Skip to main content

Advances in Methods to Improve the Sugarcane Crop as “Energy Cane” for Biorefinery: An Appraisal

  • Chapter
  • First Online:
Biofuels in Brazil

Abstract

Plant biomass is a source of renewable energy and biomolecules amenable to feed environmentally sustainable biorefineries. Chemistry, biotechnology, and process engineering advances will make biorefineries feasible in technical and cost aspects. Efforts have been concentrated in assessing plant biodiversity and crop potentialities for manipulation of physiological responses such as carbon fluxes toward soluble, storage, and structural sugars, waxes, oils, phenolics, and many other products. Thanks to advances in the “omics” field by the use of model plants, these issues have been addressed, allowing for a better comprehension of the general plant metabolism with concomitant inferences to important crops, like sugarcane. Plant cell walls are one of the most abundant, renewable, and useful biomaterial on the earth. However, wall polymers are entrapped in an imbricated structural organization. Thus, the viability of using such feedstock in a bio-based economy will greatly depend on the integration of “green” and “white” technologies in the production processes to efficiently extract and use molecules and energy stored in biomass. In this chapter, we discuss some principles underlying biorefination and bottlenecks under the crop physiology aspects—including Saccharum. Correlations between biomass yield and properties with environmental factors are revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aitken KS, Hermann S, Karno K et al (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet 117:1191–1203. doi:10.1007/s00122-008-0856-6

    Article  PubMed  CAS  Google Scholar 

  • Amthor JS (2003) Efficiency of lignin biosynthesis: a quantitative analysis. Ann Bot 91:673–695

    Google Scholar 

  • Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779. doi:10.1146/annurev-arplant-042811-105534

    Article  PubMed  CAS  Google Scholar 

  • Atmodjo MA, Sakuragi Y, Zhu X et al (2011) Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. PNAS 108:20225–20230. doi:10.1073/pnas.1112816108

    Article  PubMed Central  PubMed  Google Scholar 

  • Barela JF, Christoffoleti PJ (2006) Seletividade de herbicidas aplicados em pré-emergência da cultura da cana-de-açúcar (RB867515) tratada com nematicidas. Planta Daninha 24:371–378

    Article  Google Scholar 

  • Benbelkacem A, Mekni MS, Rasmusson DC (1984) Breeding for high tiller number and yield in barley. Crop Sci 24:968–972

    Article  Google Scholar 

  • Berlin A, Balakshin M, Gilkes N et al (2006) Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209. doi:10.1016/j.jbiotec.2006.02.021

    Google Scholar 

  • Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129. doi:10.1016/j.plipres.2012.10.002

    Article  PubMed  CAS  Google Scholar 

  • Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Role of lignification in plant defense. Plant Signal Behav 4:158–159

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi:10.1146/annurev.arplant.54.031902.134938

    Article  PubMed  CAS  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US department of energy’s “top 10” revisited. Green Chem 12:539–554. doi:10.1039/b922014c

    Article  CAS  Google Scholar 

  • Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28. doi:10.1093/mp/sss130

    Article  PubMed  CAS  Google Scholar 

  • Bugos RC, Chiang V, Campbell WH (1991) cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant mol biol 17:1203–1215

    Google Scholar 

  • Burton AJ, Pregitzer KS, Zogg GP (1998) Drought reduces root respiration in sugar maple forests. Ecol Appl 8:771–778. doi:10.1890/1051-0761

    Article  Google Scholar 

  • Buschhaus C, Jetter R (2011) Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces? J Exp Bot 62:841–853. doi:10.1093/jxb/erq366

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476. doi:10.1146/annurev.arplant.47.1.445

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, McCann M (2009) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants, 1st edn. Wiley, Rockville, p 1408

    Google Scholar 

  • Casal JJ, Sanchez RA, Deregibus VA (1986) The effect of plant density on tillering: The involvement of R/FR ratio and the proportion of radiation intercepted per plant. Environ Exp Bot 26:365–371. doi:10.1016/0098-8472(86)90024-9

    Article  Google Scholar 

  • Castro P, Christoffoleti PJ (2005) Fisiologia da cana-de-açúcar. In: Mendonça AF (ed) Cigarrinhas da cana-de-açúcar: Controle biológico, 1st edn. Maceió, pp 3–48

    Google Scholar 

  • Choi M-S, Woo M-O, Koh E-B et al (2012) Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Rep 31:57–65. doi:10.1007/s00299-011-1139-2

    Article  PubMed  CAS  Google Scholar 

  • Chou G (2011) Lipid-based biorefinery. Chem Eng 58:5

    Google Scholar 

  • da Silva ACP (2013) Acompanhamento da safra brasileira. 17

    Google Scholar 

  • Davis KR, Hahlbrock K (1987) Induction of defense responses in cultured parsley cells by plant cell wall fragments. Plant Physiol 84:1286–1290. doi:10.1104/pp.84.4.1286

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de carli Poelking VG (2012) Caracterização anatômica, química e molecular e potencial bioenergético de dois genótipos de cana-de-açúcar. Universidade Federal de Viçosa

    Google Scholar 

  • Delgado AC, Penfield S, Smith C (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34:351–362

    Article  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energ Convers Manage 52:163–170

    Article  Google Scholar 

  • Derbyshire P, McCann MC, Roberts K (2007) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol 7:31. doi:10.1186/1471-2229-7-31

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • DOE US-Energy, Environmental, and Economics (E3) Handbook (2014). http://infohouse.p2ric.org/ref/36/e3/www.oit.doe.gov/e3handbook/b.shtml.htm, Accessed 19 Feb 2014

