Skip to main content

Epigenetic Advances on Somatic Embryogenesis of Agronomical and Important Crops

  • Chapter
  • First Online:
Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications

Abstract

Under in vitro conditions, differentiated plant cells can be induced to generate organs, shoots, or somatic embryos, which can regenerate a new functional plant. Somatic embryogenesis (SE) has been relevant for clonal propagation for a wide range of important agronomical and economical crops. In addition, SE provides an interesting model to study epigenetic changes during plant development. For instance, during cellular differentiation, sophisticated epigenetics mechanisms, such as DNA methylation, histone modifications and microRNAs can modulate the chromatin structure and change the expression of several genes. In this chapter, we describe the epigenetics events that modulate the embryogenic response in agronomical and important crops. Therefore, the knowledge about epigenetic mechanisms during the SE process could help to increase the embryogenic capacity of different plants improving new strategies to increase agronomical traits of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aichinger E, Villar C, Farrona S, Reyes J, Hennig L, Köhler C (2010) CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet 5:e1000605

    Article  Google Scholar 

  • Alemanno L, Ramos T, Gargadenec A, Andary C, Ferriere N (2003) Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis. Ann Bot 92:613–623

    Article  CAS  PubMed  Google Scholar 

  • Avivi Y, Morad V, Ben-Meir H, Zhao J, Kashkush K, Tzfira T, Citovsky V, Grafi G (2004) Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev Dyn 230:12–22

    Article  CAS  PubMed  Google Scholar 

  • Bannister J, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baránek M, Krizan B, Ondrukisová E, Pidra M (2010) DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tiss Org Cult 101:11–22

    Article  Google Scholar 

  • Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O'Gorman D, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15:405–411

    Article  PubMed  Google Scholar 

  • Berger N, Dubreucq B, Roudier F, Dubos C, Lepiniec L (2011) Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell 23(11):4065–4078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Bobadilla LR, Cenci A, Georget F, Bertrand B, Camayo G, Dechamp E, Herrera JC, Santoni S, Lashermes P, Simpson J, Etienne H (2013) High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and the phenotypic variation rate. PLoS One 8:e56372

    Article  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, Van Lammeren AAM, Miki BLA, Custers JBM, Van Lookeren-Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bouyer D, Roudier F, Heese M, Andersen E, Gey D, Nowak M, Goodrich J, Renou J, Grini P, Colot V, Schnittger A (2011) Polycomb represive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet 7:e1002014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci U S A 103:3468–3473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Capron A, Chatfield S, Provart N, Berleth T (2009) Embryogenesis: pattern formation from a single cell. Arabidopsis Book 7:e0126

    Article  PubMed Central  PubMed  Google Scholar 

  • Causevic A, Delaunay A, Ounnar S, Righezza M, Delmotte F, Brignolas F, Maury S (2005) DNA methylation and demethylation treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Physiol Biochem 43:681–691

    CAS  Google Scholar 

  • Causevic A, Gentil MV, Delaunay A, El-Soud W, Garcia Z, Pannetier C, Brignolas F, Hagège D, Maury S (2006) Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet lines. Planta 224:812–827

    Article  CAS  PubMed  Google Scholar 

  • Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y-H, Sung R, Goodrich J (2004) Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Liu Q, Zhang Y, Qu L, Chen Y, Gautheret D (2011) Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol 8:538–547

    Article  CAS  PubMed  Google Scholar 

  • Chupeau MC, Granier F, Pichon O, Renou JP, Gaudin V, Chupeau Y (2013) Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. Plant Cell 25:2444–2463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costas C, Desvoyes B, Gutierrez C (2011) A chromatin perspective of plant cell cycle progression. Biochim Biophys Acta 1809:379–387

    Article  CAS  PubMed  Google Scholar 

  • Coutos-Thevenot P, Goebel-Tourand I, Mauro ML, Jouanneau J-P, Boulay M, Deloire A, Guern J (1992) Somatic embryogenesis from grapevine cells. I. Improvement of embryo development by changes in culture conditions. Plant Cell Tiss Org Cult 29:125–133

    Article  Google Scholar 

  • Etienne H, Bertrand B, Georget F, Lartaud M, Montes F, Dechamp E, Verdeil JL, Barry-Etienne D (2013) Development of coffee somatic and zygotic embryos to plants differs in the morphological, histochemical and hydration aspects. Tree Physiol 33:640–653

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Jacobsen S, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Florentin A, Damri M, Grafi G (2013) Stress induces plant somatic cells to acquire some features of stem cells accompanied by selective chromatin reorganization. Dev Dyn 242(10):1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Fraga H, Vieira L, Capestrano C, Steinmacher D, Micke G, Spudeit D, Pescador R, Guerra M (2012) 5-Azacytine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant Cell Rep 31:2165–2176

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Chai LJ, Liu Z, Wu XM, Deng XX, Guo W (2012) Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray. Planta 236:1107–1124

