Skip to main content

In Vitro Plant Cultures as Biofactories

  • Chapter
Plant Biotechnology for Health

Abstract

In vitro plant cell cultures are defined as a culture in aseptic conditions of any part of the plant body in a nutritive media. Cells, differentiated and undifferentiated (calli and suspended cells) tissues, and organs can be maintained in vitro.

Some of the advantages of in vitro cultures are their development and maintenance in defined conditions (nutrients, light, humidity, temperature), independent from environmental influences (pests, diseases, extreme weather, geographical location, etc.), and manipulated by experienced operators in confined facilities.

Since its development, in vitro plant cell cultures have been an essential tool for studying plant metabolism, and to micropropagate plant species, maintaining their genetic background. Also, they were helpful to analyze and optimize the production of plant secondary metabolites.

Secondary metabolites productive processes are conducted, with a different degree of success, in undifferentiated cultures and in cultures of transformed organs. Several strategies were displayed in order to increase yields as manipulation of the plant growth regulator balance, addition of precursors, biotransformation, and immobilization.

Also, as plant cells have a different behavior in liquid culture compared with microorganisms and mammal cells, bioreactor design was adapted to develop plant cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agostini E, Talano MA, González PS, Weaver Oller AL, Medina MI (2013) Application of hairy roots for phytoremediation: what makes then an interesting tool for this purpose? Appl Microbiol Biotechnol 97:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Faisal M, Anis M, Aref IM (2010) In vitro callus induction and plant regeneration from leaf explants of Ruta graveolens L. S Afr J Bot 76:597–600

    Article  CAS  Google Scholar 

  • Alvarez MA, Marconi PL (2011) Genetic transformation for metabolic engineering of tropane alkaloids. In: Alvarez MA (ed) Genetic transformation. Croatia 15. pp 291–304

    Google Scholar 

  • Alvarez MA, Fernández Eraso N, Pitta-Alvarez S, Marconi PL (2009) Two–stage culture for producing berberine by cell suspension and shoot cultures of Berberis buxifolia Lam. Biotechnol Lett 31:457–463

    Article  CAS  PubMed  Google Scholar 

  • Antognoni F, Zheng S, Pagnucco C, Baraldi R, Poli F, Biondi S (2007) Induction of flavonoid production by UV-B radiation in Passiflora quadrangularis callus cultures. Fitoterapia 78:345–352

    Article  CAS  PubMed  Google Scholar 

  • Antoniukas L, Grammel H, Reichl U (2006) Production of hantavirus Puumala nucleocapsid protein in Saccharomyces cerevisiae for vaccine and diagnostics. J Biotechnol 124:347–362

    Article  CAS  PubMed  Google Scholar 

  • Archambault J, Williams RD, Perrier M, Chavarie C (1996) Production of sanguinarine by elicited plant cell culture III. Immobilized bioreactor cultures. J Biotechnol 46:121–129

    Article  CAS  Google Scholar 

  • Aremu AO, Gruz J, Subrtová M, Szucová L, Dolezal K et al (2013) Antioxidant and phenolic acid profiles of tissue cultured and acclimatized Merwilla plumbea plantlets in relation to the applied cytokinins. J Plant Physiol 170:1303–1308

    Article  CAS  PubMed  Google Scholar 

  • Arnison PG, Boll WG (1975) Isoenzymes in cell cultures of bush bean, (Phaseols vulgaris cv, Contender); isoenzymatic changes during the callus culture cycle and differences between stock cultures. Can J Bot 53:261–271

    Article  CAS  Google Scholar 

  • Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 30(6):1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Benlarbi KH, Elmtili N, Macías FA, Galindo JCG (2014) Influence of in vitro growth conditions in the production of defence compounds in Mentha pulegium L. Phytochem Lett 8:233–244

    Google Scholar 

  • Bertoli A, Lucchesini M, Mansuali-Sodi A, Leonardi M, Doveri S et al (2013) Aroma characterisation and UV elicitation of purple basil from different plant tissue cultures. Food Chem 141:776–787

    Google Scholar 

  • Berzin I, Cohen B, Mills D, Dinstein I, Merchuk JC (2000) RHIZOSCAN: a semiautomatic image processing system for characterization of the morphology and secondary metabolite concentration in hairy root cultures. Biotechnol Bioeng 70:17–24

