Skip to main content

Effect of Hybrid Fillers on the Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites

  • Chapter
  • First Online:
Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites

Part of the book series: Advances in Polymer Science ((POLYMER,volume 264))

Abstract

The present chapter focuses on the effect of hybrid fillers on the non-linear viscoelastic behaviour of rubber composites and nanocomposites. The viscoelastic behaviour of rubber composites include different properties like cure behavior, rheology, creep, and dynamic mechanical analysis etc. The properties measured under dynamic mechanical analysis are storage and loss moduli and tan δ. The variation of storage and loss moduli of rubber composites filled with different types of filler are discussed in detail. The non-linear viscoelastic behaviour (Payne effect) of rubber composites containing single filler are also discussed. The effect of various hybrid fillers on rubber composites are also discussed in detail and found composites containing hybrid fillers give better mechanical and viscoelastic properties than composites containing single filler. Composites containing hybrid fillers carry the properties of individual fillers. So composites of hybrid fillers are getting importance because they offer a range of properties that cannot be achieved with a single filler. Rubber composites containing hybrid fillers are promising class of materials with emerging applications in different fields like materials science, nanotechnology, and nanobiotechnology etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anandhan S, Bandyopadhyay S (2011) Polymer nanocomposites: from synthesis to applications. In: Cuppoletti J (ed) Nanocomposites and polymers with analytical methods. InTech, Croatia. ISBN 978-953-307-352-1

    Google Scholar 

  2. Nayak S, Sahoo B, Chaki TK, Khastgir D (2013) Development of polyurethane-titania nanocomposites as dielectric and piezoelectric material. RSC Adv 3:2620

    Article  CAS  Google Scholar 

  3. Nayak S, Rahaman M, Pandey AK, Setua DK, Chaki TK, Khastgir D (2013) Development of poly(dimethylsiloxane)-titania nanocomposites with controlled dielectric properties: effect of heat treatment of titania on electrical properties. J Appl Polym Sci 127(1):784

    Article  CAS  Google Scholar 

  4. Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys 100:132

    Article  CAS  Google Scholar 

  5. Girei SA, Thomas SP, Atieh MA, Mezghani K, De SK, Bandyopadhyay S, Al-Juhani A (2012) Effect of –COOH functionalized carbon nanotubes on mechanical, dynamic mechanical and thermal properties of polypropylene nanocomposites. J Thermoplast Compos Mater 25:333

    Article  CAS  Google Scholar 

  6. Ramajo LA, Reboredo MM, Castro MS (2007) Characterisation of epoxy/BaTiO3 composites processed by dipping for integral capacitor films (ICF). J Mater Sci 42:3685

    Article  CAS  Google Scholar 

  7. Ramajo L, Castro MS, Reboredo MM (2010) Dielectric response of Ag/BaTiO3/epoxy nanocomposites. J Mater Sci 45:106

    Article  CAS  Google Scholar 

  8. Matienzo LJ, Farquhar D (2008) A model system for the optimization of lamination parameters of PTFE-based dielectrics and metal surfaces. J Mater Sci 43:2035

    Article  CAS  Google Scholar 

  9. Olad A (2011) Polymer/clay nanocomposites. In: Dr. Reddy B (ed) Advances in diverse industrial applications of nanocomposites. InTech, University of Tabriz, Iran. ISBN 978-953-307-202-9

    Google Scholar 

  10. Chung T-S, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483

    Article  CAS  Google Scholar 

  11. Nayak S, Chaki TK, Khastgir D (2013) Development of poly(dimethylsiloxane)/BaTiO3 nanocomposites as dielectric material. Adv Mater Res 622–623:897

    Google Scholar 

  12. Sumita M, Tsukumo Y, Miyasaka K, Ishikawa K (1983) Tensile yield stress of polypropylene composites filled with ultrafine particles. J Mater Sci 18:1758

    Article  CAS  Google Scholar 

  13. Cole DH, Shull KR, Baldo P, Rehn L (1999) Dynamic properties of a model polymer/metal nanocomposite: gold particles in poly(tert-butyl acrylate). Macromolecules 32:771

