Skip to main content

Role of P-Glycoprotein for Resistance of Tumors to Anticancer Drugs: From Bench to Bedside

  • Chapter
  • First Online:
Resistance to Targeted ABC Transporters in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 4))

Abstract

Success of cancer chemotherapy is limited by simultaneous resistance towards many anticancer drugs making clinical combination therapy protocols less efficient. P-glycoprotein represents an efflux pump of the ABC transporter family, which recognizes and extrudes anticancer drugs of diverse chemical classes and biochemical functions. The P-glycoprotein-mediated profile of cross-resistance has been termed multidrug resistance (MDR). In our investigations, we focused on MDR of in vivo tumor lines maintained in mice. The development of in vivo resistance towards anthracyclines (doxorubicin, daunorubicin) in L1210 and S180 ascites tumor lines was accompanied with decreased uptake and increased efflux of the fluorescent dye rhodamine 123, overexpression of P-glycoprotein as well as MDR1 mRNA overexpression and MDR1 gene amplification. In addition to acquired multidrug resistance in these syngeneic mouse tumor lines, we investigated inherent drug resistance in human lung xenograft tumors transplanted to nude mice. Drug resistance in these xenografts was also associated with overexpression of P-glycoprotein and MDR1 mRNA, but without MDR1 gene amplification. Furthermore, we explored P-glycoprotein expression in clinical biopsies of diverse tumor entities (leukemia, lung cancer, breast cancer, cervical carcinoma, endometrial carcinoma. nephroblastoma, renal cell carcinoma) and found that high levels of P-glycoprotein expression correlated with pretreatment with chemotherapy, drug resistance, and failure to achieve complete remission. During the past years, a wealth of publications worldwide confirmed a role of the P-glycoprotein for clinical treatment refractoriness and as an unfavorable prognostic factor for survival time of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhoads CP. Report on a cooperative study of nitrogen mustard (HN2) therapy of neoplastic disease. Trans Assoc Am Physicians. 1947;60:110–7.

    CAS  PubMed  Google Scholar 

  2. Welch AD. The problem of drug resistance in cancer chemotherapy. Cancer Res. 1959;19(4):359–71.

    CAS  PubMed  Google Scholar 

  3. Shapiro DM. Combination chemotherapy of cancer based upon quantitative biochemical differences. Surg Forum. 1955;5:646–50.

    CAS  PubMed  Google Scholar 

  4. Frei 3rd E, Holland JF, Schneiderman MA, Pinkel D, Selkirk G, Freireich EJ, et al. A comparative study of two regimens of combination chemotherapy in acute leukemia. Blood. 1958;13:1126–48.

    Google Scholar 

  5. DeVita Jr VT, Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med. 1970;73:881–95.

    Article  PubMed  Google Scholar 

  6. Kessel D, Botterill V, Woodinsky I. Uptake and retention of daunomycin by mouse leukemic cells as a factor in drug response. Cancer Res. 1968;28:938–41.

    CAS  PubMed  Google Scholar 

  7. Biedler JL, Chang TD, Meyers MB, Peterson RH, Spengler BA. Drug resistance in Chinese hamster lung and mouse tumor cells. Cancer Treat Rep. 1983;67:859–67.

    CAS  PubMed  Google Scholar 

  8. Riordan JR, Ling V. Genetic and biochemical characterization of multidrug resistance. Pharmacol Ther. 1985;28:51–75.

    Article  CAS  PubMed  Google Scholar 

  9. Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973;323:466–83.

    Article  CAS  PubMed  Google Scholar 

  10. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455:152–62.

    Article  CAS  PubMed  Google Scholar 

  11. Skovsgaard T. Mechanisms of resistance to daunorubicin in Ehrlich ascites tumor cells. Cancer Res. 1978;38:1785–91.

    CAS  PubMed  Google Scholar 

  12. Riordan JR, Ling V. Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J Biol Chem. 1979;254:12701–5.

    CAS  PubMed  Google Scholar 

  13. Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci USA. 1986;83:4538–42.

    Google Scholar 

  14. Watson MB, Lind MJ, Cawkwell L. Establishment of in-vitro models of chemotherapy resistance. Anticancer Drugs. 2007;18:749–54.

    Article  CAS  PubMed  Google Scholar 

  15. Roepe PD. The role of the MDR protein in altered drug translocation across tumor cell membranes. Biochim Biophys Acta. 1995;1241:385–405.