    Article  CAS  PubMed  Google Scholar 

  • Bondarev N, Reshetnyak O, Nosov A (2003) Effects of nutrient medium composition on development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of steviol glycosides. Plant Sci 165:845–850

    Article  CAS  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Inyushkina YV (2011) Application of Agrobacterium Rol Genes In: Alvarez MA (ed) Plant biotechnology: a natural phenomenon on secondary metabolism regulation. In: Genetic transformation. Croatia pp 262–270

    Google Scholar 

  • Cai Z, Reidel H, Saw NMMT, Mewis I, Reineke K, Knorr D, Smetanska I (2011) Effects of elicitors and high hydrostatic pressure on secondary metabolism of Vitis vinifera suspension culture. Process Biochem 46:1411–1416

    Article  CAS  Google Scholar 

  • Carimi F, Zottini M, Formentin E, Terzi M, Schiavo FL (2003) Cytokinins: new apoptotic inducers in plants. Planta 216:413–421

    CAS  PubMed  Google Scholar 

  • Chaterjee C, Correll MJ, Weathers PJ, Wyslouzil BE, Walcerz DB (1997) Simplified acoustic window mist bioreactor. Biotechnol Tech 11(3):155–158

    Article  Google Scholar 

  • Condori J, Sivakumar G, Hubstenberger J, Dolan M, Sobolev V, Medina-Bolivar F (2010) Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage. Plant Physiol Biochem 48:310–318

    Article  CAS  PubMed  Google Scholar 

  • Costa P, Gonçalves S, Valentao P, Andrade PB, Romano A (2013) Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’Her and their antioxidant and anti-cholinesterase potential. Food Chem Toxicol 57:69–74

    Article  CAS  PubMed  Google Scholar 

  • Curtin ME (1983) Harvesting profitable products from plant tissue culture. Biotechnology 1:649–657

    Article  Google Scholar 

  • Curtis WR (2005) Application of bioreactor design principles to plant micropropagation. Plant Cell Tissue Org Cult 81:255–264

    Article  Google Scholar 

  • Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M et al (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv. Available on line, doi: 10.1016/j.biotechadv.2014.03.002

  • Dalton CC, Street HE (1976) The role of the gas phase in the greening and growth of illuminated cell suspension cultures of spinach (Spinacia oleracea L.). In Vitro 12:485–494

    Article  CAS  PubMed  Google Scholar 

  • de la Riva GA, González-Cabrera J, Vázquez-Padrón R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. JB Electron J Biotechnol 1(3):118–131

    Article  Google Scholar 

  • Desai K, Badhe Y, Tambe SS, Kulkarni BD (2006) Soft-sensor development for fed-batch bioreactors using support vector regression. Biochem Eng J 27:225–239

    Article  CAS  Google Scholar 

  • Dewir YH, Chakrabarty D, Hahn EJ, Paek KY (2006) A simple method for mass propagation of Spathiphyllum cannifolium using airlift bioreactor. In Vitro Cell Dev Biol Plant 42:291–297

    Article  CAS  Google Scholar 

  • Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    Article  CAS  PubMed  Google Scholar 

  • Donnez D, Kim KH, Antoine S, Conreux A, De Luca V et al (2011) Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2 L stirred bioreactor. Process Biochem 46:1056–1062

    Article  CAS  Google Scholar 

  • Dörnenburg H (2004) Evaluation of immobilization effects on metabolic activities and productivity in plant cell processes. Process Biochem 39:1369–1375

    Article  CAS  Google Scholar 

  • Dörnenburg H, Knorr D (1995) Strategies secondary for the improvement of metabolite production in plant cell cultures. Enzym Microb Technol 17:674–684

    Article  Google Scholar 

  • Elwekeel A, Elfishway A, Abouzid S (2012) Enhanced accumulation of flavonolignans in Silybum marianum cultured roots by methyl jasmonate. Phytochem Lett 5:393–396

    Article  CAS  Google Scholar 

  • Ferri M, Dipalo SCF, Bagni N, Tassoni A (2011) Chitosan elicits mono-glucosylated stilbene production and release in fed-batch bioreactor cultures of grape cells. Food Chem 124:1473–1479