    Article  CAS  Google Scholar 

  14. Oya A, Kurokawa Y, Yasuda H (2000) Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites. J Mater Sci 35:1045

    Article  CAS  Google Scholar 

  15. Zeng QH, Yu AB, Lu GQ (2008) Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci 33:191

    Article  CAS  Google Scholar 

  16. Hule RA, Pochan DJ (2007) Polymer nanocomposites for biomedical applications. MRS Bull 32:354

    Article  CAS  Google Scholar 

  17. Sarvestani AS, Jabbari E (2010) Nonlinear viscoelastic behavior of rubbery bionanocomposites. In: Stephen R, Thomas S (eds) Rubber nanocomposites: preparation, properties, and applications. Wiley Online Library, Singapore, p 331

    Google Scholar 

  18. Dealy JM. Nonlinear viscoelasticity. Rheology, vol. 1. Encyclopedia of Life Support Systems (EOLSS)

    Google Scholar 

  19. Nurdina A, Mariatti M, Samayamutthirian P (2009) Effect of single-mineral filler and hybrid-mineral filler additives on the properties of polypropylene composites. J Vinyl Addit Technol 15(1):20

    Article  CAS  Google Scholar 

  20. Leong Y, Bakar A, Ishak Z, Ariffin A, Pukanszky B (2004) Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J Appl Polym Sci 91:3315

    Article  CAS  Google Scholar 

  21. Sancaktar E, Walker E (2004) Effects of calcium carbonate, talc, mica, and glass-fiber fillers on the ultrasonic weld strength of polypropylene. J Appl Polym Sci 94:1986

    Article  CAS  Google Scholar 

  22. Hanumantha Rao K, Forssberg K, Forsling W (1998) Interfacial interaction and mechanical properties of mineral filled polymer composites; wollastonite in PMMA polymer matrix. Colloids Surf A Physicochem Eng Asp 133:107

    Article  CAS  Google Scholar 

  23. Thomas P, Jose ET, George G, Thomas S, Joseph K (2013) Dynamic mechanical and rheological properties of nitrile rubber nanocomposites based on TiO2, Ca3(PO4)2 and layered silicate J Compos Mater: 1

    Google Scholar 

  24. Ezawa M (2012) Dirac theory and topological phases of silicon nanotube. EPL (Europhys Lett) 98:67001

    Article  Google Scholar 

  25. Liu M, Guo B, Du M, Lei Y, Jia D (2008) Natural inorganic nanotubes reinforced epoxy resin nanocomposites. J Polym Res 15:205

    Article  CAS  Google Scholar 

  26. Samanta SK, Gomathi A, Bhattacharya S, Rao CNR (2010) Novel nanocomposites made of boron nitride nanotubes and a physical gel. Langmuir 26(14):12230

    Article  CAS  Google Scholar 

  27. Moskalyuk OA, Aleshin AN, Tsobkallo ES, Krestinin AV, Yudin VE (2012) Electrical conductivity of polypropylene fibers with dispersed carbon fillers. Phys Solid State 54(10):2122

    Article  CAS  Google Scholar 

  28. Sahoo BP, Naskar K, Tripathy DK (2012) Conductive carbon black-filled ethylene acrylic elastomer vulcanizates: physico-mechanical, thermal, and electrical properties. J Mater Sci 47:2421

    Article  CAS  Google Scholar 

  29. Wu D, Wu L, Zhang M (2007) Rheology of multi-walled carbon nanotube/poly(butylene terephthalate) composites. J Polym Sci B Polym Phys 45:2239

    Article  CAS  Google Scholar 

  30. Katihabwa A, Wang W, Jiang Y, Zhao X, Lu Y, Zhang L (2011) Multi-walled carbon nanotubes/silicone rubber nanocomposites prepared by high shear mechanical mixing. J Reinf Plast Compos 30(12):1007

    Article  CAS  Google Scholar 

  31. Lively B, Bizga J, Zhong W-H (2013) Analysis tools for nanofiller polymer composites: macro- and nanoscale dispersion assessments correlated with mechanical and electrical composite properties. Polym Compos. doi:10.1002/pc.22628

    Google Scholar 

  32. Upadhyaya P, Garg M, Kumar V, Nema AK (2012) The effect of water absorption on mechanical properties of wood flour/wheat husk polypropylene hybrid composites. Mater Sci Appl 3:317