    Article  CAS  PubMed  Google Scholar 

  • Grafi G, Florentin A, Ransbotyn V, Morgenstern Y (2011) The stem cell state in plant development and in response to stress. Front Plant Sci 2:53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grant-Downton R, Dickinson H (2005) Epigenetics and its implications for plant biology 1. The epigenetic network in plants. Ann Bot 96:1143–1162

    Article  CAS  PubMed  Google Scholar 

  • He G, Zhu X, Elling A, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng XW (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson JP, Johnson L, Jasencakova Z, Zhang X, Burgos L, Singh P, Cheng X, Schubert I, Jacobsen S (2004) Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112:308–315

    Article  CAS  PubMed  Google Scholar 

  • Jaligot E, Rival A, Beulé T, Dussert S, Verdeil JL (2000) Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep 19:684–690

    Article  CAS  Google Scholar 

  • Kouakou TH, Waffo-Téguo P, Kouadio YJ, Valls J, Richard T, Decendit A, Mérillon JM (2007) Phenolic compounds and somatic embryogenesis in cotton (Gossypium hirsitum L.). Plant Cell Tiss Org Cult 90:25–29

    Article  CAS  Google Scholar 

  • Lai Z, Lai ZX, He Y, Chen YT, Cai YQ, Lai CC (2010) Molecular biology and proteomics during somatic embryogenesis in Dimocarpus longan Lour. Acta Hort 863:95–102

    CAS  Google Scholar 

  • Lal S, Pacis L, Smith MS (2011) Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 module by the homeodomain proteins PENNYWISE and POUND-FOOLISH in Arabidopsis. Mol Plant 4:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Zhu BT (2006) Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27:269–277

    Article  CAS  PubMed  Google Scholar 

  • Levanic DL, Bauer N, Mihaljevic S, Jelaska S (2004) Changes in DNA methylation during somatic embryogenesis in Curcubita pepo L. Plant Cell Rep 23:120–127

    Article  Google Scholar 

  • Li X, Wang X, He K, Ma Y, Su N, Stolc V, Deng X (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, and gene expression. Plant Cell 20:259–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS (2011) DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet 7:e1002243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YL, Lai ZX (2010) Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci 178:359–365

    Article  CAS  Google Scholar 

  • Lin Y, Lai Z (2013) Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in Longan (Dimocarpus longan Lour). PLoS One 8:e60337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LoSchiavo F, Pitto L, Giuliano G, Torti G, Nuti-Rochi V, Marazziti D, Vergara R, Orsellli R, Terzi M (1989) DNA methylation of embryogenic cell cultures and its variation as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    Article  CAS  PubMed  Google Scholar 

  • Lotan T, Ohto M, Matsudaira YK, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Loyola-Vargas VM, Ochoa-Alejo N (2012) An introduction to plant cell culture: the future ahead. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant Cell Culture Protocols, Methods in Molecular Biology, vol 877. Humana Press, Heidelberg, pp 1–8

    Chapter  Google Scholar 

  • Loyola-Vargas VM, De-la-Peña C, Galaz-Avalos RM, Quiroz-Figueroa FR (2008) Plant tissue culture. An intemporal set of tools. In: Walker JM, Rapley R (eds) Protein and Cell Biomethods Handbook. Humana Press, Totowa, pp 875–904

    Chapter  Google Scholar 

  • Luo Y, Zhou H, Li Y, Chen J, Yang J, Chen Y, Qu L (2006) Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580:5111–5116

    Article  CAS  PubMed  Google Scholar 

  • Marques A, Fuchs J, Ma L, Heckmann S, Guerra M, Houben A (2012) Characterization of eu- and heterochromatin of citrus with a focus on the condensation behavior of 45s rDNA chromatin. Cytogenet Genome Res 134:72–82

    Article  Google Scholar 

  • Matthes M, Singh R, Cheah SC, Karp A (2001) Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet 102:971–979

    Article  CAS  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal and beyond. J Exp Bot 62:3713–3725

    Article  CAS  PubMed  Google Scholar 

  • Mondengo J, Vidal R, Carazzolle M, Tokuda E, Parizzi L, Costa G, Pereira L, Andrade A, Colombo C, Vierira L, Pereira G (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30

    Article  Google Scholar 

  • Mosher RA, Melnyk CW (2010) siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci 15:204–210

    Article  CAS  PubMed  Google Scholar 

  • Nic-Can GI, López-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas VM, Rojas-Herrera R, De-la-Peña C (2013) New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS One 8:e72160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24:2678–2692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci U S A 96:13839–13844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan Z, Guan R, Zhu S, Deng X (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289

    Article  PubMed  Google Scholar 

  • Privat I, Bardil A, Bombarely A, Severac D, Bertrand B (2011) The PUCE CAFE project: the first 15 K coffee microarray, a new tool for discovering candidate genes correlated to agronomic and quality traits. BMC Genomics 12:5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rival A, Jaligot E, Beulé T, Finnegan EJ (2008) Isolation and expression analysis of genes encoding MET, CMT, and DRM methyltransferases in oil palm (Elaeis guineensis Jacq.) in relation to the mantled somaclonal variation. J Exp Bot 59:3271–3281