    Article  CAS  Google Scholar 

  • Flick CE, Evans DA, Sharp WR (1983) Organogenesis. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture. Macmillan, New York, pp 13–81

    Google Scholar 

  • Floss DS, Schliemann W, Schmidt J, Strack D, Walter MH (2008) RNA interference mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiol 148:1267–1282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forcato DO, Pécora RP, Kivatinitz SC (2002) On-line biomass monitoring in bench-scale stirred bioreactors using parts of a liquid chromatography system. Biotechnol Lett 24:1999–2003

    Article  CAS  Google Scholar 

  • Fowler MW, Scragg AH (1988) Natural products from higher plants and plant cell culture. In: Pais MSS, Mavituna F, Novais JM (eds) Plant cell biotechnology, NATO ASI series. Springer, Berlin, pp 165–177

    Chapter  Google Scholar 

  • Fujita Y (1988) Industrial production of shikonin and berberine. Applications of plant cell and tissue culture. In: Ciba foundation symposium 137. Wiley, Chichester, pp 228–238

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Expt Cell Res 50:151–158

    Article  CAS  Google Scholar 

  • Georgiev M, Pavlov A, Ilieva M (2006) Selection of high rosmarinic acid producing Lavandula vera MM cell lines. Process Biochem 41:2068–2071

    Article  CAS  Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30(19):528–537

    Article  CAS  PubMed  Google Scholar 

  • Giri A, Dhingra V, Giri CC, Singh A, Ward OP, Lakshmi Narasu M (2001) Biotransformations using plant cells, organ cultures and enzyme systems: current trend and future prospects. Biotechnol Adv 19:175–199

    Article  CAS  PubMed  Google Scholar 

  • Goel MK, Mehrotra S, Kukreja AK, Shanker K, Khanuja SPS (2009) In vitro propagation of Rauwolfia serpentina using liquid medium, assessment of genetic fidelity of micropropagated plants, and simultaneous quantitation of reserpine, ajmaline, and ajmalicine. In: Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Methods in molecular biology. pp 17–33 © Humana Press, a part of Springer Science + Business Media, LLC 2009 doi: 10.1007/978-1-60327-287-2_2

  • Gonçalves S, Romano A (2013) In vitro culture of levanders (Lavandula spp.) and the production of secondary metabolites. Biotechnol Adv 31:166–174

    Article  PubMed  CAS  Google Scholar 

  • Grant ME, Fuller KW (1971) Biochemical changes associated with the growth of root tips of Vicia faba in vitro, and the effect of 2,4-dichlorophenoxyacetic acid. J Exp Bot 22:49–59

    Article  Google Scholar 

  • Gueven A, Knorr D (2010) Isoflavonoid production by soy plant callus suspension culture. J Food Eng 103:237–243

    Article  CAS  Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber Akad Wiss Wien Math-Naturwiss Kl Abt J 111:69–92

    Google Scholar 

  • Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303(5914):209–213

    Article  CAS  Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48(2):121–127

    Article  CAS  Google Scholar 

  • Huang TK, Mcdonald KA (2009) Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem Eng J 45:168–184

    Article  CAS  Google Scholar 

  • Huang C, Zhong JJ (2013) Elicitation of ginsenoside biosynthesis in cell cultures of Panax ginseng by vanadate. Process Biochem 48:1227–1234

    Article  CAS  Google Scholar 

  • Huang C, Qian ZG, Zhong JJ (2013a) Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N′, N′-dicyclohexylcarbodiimide elicitation. J Biotechnol 165:30–36

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Su CY, Kuo HJ, Chen YH, Huang PL, Lee KT (2013b) A comparison of strategies for multiple-gene co-transformation via hairy root induction. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5034-3

    PubMed Central  Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4(1):10–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ionkova I, Momekov G, Proksch P (2010) Effects of cycloartane saponins from hairy roots of Astragalus membranaceus Bge., on human tumor cell targets. Fitoterapia 81:447–451

    Article  CAS  PubMed  Google Scholar 

  • James E, Mills DR, Lee JM (2002) Increased production and recovery of secreted foreign proteins from plant cell cultures using an affinity chromatography bioreactor. Biochem Eng J 12:205–213

