Skip to main content
Log in

A model system for the optimization of lamination parameters of PTFE-based dielectrics and metal surfaces

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In microelectronic packaging, organic dielectric materials continue to displace ceramic materials because of cost, reduced weight, and performance advantages. Because thermosetting dielectric composites have long found widespread use in printed wiring board (PWB) fabrication, they have been the components of choice for many organic chip carriers. Conversely, thermoplastic dielectrics, such as fluoropolymer (FP), and in particular poly(tetrafluoroethylene)-based dielectric composites (PTFE composites) have seldom found use in multilayer wiring packages in spite of their attractive electrical properties due to their processing challenges. In this paper, we report the use of a model system comprising pure PTFE film and Cr-coated copper surfaces to optimize the bonding process through lamination conditions for a fluoropolymer composite and chromium-coated copper surfaces and to study both the interface mechanics and its chemistry as a function of processing parameters. The significant finding of the investigation was the linkage between the macroscopic mechanical properties of the interface and the observable chemical alteration of the same under some lamination conditions. The relationship of the interface properties and the processing conditions extend a conceptual framework for the thermodynamics of the metal-polymer interface and the reliability of these electronic packages in their practical designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alcoe DJ, Jimarez MA, Jones GW, Kindl TE, Kresge JS, Libous JP, Stutzman RJ (2000) IBM MicroNews 6:7

    Google Scholar 

  2. Alcoe DJ, Blackwell KJ (2000) Laine ER Advanced Packaging. June/July:39

  3. Park JM, Matienzo LJ, Spencer DF (1991) J Adhesion Sci Technol 5:153

    Article  CAS  Google Scholar 

  4. Matienzo LJ, Unertl WN (1995) In: Ghosh MK, Mittal KL (eds) Polyimides: fundamentals and applications, Marcel Dekker, New York, p 672

    Google Scholar 

  5. Egitto FD, Matienzo LJ (1990) Polym Degrad Stab 30:293

    Article  CAS  Google Scholar 

  6. Jimarez LJ, Matienzo LJ, Metha AA (1993) ASME J Electron Packag 115:256

    Article  Google Scholar 

  7. Egitto FD, Matienzo LJ (1994) IBM J Res Dev 38:423

    Article  CAS  Google Scholar 

  8. Buchwalter S, Brofman P, Feger C, Gaynes MA, Lee K-W, Matienzo LJ, Questad D (2005) IBM J Res Dev 49:663

    Article  CAS  Google Scholar 

  9. Leverett GF (1975) US Patent 3,929,721

  10. Kawachi S, Yamamoto K, Kai S (1984) US Patent 4,440,879

  11. Matienzo LJ, Shah TK (1986) Surf Interface Anal 8:53

    Article  CAS  Google Scholar 

  12. Matienzo LJ, Zimmermann JA, Egitto FD (1994) J Vac Sci Technol A12:2662

    Article  Google Scholar 

  13. Homan DC, Kureishy NZ, Unertl WN (1994) In: American physical society meeting: abstract R 28 10. Pittsburgh, PA, USA, March 21–25

  14. Beamson G, Briggs D (1982) In: High resolution XPS of organic polymers: the scienta ESCA300 database. John Wiley & Sons, Chichester, UK, p 230

  15. Cumpson PJ (2001) Surf Interface Anal 31:23

    Article  CAS  Google Scholar 

  16. Baker BB, Kasprzak DJ (1994) Poly Degrad Stab 42:181

    Article  Google Scholar 

  17. Zapp JA Jr, Limperos G, Brinkert KC (1955) In: Proceedings of the american industrial hygiene association annual meeting. Cincinnati, OH, April 26

  18. Koptelov AA, Karyazov SV, Shlenskii OF (2004) Vysokomol Sodein Ser A Ser B 46:1093

    CAS  Google Scholar 

  19. Wlochowicz A, Scigala R (1989) Brit Polym J 21:205

    Article  CAS  Google Scholar 

  20. Cadman P, Gossedge GM (1979) J Mater Sci 14:2672

    Article  CAS  Google Scholar 

  21. Adamczyk B, Boeses O, Weiher N, Schroeder SLM, Kemnitz E (2000) J Fluorine Chem 101:239

    Article  CAS  Google Scholar 

  22. Hidaka A, Yamashita S, Kitano M, Teramoto A, Shirai Y, Ohmi T (2004) In: 206th meeting electrochemical society. Honolulu, HI, USA, 3–8 October, The Electrochemical Society, Inc., abstract 945 in CD-ROM version

  23. Tsvetnikov AK, Ziatdinov AM, Nazarenko TYu, Nikolenko YuM (1996) Russian J Inorg Chem 41:721

    Google Scholar 

  24. Matienzo LJ, Shaffer DK, Moshier WC, Davis GD (1986) J Mater Sci 21:1601

    Article  CAS  Google Scholar 

  25. Korleski JE (1998) US Patent 5,753,358

  26. Petrarch Catalog 2000:https://doi.org/www.unitedchem.com/silicones.cfm, July 18 (2005)

Download references

Acknowledgements

The assistance of S. Hurban on SEM imaging and D. VanHart on sample preparation for stepped XPS analysis is greatly appreciated. Valuable discussions with G.O. Dearing and F.D. Egitto are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis J. Matienzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matienzo, L.J., Farquhar, D. A model system for the optimization of lamination parameters of PTFE-based dielectrics and metal surfaces. J Mater Sci 43, 2035–2045 (2008). https://doi.org/10.1007/s10853-007-2426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2426-8

Keywords

Navigation