    Article  PubMed  Google Scholar 

  16. Higgins CF. P-glycoprotein and cell volume-activated chloride channels. J Bioenerg Biomembr. 1995;27:63–70.

    Article  CAS  PubMed  Google Scholar 

  17. Higgins CF, Gottesman MM. Is the multidrug transporter a flippase? Trends Biochem Sci. 1992;17:18–21.

    Article  CAS  PubMed  Google Scholar 

  18. Sharom FJ. The P-glycoprotein multidrug transporter. Essays Biochem. 2011;50:161–78.

    Article  CAS  PubMed  Google Scholar 

  19. Ramu A, Glaubiger D, Magrath IT, Joshi A. Plasma membrane lipid structural order in doxorubicin-sensitive and -resistant P388 cells. Cancer Res. 1983;43:5533–7.

    CAS  PubMed  Google Scholar 

  20. Nielsen D, Maare C, Skovsgaard T. Influx of daunorubicin in multidrug resistant Ehrlich ascites tumour cells: correlation to expression of P-glycoprotein and efflux. Influence of verapamil. Biochem Pharmacol. 1995;50:443–50.

    Article  CAS  PubMed  Google Scholar 

  21. Schimke RT, Kaufman RJ, Alt FW, Kellems RF. Gene amplification and drug resistance in cultured murine cells. Science. 1978;202:1051–5.

    Article  CAS  PubMed  Google Scholar 

  22. Haber M, Reed C, Kavallaris M, Norris MD, Stewart BW. Resistance to drugs associated with the multidrug resistance phenotype following selection with high-concentration methotrexate. J Natl Cancer Inst. 1989;81:1250–4.

    Article  CAS  PubMed  Google Scholar 

  23. Efferth T, Verdörfer I, Miyachi H, Sauerbrey A, Drexler HG, Chitambar CR, et al. Genomic imbalances in drug-resistant T-cell acute lymphoblastic CEM leukemia cell lines. Blood Cells Mol Dis. 2002;29:1–13.

    Google Scholar 

  24. Volm M, Drings P, Mattern J, Sonka J, Vogt-Moykopf I, Wayss K. Prognostic significance of DNA patterns and resistance-predictive tests in non-small cell lung carcinoma. Cancer. 1985;56:1396–403.

    Article  CAS  PubMed  Google Scholar 

  25. Volm M, Bak Jr M, Efferth T, Mattern J. Induced multidrug resistance in murine leukemia L1210 and associated changes in a surface-membrane glycoprotein. J Cancer Res Clin Oncol. 1989;115:17–24.

    Article  CAS  PubMed  Google Scholar 

  26. Tapiero H, Munck JN, Fourcade A, Lampidis TJ. Cross-resistance to rhodamine 123 in Adriamycin- and daunorubicin-resistant Friend leukemia cell variants. Cancer Res. 1984;44:5544–9.

    CAS  PubMed  Google Scholar 

  27. Efferth T. Immuhistochemischer Nachweis von P-Glykoprotein und Akkumulation von Rhodamin 123 in tierischen und menschlichen Tumoren. PhD Thesis. Ruprecht Karls University, Heidelberg, Germany. 1990.

    Google Scholar 

  28. Efferth T, Klett T, Mattern J, Osswald H, Pommerenke EW, Stöhr M, et al. Reversing multidrug resistance in L1210 tumor cells by hycanthone or chlorophenoxamine in vitro and in vivo. Anticancer Res. 1991;11:1275–9.

    Google Scholar 

  29. Volm M, Efferth T, Günther A, Lathan B. Detection of murine S180 cells expressing a multidrug resistance phenotype using different in vitro test systems and a monoclonal antibody. Arzneimittelforschung/Drug Res. 1987;37:862–7.

    CAS  Google Scholar 

  30. Volm M, Bak Jr M, Efferth T, Mattern J. Induced multidrug-resistance in murine sarcoma 180 cells grown in vitro and in vivo and associated changes in expression of multidrug-resistance DNA-sequences and membrane glycoproteins. Anticancer Res. 1988;8:1169–78.

    CAS  PubMed  Google Scholar 

  31. Volm M, Mattern J, Efferth T. P-Glykoprotein als Marker für Multidrug-Resistenz in Tumoren und Normalgewebe. Tumor Diagn Ther. 1990;11:189–97.

    Google Scholar 

  32. Volm M, Mattern J, Pommerenke EW. Time course of MDR gene amplification during in vivo selection for doxorubicin-resistance and during reversal in murine leukemia L1210. Anticancer Res. 1991;11:579–86.

    CAS  PubMed  Google Scholar 

  33. Volm M. Multidrug Resistenz von Tumoren. Themen aus der Wissenschaft 6. Universität Kaiserslautern. ISBN 3-925 178-10-4; 1992. p 57–78.