    Article  CAS  Google Scholar 

  • Jung HJ, Kang SM, KANG YM, Kang MJ, Yun DJ, Bahk JD, Yang JK, Choi MS (2003) Enhanced production of scopolamine by bacterial elicitors in adventitious hairy root cultures of Scopolia parviflora. Enzym Microb Technol 33:987–990

    Article  CAS  Google Scholar 

  • Karwasara VS, Dixit VK (2012) Culture medium optimization for improved puerarin production by cell suspension cultures of Pueraria tuberosa (Roxb. ex Willd.) DC. In Vitro Cell Dev Biol Plant 48:189–199

    Article  Google Scholar 

  • Kevers C, Filali M, Petit-Paly G, Hagège D, Rideau M, Gaspar TH (1996) Habituation of plant cells does not mean insensitivity to plant growth regulators. In Vitro Cell Dev Biol Plant 32:204–209

    Article  CAS  Google Scholar 

  • Kim D, Pedersen H, Chin C (1990) Two stage cultures for the production of berberine in cell suspension cultures of Thalictrum rugosum. J Biotechnol 16:297

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Baek K, Son Y, Son S, Shin H (2009) Hairy root cultures of Taxus cuspidata for enhanced production of paclitaxel. J Appl Biol Chem 52:144–150

    CAS  Google Scholar 

  • Kobayashi Y, Fukui H, Tabata M (1988) Berberine production by batch and semi-continuous cultures of immobilized Thalictrum cells in an improved bioreactor. Plant Cell Rep 7:249–252

    Article  CAS  PubMed  Google Scholar 

  • Kochkin DV, Kachala VV, Shashkov AS, Chizhov AO, Chirva VY, Nosov AM (2013) Malonyl-ginsenoside content of a cell-suspension culture of Panax japonicus var. repens. Phytochemistry 93:18–26

    Article  CAS  PubMed  Google Scholar 

  • Komar S, Wittmann C, Heinzle E (2004) Minibioreactors. Biotechnol Lett 26:1–10

    Article  Google Scholar 

  • Lee SY, Kim YH, Roh YS, Myoung HJ, Lee KY, Kim DI (2004) Bioreactor operation for transgenic Nicotiana tabacum cell cultures and continuous production of recombinant human granulocyte-macrophage colony-stimulating factor by perfusion culture. Enzym Microb Technol 35:663–671

    Article  CAS  Google Scholar 

  • Lee EJ, Moh SH, Paek KY (2011) Influence of inoculum density and aeration volume on biomass and bioactive compound production in bulb-type bubble bioreactor cultures of Eleutherococcus koreanum Nakai. Bioresour Technol 102:7165–7170

    Article  CAS  PubMed  Google Scholar 

  • Li W, Asada Y, Yoshikawa T (1998) Antimicrobial flavonoids from Glycyrrhiza glabra hairy root cultures. Planta Med 64:746–747

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265

    CAS  PubMed  Google Scholar 

  • Lucchesini M, Bertoli A, Mensuali-Sodi A, Pistelli L (2009) Establishment of in vitro tissue cultures from Echinacea angustifolia D.C. adult plants for the production of phytochemical compounds. Sci Hortic 122:484–490

    Article  CAS  Google Scholar 

  • Luckner M (1990) Secondary metabolism in microorganisms, plants, and animals. Fischer-Verlag/Springer, Berlin, pp 15–21

    Book  Google Scholar 

  • Madhusudhan R, Ramachandra Rao S, Ravishankar GA (1995) Osmolarity as a measure of growth of plant cells in suspension cultures. Enzym Microb Technol 17:989–991

    Article  CAS  Google Scholar 

  • Malik S, Cusidó RM, Mirjalili HM, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34

    Article  CAS  Google Scholar 

  • Mannan A, Shaheen N, Arshad W, Quershi RA, Zia M, Mirza B (2008) Hairy roots induction and artemisinin analysis in Artemisia dubia and Artemisia indica. Afr J Biotechnol 7:3288–3292