    CAS  Google Scholar 

  33. Patra N, Salerno M, Cozzoli PD, Barone AC, Ceseracciu L, Pignatelli F, Carzino R, Marini L, Composites AA, Part B (2012) Thermal and mechanical characterization of poly(methyl methacrylate) nanocomposites filled with TiO2 nanorods. Engineering 43:3114

    CAS  Google Scholar 

  34. Lonjon A, Demont P, Dantras E, Lacabanne C (2011) Mechanical improvement of P(VDF-TrFE)/nickel nanowires conductive nanocomposites: Influence of particles aspect ratio. J Non-Cryst Solids 358:236

    Article  Google Scholar 

  35. Ghasemi I, Azizi H, Naeimian N (2008) Rheological behaviour of polypropylene/kenaf fibre/wood flour hybrid composite. Iran Polym J 17(3):191

    CAS  Google Scholar 

  36. Yu L, Park JS, Lim Y-S, Lee CS, Shin K, Moon HJ, Yang C-M, Lee YS, Han JH (2013) Carbon hybrid fillers composed of carbon nanotubes directly grown on graphene nanoplatelets for effective thermal conductivity in epoxy composites. Nanotechnology 24:155604

    Article  Google Scholar 

  37. Thongsang S, Vorakhan W, Wimolmala E, Sombatsompop N (2012) Dynamic mechanical analysis and tribological properties of NR vulcanizates with fly ash/precipitated silica hybrid filler. Tribol Int 53:134

    Article  CAS  Google Scholar 

  38. Park DH, Lee YK, Park SS, Lee CS, Kim SH, Kim WN (2013) Effects of hybrid fillers on the electrical conductivity and EMI shielding efficiency of polypropylene/conductive filler composites. Macromol Res 21(8):905

    Article  CAS  Google Scholar 

  39. Yoo TW, Lee YK, Lim SJ, Yoon HG, Kim WN (2014) Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites. J Mater Sci 49:1701

    Article  CAS  Google Scholar 

  40. Imoisili PE, Ukoba KO, Adejugbe T, Adgidzi D, Olusunle SOO (2013) Mechanical properties of rice husk/carbon black hybrid natural rubber composite. Chem Mater Res 3(8):12

    Google Scholar 

  41. Zhang Y, Zhang Q, Liu Q, Cheng H, Frost RL (2014) Thermal stability of styrene butadiene rubber (SBR) composites filled with kaolinite/silica hybrid filler. J Therm Anal Calorim 115:1013

    Article  CAS  Google Scholar 

  42. Nugay N, Erman B (2001) Property optimization in nitrile rubber composites via hybrid filler systems. J Appl Polym Sci 79:366

    Article  CAS  Google Scholar 

  43. Ismail H, Osman H, Jaafar M (2008) Hybrid-filler filled polypropylene/(natural rubber) composites: effects of natural weathering on mechanical and thermal properties and morphology. J Vinyl Addit Technol 14(3):142

    Article  CAS  Google Scholar 

  44. Liu YB, Li L, Wang Q (2010) Reinforcement of natural rubber with carbon black/nanoclay hybrid filler. Plast Rub Compos 39(8):370

    Article  CAS  Google Scholar 

  45. Sapkota J, Poikelispää M, Das A, Dierkes W, Vuorinen J (2013) Influence of nanoclay-carbon black hybrid fillers on cure and properties of natural rubber compounds. Polym Eng Sci 53(3):615

    Article  CAS  Google Scholar 

  46. Ismail H, Ramly AF, Othman N (2013) Effects of silica/multiwall carbon nanotube hybrid fillers on the properties of natural rubber nanocomposites. J Appl Polym Sci 2433

    Google Scholar 

  47. Nigam V, Setua DK, Mathur GN (2001) Hybrid filler system for nitrile rubber vulcanizates. J Mater Sci 36:43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Chaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nayak, S., Chaki, T.K. (2014). Effect of Hybrid Fillers on the Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites. In: Ponnamma, D., Thomas, S. (eds) Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites. Advances in Polymer Science, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-319-08702-3_6

Download citation

Publish with us

Policies and ethics