    Google Scholar 

  34. Mattern J, Bak M, Volm M. Occurrence of a multidrug-resistant phenotype in human lung xenografts. Br J Cancer. 1987;56:407–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Volm M, Bak M, Mattern J. Intrinsic drug resistance in a human lung carcinoma xenograft is associated with overexpression of multidrug-resistance, DNA-sequences and of plasma membran glycoproteins. Arzneimittelforschung/Drug Res. 1988;38:1189–93.

    CAS  Google Scholar 

  36. Volm M. P-glycoprotein associated expression of c-fos and c-jun products in human lung carcinomas. Anticancer Res. 1993;13:375–8.

    CAS  PubMed  Google Scholar 

  37. Volm M, Efferth T. Resistenzüberwindung bei Tumoren. Dtsch Med Wschr. 1994;119:475–9.

    Article  CAS  PubMed  Google Scholar 

  38. Volm M, Samsel B, Mattern J. Relationship between chemoresistance of lung tumours and cigarette smoking. Br J Cancer. 1990;62:255–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fairchild CR, Ivy SP, Rushmore T, Lee G, Koo P, Goldsmith ME, et al. Carcinogen-induced mdr overexpression is associated with xenobiotic resistance in rat preneoplastic liver nodules and hepatocellular carcinomas. Proc Natl Acad Sci USA. 1987;84:7701–5.

    Google Scholar 

  40. Thorgeirsson SS, Huber BE, Sorrell S, Fojo A, Pastan I, Gottesman MM. Expression of the multidrug-resistant gene in hepatocarcinogenesis and regenerating rat liver. Science. 1987;236:1120–2.

    Article  CAS  PubMed  Google Scholar 

  41. Volm M, Zerban H, Mattern J, Efferth T. Overexpression of P-glycoprotein in rat hepatocellular carcinomas induced with N-nitrosomorpholine. Carcinogenesis. 1990;11:169–72.

    Article  CAS  PubMed  Google Scholar 

  42. Volm M, Mattern J, Samsel B. Overexpression of P-glycoprotein and glutathione S-transferase-pi in resistant non-small cell lung carcinomas of smokers. Br J Cancer. 1991;64:700–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Volm M, Efferth T, Bak M, Mattern J. Detection of drug resistance in human ovarian carcinoma. Arch Gynecol Obstet. 1989;244:123–8.

    Article  CAS  PubMed  Google Scholar 

  44. Volm M, Efferth T, Bak M, Ho AD, Mattern J. Detection of the multidrug resistant phenotype in human tumours by monoclonal antibodies and the streptavidin-biotinylated phycoerythrin complex method. Eur J Cancer Clin Oncol. 1989;25:743–9.

    Article  CAS  PubMed  Google Scholar 

  45. Volm M, Efferth T. Relationship of DNA ploidy to chemoresistance of tumors as measured by in vitro tests. Cytometry. 1990;11:406–10.

    Article  CAS  PubMed  Google Scholar 

  46. Mattern J, Efferth T, Bak M, Ho AD, Volm M. Detection of P-glycoprotein in human leukemias using monoclonal antibodies. Blut. 1989;58:215–7.

    Article  CAS  PubMed  Google Scholar 

  47. Bak Jr M, Efferth T, Mickisch G, Mattern J, Volm M. Detection of drug resistance and P-glycoprotein in human renal cell carcinomas. Eur Urol. 1990;17:72–5.

    PubMed  Google Scholar 

  48. Efferth T, Löhrke H, Volm M. Correlations between natural resistance to doxorubicin, proliferative activity, and expression of P-glycoprotein 170 in human kidney tumor cell lines. Urol Res. 1990;18:309–12.

    Article  CAS  PubMed  Google Scholar 

  49. Volm M, Mattern J, Efferth T, Pommerenke EW. Expression of several resistance mechanisms in untreated human kidney and lung carcinomas. Anticancer Res. 1992;12:1063–7.

    CAS  PubMed  Google Scholar 

  50. Volm M, Kästel M, Mattern J, Efferth T. Expression of resistance factors (P-glycoprotein, glutathione S-transferase-pi, and topoisomerase II) and their interrelationship to proto-oncogene products in renal cell carcinomas. Cancer. 1993;71:3981–7.

    Article  CAS  PubMed  Google Scholar 

  51. Volm M, Mattern J, Stammler G, Royer-Pokora B, Schneider S, Weirich A, et al. Expression of resistance-related proteins in nephroblastoma after chemotherapy. Int J Cancer. 1995;63:193–7.