    CAS  Google Scholar 

  • Marchev A, Haas C, Schulz S, Georgiev V, Steingroewer J, Bley T, Pavlov A (2013) Sage in vitro cultures: a promising tool for the production of bioactive terpenes and phenolic substances. Biotechnol Lett 36(2):211–221

    Article  PubMed  CAS  Google Scholar 

  • Masakapalli SK, Ritala A, Dong L, van der Krol AR, Oksman-Caldentey KM, Ratcliffe RG, Sweetlove LJ (2014) Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production. Phytochemistry 99:73–85

    Article  CAS  PubMed  Google Scholar 

  • Medina-Bolivar F, Cramer C (2004) Production of recombinant proteins by hairy roots cultured in plastic sleeve bioreactors. In: Recombinant gene expression. Methods in molecular biology, Humana Press, Totowa, NJ, USA, vol 267. pp 351–363

    Google Scholar 

  • Medina-Bolivar F, Condori J, Rimando AM et al (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68:1992–2003

    Article  CAS  PubMed  Google Scholar 

  • Mize CW, Chun YW (1988) Analyzing treatment means in plant tissue culture research. Plant Cell Tissue Org Cult 13:201–217

    Article  Google Scholar 

  • Mora-Pale M, Sanchez-Rodriguez SP, Linhardt RJ, Dordick JS, Koffas MAG (2013) Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues. Plant Sci 210:10–24

    Article  CAS  PubMed  Google Scholar 

  • Morini S, D’Onofrio C, Bellocchi G, Fisichella M (2000) Effect of 2,4-D and light quality on callus production and differentiation from in vitro cultured quince leaves. Plant Cell Tissue Org Cult 63:47–55

    Article  CAS  Google Scholar 

  • Mulder-Krieger TH, Verpoorte R, Baerheim Svendsen A, Scheffer JJC (1988) Production of essential oils and flavours in plant cell and tissue cultures. A review. Plant Cell Tissue Org Cult 13:85–154

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Muthaiya MJ, Nagella P, Thiruvengadam M, Mandal AKA (2013) Enhancement of the productivity of tea (Camellia sinensis) secondary metabolites in cell suspension cultures using pathway inducers. J Crop Sci Biotechnol 16(2):143–149

    Article  Google Scholar 

  • Nadadoor VR, Siegler H, Shah SL, Mccaffrey WC, Ben-Zvi A (2012) Online sensor for monitoring a microalgal bioreactor system using support vector regression. Chemom Intell Lab Syst 110:38–48

    Article  CAS  Google Scholar 

  • Nagamori E, Hiroaka K, Honda H, Kobayashi T (2001) Enhancement of anthocyanin production form grape (Vitis vinifera) callus in a viscous additive-supplemented medium. Biochem Eng J 9:59–65

    Article  CAS  Google Scholar 

  • Nakagawa K, Konagai A, Fukui H, Tabata M (1984) Release and crystallization of berberine in liquid medium of Thalictrum minus cell suspension cultures. Plant Cell Rep 3:254

    Article  CAS  PubMed  Google Scholar 

  • Nigra HM, Caso OH, Giulietti AM (1987) Production of solasodine by calli from different parts of Solanum eleganifolium Cav. plants. Plant Cell Rep 6(2):135–137

    CAS  PubMed  Google Scholar 

  • Nigra HM, Alvarez MA, Giulietti AM (1989) The influence of auxins, light and cell differentiation on solasodine production by Solanum eleagnifolium Cav. calli. Plant Cell Rep 8:230–233

    Article  CAS  PubMed  Google Scholar 

  • Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439–446

    Article  CAS  PubMed  Google Scholar 

  • Pacheco G, Garcia R, Lugato D, Vianna M, Mansur E (2012) Plant regeneration, callus induction and establishment of cell suspension cultures of Passiflora alata Curtis. Sci Hortic 144:42–47

    Article  CAS  Google Scholar 

  • Palacio L, Cantero JJ, Cusidó R, Goleniowski M (2011) Phenolic compound production by Larrea divaricata Cav. plant cell cultures and effect of precursor feeding. Process Biochem 46:418–422

    Article  CAS  Google Scholar 

  • Palacio L, Cantero JJ, Cusidó RM, Golienowski M (2012) Phenolic compound production in relation to differentiation in cell and tissue cultures of Larrea divaricata (Cav.). Plant Sci 193:1–7