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-López CM, Wetten AC, Wilkinson MJ (2010) Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants. New Phytol 186:856–868

    Article  PubMed  Google Scholar 

  • Santamaría ME, Hasbún R, Valera J, Meijón M, Valledor L, Rodríguez J, Toorop P, Cañal MJ, Rodríguez R (2009) Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. J Plant Physiol 166:1360–1369

    Article  PubMed  Google Scholar 

  • Santamaría ME, Rodríguez R, Cañal MJ, Toorop P (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108:485–498

    Article  PubMed Central  PubMed  Google Scholar 

  • Sauer U, Wilhelm E (2005) Somatic embryogenesis from ovaries, developing ovules and immature zygotic embryos, and improved embryo development of Castanea sativa. Biol Plant 49:1–6

    Article  Google Scholar 

  • Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78–88

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, De Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Schubert D, Clarenz O, Goodrich J (2005) Epigenetic control of plant development by polycomb-group proteins. Curr Opin Plant Biol 8:553–561

    Article  CAS  PubMed  Google Scholar 

  • Shibukawa T, Yazawa K, Kikuchi A, Kamada H (2009) Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5′-upstream region. Gene 437:22–31

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Rajam MV (2009) Citrus biotechnology: achievements, limitations and future directions. Physiol Mol Biol Plant 15:3–22

    Article  CAS  Google Scholar 

  • Smulders M, de Klerk G (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146

    Article  CAS  Google Scholar 

  • Takahata K (2008) Isolation of carrot Argonaute1 from subtractive somatic embryogenesis cDNA library. Biosci Biotechnol Biochem 72:900–904

    Article  CAS  PubMed  Google Scholar 

  • Thakare D, Tang W, Hill K, Perry SE (2008) The MADS-domain transcriptional regulator AGAMOUS-Like 15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol 146:1663–1672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuwamoto R, Yokoi S, Takabata Y (2010) Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol 73:481–492

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Ikeda M, Kamada H (2007) Endogenous factors that regulate plant embryogenesis: recent advances. Jap J Plant Sci 1:1–6

    Google Scholar 

  • Verdeil JL, Alemanno L, Niememack N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252

    Article  CAS  PubMed  Google Scholar 

  • Viejo M, Rodríguez R, Valledor L, Pérez M, Cañal M, Hasbún R (2010) DNA methylation during sexual embryogenesis and implications on the induction of somatic embryogenesis in Castanea sativa Miller. Sex Plant Reprod 23:315–323

    Article  CAS  PubMed  Google Scholar 

  • Willmann MR, Mehalick AJ, Packer RL, Jenik PD (2011) MicroRNAs regulate the timing of embryo maturation in Arabidopsis. Plant Physiol 155:1871–1884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu XB, Wang J, Liu JH, Deng XX (2008) Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol. J Plant Physiol 166:52–62

    Article  PubMed  Google Scholar 

  • Wu XM, Liu M, Ge X, Xu Q, Guo W (2011) Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233:495–505

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zhao Z, Dong A, Taconnat L, Renou J, Steinmetz A, Shen W (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other proceses in Arabidopsis thaliana. Mol Cel Biol 28:1348–1360

    Article  CAS  Google Scholar 

  • Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K, Tokuji Y (2005) Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacyticine, a DNA methylation inhibitor. J Plant Physiol 162:47–54

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57

    Article  CAS  Google Scholar 

  • Zemach A, Kim Y, Silva P, Rodrigues J, Dotson B, Brooks M, Zilberman D (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci U S A 107:18729–18734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng F, Zhang X, Zhu L, Cao J, Guo X (2007) A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 90:620–628

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan S, Chen H, Henderson I, Shinn P, Pellegrini M, Jacobsen S (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen S (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:1026–1035

    CAS  Google Scholar 

  • Zhang H, Rider SD, Henderson JT, Fountain M, Chuang K, Kandachar V, Simons A, Edenberg HJ, Romero-severson J, Muir WM, Ogas J (2008) The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. J Biol Chem 283:22637–22648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen S (2009) Genome-wide analysis of mono-, di- or trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10(6):R62

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Bishop B, Ringenberg W, Muir WM, Ogas J (2012a) The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27. Plant Physiol 159:418–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L (2012b) Genome-wide identification of miRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647–657

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Chen X (2011) Dynamics of histone H3 lysine 27 trimethylation in plant development. Curr Opin Plant Biol 14:123–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant received from the National Council for Science and Technology (CONACyT 178149 to C.D.P.). G.N.C. was supported by a scholarship (213451) from CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clelia De la Peña .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nic-Can, G.I., De la Peña, C. (2014). Epigenetic Advances on Somatic Embryogenesis of Agronomical and Important Crops. In: Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-07971-4_6

Download citation

Publish with us

Policies and ethics