    Google Scholar 

  52. Schneider J, Bak M, Efferth T, Kaufmann M, Mattern J, Volm M. P-glycoprotein expression in treated and untreated human breast cancer. Br J Cancer. 1989;60:815–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Schneider J, Efferth T, Mattern J, Rodriguez-Escudero FJ, Volm M. Immunohistochemical detection of the multi-drug-resistance marker P-glycoprotein in uterine cervical carcinomas and normal cervical tissue. Am J Obstet Gynecol. 1992;166:825–9.

    Article  CAS  PubMed  Google Scholar 

  54. Schneider J, Efferth T, Centeno MM, Mattern J, Rodríguez-Escudero FJ, Volm M. High rate of expression of multidrug resistance-associated P-glycoprotein in human endometrial carcinoma and normal endometrial tissue. Eur J Cancer. 1993;29A:554–8.

    Article  CAS  PubMed  Google Scholar 

  55. Efferth T, Osieka R. clinical relevance of the MDR-1 gene and its gene product, P-glycoprotein, for cancer chemotherapy: a meta-analysis. Tumor Diagn Ther. 1993;14:238–43.

    Google Scholar 

  56. Sauerbrey A, Zintl F, Volm M. P-glycoprotein and glutathione S-transferase pi in childhood acute lymphoblastic leukaemia. Br J Cancer. 1994;70:1144–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Verrelle P, Meissonnier F, Fonck Y, Feillel V, Dionet C, Kwiatkowski F, et al. Clinical relevance of immunohistochemical detection of multidrug resistance P-glycoprotein in breast carcinoma. J Natl Cancer Inst. 1991;83:111–6.

    Google Scholar 

  58. Schneider J, Romero H. Correlation of P-glycoprotein overexpression and cellular prognostic factors in formalin-fixed, paraffin-embedded tumor samples from breast cancer patients. Anticancer Res. 1995;15:1117–21.

    CAS  PubMed  Google Scholar 

  59. Linn SC, Giaccone G, van Diest PJ, Blokhuis WM, van der Valk P, van Kalken CK, et al. Prognostic relevance of P-glycoprotein expression in breast cancer. Ann Oncol. 1995;6:679–85.

    Google Scholar 

  60. Atalay C, Demirkazik A, Gunduz U. Role of ABCB1 and ABCC1 gene induction on survival in locally advanced breast cancer. J Chemother. 2008;20:734–9.

    Article  CAS  PubMed  Google Scholar 

  61. Larkin A, O‘Driscoll L, Kennedy S, Purcell R, Moran E, Crown J, et al. Investigation of MRP-1 protein and MDR-1 P-glycoprotein expression in invasive breast cancer: a prognostic study. Int J Cancer. 2004;112:286–94.

    Google Scholar 

  62. Surowiak P, Materna V, Matkowski R, Szczuraszek K, Kornafel J, Wojnar A, et al. Relationship between the expression of cyclooxygenase 2 and MDR1/P-glycoprotein in invasive breast cancers and their prognostic significance. Breast Cancer Res. 2005;7:R862–70.

    Google Scholar 

  63. Tsukamoto F, Shiba E, Taguchi T, Sugimoto T, Watanabe T, Kim SJ, et al. Immunohistochemical detection of P-glycoprotein in breast cancer and its significance as a prognostic factor. Breast Cancer. 1997;4:259–63.

    Google Scholar 

  64. Del Principe MI, Del Poeta G, Maurillo L, Buccisano F, Venditti A, Tamburini A, et al. P-glycoprotein and BCL-2 levels predict outcome in adult acute lymphoblastic leukaemia. Br J Haematol. 2003;121:730–8.

    Google Scholar 

  65. Tafuri A, Gregorj C, Petrucci MT, Ricciardi MR, Mancini M, Cimino G, et al. GIMEMA Group. MDR1 protein expression is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia. Blood. 2002;100:974–81.

    Google Scholar 

  66. Dhooge C, De Moerloose B, Laureys G, Kint J, Ferster A, De Bacquer D, et al. P-glycoprotein is an independent prognostic factor predicting relapse in childhood acute lymphoblastic leukaemia: results of a 6-year prospective study. Br J Haematol. 1999;105:676–83.

    Google Scholar 

  67. Damiani D, Michelutti A, Michieli M, Masolini P, Stocchi R, Geromin A, et al. P-glycoprotein, lung resistance-related protein and multidrug resistance-associated protein in de novo adult acute lymphoblastic leukaemia. Br J Haematol. 2002;116:519–27.

    Google Scholar 

  68. Legrand O, Perrot JY, Simonin G, Baudard M, Cadiou M, Blanc C, et al. Adult biphenotypic acute leukaemia: an entity with poor prognosis which is related to unfavourable cytogenetics and P-glycoprotein over-expression. Br J Haematol. 1998;100:147–55.

