed gravimetric boundary-value problem (FGBVP) represents an exterior oblique derivative problem for the Laplace equation. Terrestrial gravimetric measurements located by precise satellite positioning yield oblique derivative boundary conditions in the form of surface gravity disturbances. In this paper, we discuss the boundary element method (BEM) applied to the linearized FGBVP. In spite of previous BEM approaches in geodesy, we use the so-called direct BEM formulation, where a weak formulation is derived through the method of weighted residuals. The collocation technique with linear basis functions is applied for deriving the linear system of equations from the arising boundary integral equations. The nonstationary iterative biconjugate gradient stabilized method is used to solve the large-scale linear system of equations. The standard MPI (message passing interface) subroutines are implemented in order to perform parallel computations. The proposed approach gives a numerical solution at collocation points directly on the Earth’s surface (on a fixed boundary). Numerical experiments deal with (i) global gravity field modelling using synthetic data (surface gravity disturbances generated from a global geopotential model (GGM)) (ii) local gravity field modelling in Slovakia using observed gravity data. In order to extend computations, the memory requirements are reduced using elimination of the far-zone effects by incorporating GGM or a coarse global numerical solution obtained by BEM. Statistical characteristics of residuals between numerical solutions and GGM confirm the reliability of the approach and indicate accuracy of numerical solutions for the global models. A local refinement in Slovakia results in a local (national) quasigeoid model, which when compared with GPS-levelling data, does not make a large improvement on existing remove-restore-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen OB, Knudsen P, Trimmer RG (2005) Improving high resulution altimetric gravity field mapping. In: Sanso F (ed) A window on the Future of geodesy, IAG symposia, vol 128. Springer, Berlin, pp 326–331

    Chapter  Google Scholar 

  • Aoyama Y, Nakano J (1999) RS/6000 SP: Practical MPI programming. IBM, Poughkeepsie, New York

    Google Scholar 

  • Backus GE (1968) Application of a non-linear boundary-value problem for Laplace’s equation to gravity and geomagnetic intensity surveys. Q J Mech Appl Math 2: 195–221

    Article  Google Scholar 

  • Balaš J, Sládek J, Sládek V (1985) Analýza napätí metódou hraničných integrálnych rovníc. Veda, Bratislava (in Czech)

  • Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, Van der Vorst H (1994) Templates for the solution of linearsystems: building blocks for iterative methods. http://www.netlib.org/templates/Templates.html.

  • Becker J, Sandwell D (2003) Accuracy and resolution of Shuttle Radar topography mission data. Geophys Res Lett 30(9)

  • Bjerhammar A, Svensson L (1983) On the geodetic boundary-value problem for a fixed boundary surface-satellite approach. Bull Géod 57:382–393

    Article  Google Scholar 

  • Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary element techniques, theory and applications in engineering. Springer, New York

    Google Scholar 

  • Čunderlík R (2004) Boundary element method applied to the Neumann geodetic boundary value problem. PhD Thesis, SvF STU, Bratislava

  • Čunderlík R, Mikula K, Mojzeš M (2002) 3D BEM application to Neumann geodetic BVP using thecollocation with linear basis functions. In: Proceedings of contributed papers and posters, ALGORITMY 2002, Conference on Scientific Computing, Vysoké Tatry-Podbanské, pp 268–275

  • Čunderlík R, Mikula K, Mojzeš M (2004) A comparison of the variational solution to the Neumann geodetic boundary value problem with the geopotential model EGM-96. Contr. to Geophysics & Geodesy, vol 34, No. 3, Bratislava

  • Grafarend EW (1989) The geoid and the gravimetric boundary-value problem. Rep 18 Dept Geod, The Royal Institute of Technology, Stockholm

  • Greengard L, Rokhlin V (1987) A fast algorithm for particle simulation. J Comp Physics 73:325–348

    Article  Google Scholar 

  • Hackbusch W, Nowak ZP (1989) On the fast matrix multiplication in the boundary element method by panel clustering. Numerische Mathmatik 54:463–491

    Article  Google Scholar 

  • Hartmann F (1989) Introduction to boundary elements. Theory and applications. Springer, Berlin

    Google Scholar 

  • Heck B (1989a) On the non-linear geodetic boundary value problem for a fixed boundary surface. Bull Géod 63:57–67

    Article  Google Scholar 

  • Heck B (1989b) A contribution to the scalar free boundary value problem of physical geodesy. Man Geod 14:87–99

    Google Scholar 

  • Holota P (1997) Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation. J Geodesy 71(10):640–651