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Giles KL, Songstad DD (1990) Production of sanguinarine by suspension culture of Papaver somniferum in bioreactors. J Ferment Bioeng 74:292–296

    Article  Google Scholar 

  • Park JM, Yoon SY, Giles KL, Songstad DD, Eppstein D et al (1992) Production of sanguinarine by suspension culture of Papaver somniferum in bioreactors. J Ferment Bioeng 74:292–296

    Article  CAS  Google Scholar 

  • Parsons J, Rodríguez Talou J, Giulietti AM, Alvarez María A (2001) Solasodine production by undifferentiated and differentiated Solanum eleagnifolium Cav. in vitro cultures. Phyton Int J Exp Bot 70:159–163

    Google Scholar 

  • Patel H, Krishnamurthy R (2013) Elicitors in plant tissue culture. J Pharmacogn Phytochem 2(2):60–65

    CAS  Google Scholar 

  • Pavlov A, Berkov S, Weber J, Bley T (2009) Hyoscyamine biosynthesis in Datura stramonium hairy root in vitro systems with different ploidy levels. Appl Biochem Biotechnol 157:210–225

    Article  CAS  PubMed  Google Scholar 

  • Peebles CAM, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2011) The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13(2):234–240

    Article  CAS  PubMed  Google Scholar 

  • Pérez BA, Alvarez MA, Zanelli ML, Giulietti AM, Barreto DE (2001) Fungal extracts as elicitors of peroxidase production in root cultures of Armoracia lapathifolia transformed with Agrobacterium rhizogenes. Rev Investig Agropecuarias (RIA) 1:1–12

    Google Scholar 

  • Prakash MG, Gurumurthi K (2010) Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell Tissue Organ Cult 100:13–20

    Article  CAS  Google Scholar 

  • Rai MJ, Shekhawat NS, Harish, Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tissue Organ Cult 106:179–190

    Article  CAS  Google Scholar 

  • Rajasekaran T, Ramakrishna A, Udaya Sankar K, Giridhar P, Ravishankar GA (2008) Analysis of predominant steviosides in Stevia rebaudiana bertoni by liquid chromatography/electrospray ionization-mass spectrometry. Food Biotechnol 22:179–188

    Article  CAS  Google Scholar 

  • Ramachandra Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  • Randoux M, Jeauffre J, Thouroude T, Vasseur F, Hamama L et al (2012) Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue. J Exp Bot 63(18):6543–6554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91–120

    Article  CAS  PubMed  Google Scholar 

  • Russowski D, Maurmann N, Rech SB, Fett-Neto AG (2013) Improved production of bioactive valepotriates in whole-plant liquid cultures of Valeriana glechomifolia. Ind Crop Prod 46:253–257

    Article  CAS  Google Scholar 

  • Ruyter CM, Stöckgit J (1989) Neue Naturstoffe aus pflanzlichen Zell- und Gewebekulturen – eine Bestandsaufnahme. Git Fachz Lab 33:283–293

    CAS  Google Scholar 

  • Ryu DDY, Lee SO, Romani RJ (1990) Determination of growth rate for plant cell cultures: comparative studies. Biotechnol Bioeng 35:305–311

    Article  CAS  PubMed  Google Scholar 

  • Sabater-Jara AB, Pedreño MA (2013) Use of β-cyclodextrins to enhance phytosterol production in cell suspension cultures of carrot (Daucus carota L.). Plant Cell Tissue Organ Cult 114:249–258

    Article  CAS  Google Scholar 

  • Sakuta M, Komamine A (1987) Cell growth and accumulation of secondary metabolites. In: Constabel F, Vasil YK (eds) Cell culture and somatic genetics of plants. Academic, San Diego/New York, pp 97–114

    Google Scholar 

  • Sánchez-Sampedro MA, Fernández-Tárrago J, Corchete P (2008) Some common signal transduction events are not necessary for the elicitor-induced accumulation of silymarin in cell cultures of Silybum marianum. J Plant Physiol 165:1466–1473

    Article  PubMed  CAS  Google Scholar 

  • Savitha BC, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA (2006) Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem 41:50–56