    Google Scholar 

  69. Campos L, Guyotat D, Archimbaud E, Calmard-Oriol P, Tsuruo T, Troncy J, et al. Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood. 1992;79:473–6.

    Google Scholar 

  70. Del Poeta G, Stasi R, Aronica G, Venditti A, Cox MC, Bruno A, et al. Clinical relevance of P-glycoprotein expression in de novo acute myeloid leukemia. Blood. 1996;87:1997–2004.

    Google Scholar 

  71. Goasguen JE, Dossot JM, Fardel O, Le Mee F, Le Gall E, Leblay R, et al. Expression of the multidrug resistance-associated P-glycoprotein (P-170) in 59 cases of de novo acute lymphoblastic leukemia: prognostic implications. Blood. 1993;81:2394–8.

    Google Scholar 

  72. Wuchter C, Leonid K, Ruppert V, Schrappe M, Büchner T, Schoch C, et al. Clinical significance of P-glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia. Haematologica. 2000;85:711–21.

    Google Scholar 

  73. Marie JP, Legrand O. MDR1/P-GP expression as a prognostic factor in acute leukemias. Adv Exp Med Biol. 1999;457:1–9.

    CAS  PubMed  Google Scholar 

  74. Sievers EL, Smith FO, Woods WG, Lee JW, Bleyer WA, Willman CL, et al. Cell surface expression of the multidrug resistance P-glycoprotein (P-170) as detected by monoclonal antibody MRK-16 in pediatric acute myeloid leukemia fails to define a poor prognostic group: a report from the Childrens Cancer Group. Leukemia. 1995;9:2042–8.

    Google Scholar 

  75. Gsur A, Zöchbauer S, Götzl M, Kyrle PA, Lechner K, Pirker R. MDR1 RNA expression as a prognostic factor in acute myeloid leukemia: an update. Leuk Lymphoma. 1993;12:91–4.

    Article  CAS  PubMed  Google Scholar 

  76. Zöchbauer S, Gsur A, Brunner R, Kyrle PA, Lechner K, Pirker R. P-glycoprotein expression as unfavorable prognostic factor in acute myeloid leukemia. Leukemia. 1994;8:974–7.

    PubMed  Google Scholar 

  77. Wood P, Burgess R, MacGregor A, Yin JA. P-glycoprotein expression on acute myeloid leukaemia blast cells at diagnosis predicts response to chemotherapy and survival. Br J Haematol. 1994;87:509–14.

    Article  CAS  PubMed  Google Scholar 

  78. Marie JP, Legrand O, Perrot JY, Chevillard S, Huet S, Robert J. Measuring multidrug resistance expression in human malignancies: elaboration of consensus recommendations. Semin Hematol. 1997;34(4 Suppl 5):63–71.

    CAS  PubMed  Google Scholar 

  79. Efferth T. Testing for tumor drug resistance in the age of molecular medicine. A contribution to the debate round-table on phenotypic and genotypic analyses of multidrug resistance (MDR) in Clinical Hospital Practice. Leukemia. 1999;13(10):1627–9.

    Article  CAS  PubMed  Google Scholar 

  80. Huet S, Marie JP, Gualde N, Robert J. Reference method for detection of Pgp mediated multidrug resistance in human hematological malignancies: a method validated by the laboratories of the French Drug Resistance Network. Cytometry. 1998;34:248–56.

    Article  CAS  PubMed  Google Scholar 

  81. Huet S, Marie JP, Laurand A, Robert J. Major improvement of the reference method of the French drug resistance network for P-glycoprotein detection in human haematological malignancies. Leuk Res. 2005;29:1029–37.

    Article  CAS  PubMed  Google Scholar 

  82. Maffioli L, Steens J, Pauwels E, Bombardieri E. Applications of 99mTc-sestamibi in oncology. Tumori. 1996;82:12–21.

    CAS  PubMed  Google Scholar 

  83. Sharma V. Radiopharmaceuticals for assessment of multidrug resistance P-glycoprotein-mediated drug transport activity. Bioconjug Chem. 2004;15:1464–74.

    Article  CAS  PubMed  Google Scholar 

  84. Efferth T, Langguth P. Transport processes of radiopharmaceuticals and -modulators. Radiat Oncol. 2011;6:59.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Volm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Volm, M., Efferth, T. (2015). Role of P-Glycoprotein for Resistance of Tumors to Anticancer Drugs: From Bench to Bedside. In: Efferth, T. (eds) Resistance to Targeted ABC Transporters in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09801-2_1

Download citation

Publish with us

Policies and ethics