    Article  Google Scholar 

  • Holota P (2005) Neumann’s boundary-value problem in studies on Earth gravity field: weak solution. In: 50 years of the Research Institute of Geodesy, Topography and Cartography, Prague, vol 50, 34:49–69

  • Hörmander L (1976) The boundary problems of physical geodesy. Arch Rat Mech Anal 62:1–52

    Article  Google Scholar 

  • Kirby JF (2003) On the combination of gravity anomalies and gravity disturbances for geoid determination in Western Australia. J Geodesy 77(7–8):433–439

    Article  Google Scholar 

  • Klees R (1992) Loesung des fixen geodaetischen Randwertproblems mit Hilfe der Randelementmethode. DGK, Reihe C, Nr. 382, Muenchen

  • Klees R (1998) Topics on boundary element methods. In: Sanso F, Rummel R (eds) geodetic boundary value problems in view of the one centimeter geoid, Lecture Notes in Earth Sciences vol 65. Springer, Heidelberg, pp 482–531

    Google Scholar 

  • Klees R, Van Gelderen M, Lage C, Schwab C (2001) Fast numerical solution of the linearized Molodensky problem. J Geod 75:349–362

    Article  Google Scholar 

  • Koch KR, Pope AJ (1972) Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bull Géod 46:467–476

    Article  Google Scholar 

  • Laursen ME, Gellert M (1978) Some criteria for numerically integrated matrices and quadrature formulas for triangles. Int J Numer Methods Eng 12:67–76

    Article  Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) EGM-96 - The Development of the NASA GSFC and NIMA Joint Geopotential Model. NASA Technical Report TP-1998–206861

  • Lehmann R (1997a) Fast space-domain evaluation of geodetic surface integrals. J Geod 71:533–540

    Article  Google Scholar 

  • Lehmann R (1997b) Solving geodetic boundary value problems with parallel computers. In: Sanso F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter Geoid. Lecture Notes in Earth Sciences, vol 65. Springer, Berlin

    Google Scholar 

  • Lehmann R (1997c) Studies on the use of boundary element methods in physical Geodesy. Publ. German Geodetic Commission, Series A, No. 113. Munich

  • Lehmann R, Klees R (1996) Parallel setup of Galerkin equation system for a geodetic boundary value problem. In: Hackbusch W, Wittum G (eds) Boundary elements: implementation and analysis of advanced algorithms, Notes on Numerical Fluid Mechanics vol 54, Vieweg Verlag, Braunschweig

  • Lucquin B, Pironneau O (1998) Introduction to scientific computing. Wiley, Chichester

    Google Scholar 

  • Molodenskij MS, Jeremejev BF, Jurkina MI (1962) Methods for study of the external gravitational field and figure of the Earth. Israel program for scientific translations, Jerusalem (translated from Russian original, Moscow, 1960)

  • Mojzeš M, Janák J, Papčo J (2005) Gravimetric model of Quasigeoid in the area of Slovakia. Acta Montanistica Slovaca 10(2):161–165

    Google Scholar 

  • Moritz H(1980) Advanced physical Geodesy. Helbert Wichmann Verlag, Karlsruhe

    Google Scholar 

  • NIMA (2001) Department of Defense World Geodetic System 1984, Its definition and relationships With local Geodetic systems, 3rd edn, National Geospatial-Intelligence Agency. Technical Report TR8350.2

  • Sacerdote F, Sansó F (1989) On the analysis of the fixed-boundary gravimetric boundary-value problem. In: Sacerdote F, Sansó F (eds) Proceedings of the 2nd Hotine-Marussi Symp Math Geod, Pisa, 1989, Politecnico di Milano, pp 507–516

  • Schatz AH, Thomée V, Wendland WL (1990) Mathematical theory of finite and boundary element methods. Birkhäuser Verlag, Basel·Boston·Berlin

  • Schwarz KP, Sideris MG, Forsberg R (1990) The use of FFT in physical geodesy. Geophys J Int 100(3):485–514

    Article  Google Scholar 

  • Tscherning CC, Knudsen P, Forsberg R (1994) Description of the GRAVSOFT package. Geophysical Institute, University of Copenhagen, Technical Report, 4th edn

  • Wolfram S (1996) The Mathematica book 3rd edn Wolfram Media. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Čunderlík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čunderlík, R., Mikula, K. & Mojzeš, M. Numerical solution of the linearized fixed gravimetric boundary-value problem. J Geod 82, 15–29 (2008). https://doi.org/10.1007/s00190-007-0154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0154-0

Keywords

Navigation