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50(1):199–204

    Article  CAS  Google Scholar 

  • Schübel H, Ruyter CM, Stöckigt J (1989) New phytochemicals from plant cell and tissue cultures. Bioeng News 10(16):2–3

    Google Scholar 

  • Scragg AH, Kodja HP, Liu D, Merillon JM, Andreau F, Raideau M, Chenieux JC (1989) Stimulation par les cytokinins de I, accumulation d’ alcaloides indoliques dans des suspensions cellularies de Catharanthus roseus (L.) G. Don Z Naturforsch 35c:551–556

    Google Scholar 

  • Sharma M, Sharma A, Kumar A, Kumar Basu S (2011) Enhancement of secondary metabolites in cultured plant cells through stress stimulus. Am J Plant Physiol 6(2):50–71

    Article  CAS  Google Scholar 

  • Sharma P, Padh H, Shrivastava N (2013) Hairy root cultures: a suitable system for studying secondary metabolic pathways in plants. Eng Life Sci 1:62–75

    Article  CAS  Google Scholar 

  • Shinde AN, Malpathak N, Fulzele DP (2009) Studied enhancement strategies for phytoestrogens production in shake flasks by suspension culture of Psoralea corylifolia. Bioresour Technol 100:1833–1839

    Article  CAS  PubMed  Google Scholar 

  • Shiota H, Kamada H (2008) Optical isomers of abscisic acid in carrot somatic embryos have the same effect on induction of dormancy and desiccation tolerance. Plant Biotechnol 25:457–463

    Article  CAS  Google Scholar 

  • Sivanandhan G, Vasudevan V, Theboral J, Selvaraj N, Ganapathi A, Manickavasagam M (2013) High frequency plant regeneration in Withania somnifera (l.) Dunal. Plant Cell Biotechnol Mol Biol 14(3 & 4):139–146

    Google Scholar 

  • Skoric M, Todorovic S, Gligorijevic N, Jankovic R, Zivkovic S, Ristic M, Radulovic S (2012) Cytotoxic activity of ethanol extracts of in vitro grown Cistus creticus subsp. creticus L. on human cancer cell lines. Ind Crop Prod 38:153–159

    Article  CAS  Google Scholar 

  • Smolko DD, Peretti SW (1994) Stimulation of berberine secretion and growth in cell cultures of Thalictrum minus. Plant Cell Rep 14:131

    CAS  PubMed  Google Scholar 

  • Stäb MR, Ebel J (1987) Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys 5157:416–423

    Google Scholar 

  • Susila T, Satyanarayana Reddy G, Jyothsna D (2013) Standardization of protocol for in vitro propagation of an endangered medicinal plant Rauwolfia serpentina Benth. J Med Plants Res 7(29):2150–2153

    CAS  Google Scholar 

  • Suzuki M, Nakagawa K, Fukui H, Tabata M (1988) Alkaloid production in cell suspension cultures of Thalictrum flavum and T. dipterocarpum. Plant Cell Rep 7:26

    Article  CAS  PubMed  Google Scholar 

  • Tabata M, Fujita Y (1985) Production of shikonin by plant cell cultures. In: Zaitlin M, Day P, Hollaender A (eds) Biotechnology in plant science. Academic, Orlando, pp 207–218

    Chapter  Google Scholar 

  • Taha HS, El-Bahr MK, Seif-El-Nasr MM (2009) In vitro studies on Egyptian Catharanthus roseus (L.). II. Effect of biotic and abiotic stress on indole alkaloids production. J Appl Sci Res 5:1826–1831

    CAS  Google Scholar 

  • Talano MA, Wevar Oller AL, González PS, Agostini E (2012) Hairy roots, their multiple applications and recent patents. Recent Pat Biotechnol 6:115–133. doi:10.2174/10115

    Article  CAS  PubMed  Google Scholar 

  • Thanh NT, Murthy HN, Yu KW, Jeong CS, Hahn EJ, Paek KY (2006) Effect of oxygen supply on cell growth and saponin production in bioreactor cultures of Panax ginseng. J Plant Physiol 163:1337–1341

    Article  CAS  PubMed  Google Scholar 

  • Thimmaraju R, Bhagayalakshmi N, Narayan MS, Ravishankar GA (2003) Kinetics of pigment release from hairy root cultures of Beta vulgaris under the influence of pH, sonication, temperature and oxygen stress. Process Biochem 38:1069–1076

    Article  CAS  Google Scholar 

  • Ulbrich B, Wiesner W, Arens H (1985) Large scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In: Deus-Neumann B, Barz W, Reinhard E (eds) Secondary metabolism of plant cell culture. Springer, Berlin, pp 293–303

    Chapter  Google Scholar 

  • Vahdati K, Bayat S, Ebrahimzadeh H, Jariteh M, Mirmasoumi M (2008) Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tissue Organ Cult 93:163–171

    Article  CAS  Google Scholar 

  • Verma AK, Singh RR, Singh S (2013) Improved alkaloid content in callus culture of Catharanthus roseus. Bot Serbica 36(2):123–130

    Google Scholar 

  • Verpoorte R, Memelick J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187

    Article  CAS  PubMed  Google Scholar 

  • Wallaart TE, Pras N, Beekman AC, Quax WJ (2000) Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Planta Med 66:57–62

    Article  CAS  PubMed  Google Scholar 

  • Wheathers PJ, Bunk G, Mccoy MC (2005) The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cell Dev Biol Plant 41:47–53

    Article  CAS  Google Scholar 

  • Wiktorowska E, Dlugosz M, Janiszowska W (2010) Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzym Microb Technol 46:14–20

    Article  CAS  Google Scholar 

  • Wilson SA, Roberts SC (2014) Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr Opin Biotechnol 26:174–182

    Article  CAS  PubMed  Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Article  CAS  Google Scholar 

  • Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M et al (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Resour 3(2):90–100

    Article  CAS  Google Scholar 

  • Wong PL, Royce AJ, Lee-Parsons CWT (2004) Improved ajmalicine production and recovery from Catharanthus roseus suspensions with increased product removal rates. Biochem Eng J 21:253–258

    Article  CAS  Google Scholar 

  • Wu J, Ge X (2004) Oxidative burst, jasmonic acid biosynthesis, and taxol production induced by low-energy ultrasound in Taxus chinensis cell suspension cultures. Biotechnol Bioeng 85:714–721

    Article  CAS  PubMed  Google Scholar 

  • Wuang QM, Wuang L (2012) An evolutionary view of plant tissue culture: somaclonal variation and selection. Plant Cell Rep 31(9):1535–1547

    Article  CAS  Google Scholar 

  • Yamakawa T, Kato S, Ishida K, Kodama T, Minoda Y (1983) Production of anthocyanins by Vitis cells is suspension culture. Agric Biol Chem 47:2185–2191

    Article  CAS  Google Scholar 

  • Yeoman MM, Mitchell JP (1970) Changes accompanying the addition of 2, 4-D to excised Jerusalem artichoke tuber tissue. Ann Bot 34:799–810

    CAS  Google Scholar 

  • Yesil-Celiktas O, Isleten M, Oyku Cetin E, Vardar-Sukan F (2010) Large scale cultivation of plant cell and tissue culture in bioreactors. Transworld Research Network, Kerala. pp 1–54

    Google Scholar 

  • Yu KW, Murthy HN, Hahn EJ, Paek KY (2005) Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J 23(1):53–56

    Article  CAS  Google Scholar 

  • Zenk MH, El-Shagi H, Arens H, Stockgit J, Weiler EW, Deus B (1977) Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its biotechnological application. Springer, Berlin, pp 27–43

    Chapter  Google Scholar 

  • Zhao R, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457

    Article  CAS  Google Scholar 

  • Zhao J, Davis L, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

  • Zhao ML, Shao JR, Tang YX (2009) Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle) Biotechnol Appl Biochem 52:313–323

    Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinghe HPV, Saxena PK (2003) Elevated carbon supply altered hypericin and hyperforin contents of St. John’s wort (Hypericum perforatum) grown in bioreactors. Plant Cell Tissue Organ Cult 75:143–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alvarez, M.A. (2014). In Vitro Plant Cultures as Biofactories . In: Plant Biotechnology for Health. Springer, Cham. https://doi.org/10.1007/978-3-319-05771-2_4

Download citation

Publish with us

Policies and ethics