  • Donaldson LA (2001) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–873

    Article  PubMed  CAS  Google Scholar 

  • Driouich A, Follet-Gueye M-L, Bernard S et al (2012) Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants. Front Plant Sci 3:79. doi:10.3389/fpls.2012.00079

    Article  PubMed Central  PubMed  Google Scholar 

  • Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194. doi:10.1146/annurev.en.40.010195.001131

    Article  Google Scholar 

  • Evans LT, Fischer RA (1999) Yield potential. Crop Sci 39:1544. doi:10.2135/cropsci1999.3961544x

    Article  Google Scholar 

  • Feng H, Hou X, Li X et al (2013) Cell death of rice roots under salt stress may be mediated by cyanide-resistant respiration. Z Naturforsch C: J Biosci 68:39–46

    Article  CAS  Google Scholar 

  • Filho AK, de Resende M (2000) Componentes de variância e predição de valores genéticos em seringueira pela metodologia de modelos mistos (REML/BLUP). Pesq agropec bras 35:1883–1887

    Article  Google Scholar 

  • Francis D (2011) A commentary on the G2/M transition of the plant cell cycle. Ann Bot 107:1065–1070. doi:10.1093/aob/mcr055

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Franke R, McMichael CM, Meyer K et al (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22:223–234

    Article  PubMed  CAS  Google Scholar 

  • Franke RB, Dombrink I, Schreiber L (2012) Suberin goes genomics: use of a short living plant to investigate a long lasting polymer. Front Plant Sci 3:4. doi:10.3389/fpls.2012.00004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gallego-Giraldo L, Escamilla-Trevino L, Jackson LA, Dixon RA (2011) Salicylic acid mediates the reduced growth of lignin down-regulated plants. PNAS 108:20814–20819

    Article  PubMed Central  PubMed  Google Scholar 

  • Gray J, Caparrós-Ruiz D, Grotewold E (2012) Grass phenylpropanoids: regulate before using! Plant Sci 184:112–120. doi:10.1016/j.plantsci.2011.12.008

    Article  PubMed  CAS  Google Scholar 

  • Groenewald J-H, Botha FC (2007) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17:85–92. doi:10.1007/s11248-007-9079-x

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Han W, Wang M (2008) Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: a review. Afr J Biotechnol 7:4966–4972

    CAS  Google Scholar 

  • Hall AJ, Connor DJ, Whitfield DM (1990) Root respiration during grain filling in sunflower: the effects of water stress. Plant Soil 121:57–66

    Article  Google Scholar 

  • Higuchi T (1996) Biochemistry and molecular biology of wood. Springer, Berlin

    Google Scholar 

  • Jackson CL, Dreaden TM, Theobald LK, Tran NM (2007) Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiology 17:805–819

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen KR, Fisher DG, Maretzki A, Moore PH (1992) Developmental changes in the anatomy of the sugarcane stem in relation to phloem unloading and sucrose storage. Bot Acta 105:70–80

    Article  Google Scholar 

  • Jørgensen H, Olsson L (2006) Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enzyme Microb Tech 38:381–390

    Google Scholar 

  • Jong E, van Ree rea R, van Tuil R, Elbersen (2008) Biorefineries for the chemical industry—a Dutch point of view. In: Biorefineries-industrial processes and products. WILEY-VCH Verlag GmbH & Co. KGaA, pp 85–111

    Google Scholar 

  • Jung JH, Vermerris W, Gallo M (2013) RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnol J 11:709–716. doi:10.1111/pbi.12061

    Article  PubMed  CAS  Google Scholar 

  • Kamm B, Gruber PR, Kamm M (2012) Biorefineries—industrial processes and products, vol 5. Wiley, Weinheim, pp 659–688. doi: 10.1002/14356007.104_101

  • Kosma DK, Bourdenx B, Bernard A et al (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929. doi:10.1104/pp.109.141911

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Krauss P, Markstädter C (1997) Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20:1079–1085

    Article  Google Scholar 

  • Larcher W (2003) The carbon budget of plant stands. In: Larcher W (ed) Physiological plant ecology, 4 edn. Springer, Berlin, p 513

    Google Scholar 

  • Lee Y, Chen F, Gallego-Giraldo L et al (2011) Integrative analysis of transgenic alfalfa (Medicago sativa L.) suggests new metabolic control mechanisms for monolignol biosynthesis. PLoS Comput Biol 7:e1002047. doi:10.1371/journal.pcbi.1002047

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lionetti V, Francocci F, Ferrari S et al (2010) Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. PNAS 107:616–621. doi:10.1073/pnas.0907549107

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu S (2010) Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis. Biotechnol Adv 28:563–582. doi:10.1016/j.biotechadv.2010.05.006

    Article  PubMed  CAS  Google Scholar 

  • Lopes FJF, Silvério FO, Baffa DCF et al (2011) Determination of sugarcane bagasse lignin S/G/H ratio by pyrolysis GC/MS. J Wood Chem Technol 31:309–323. doi:10.1080/02773813.2010.550379

    Article  CAS  Google Scholar 

  • Lorimer GH, Buchanan BB, Wolosiuk RA (2010) Photosynthesis: carboxylation reactions. In: Taiz L, Zeiger E (eds) Plant physiology, 5 edn. Sinauer Associates, Inc, p 782

    Google Scholar 

  • Loureiro ME, Barbosa MHP, Lopes FJF, Silvério FO (2011) Sugarcane breeding and selection for more efficient biomass conversion in cellulosic ethanol. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, pp 199–239

    Google Scholar 

  • Mariano AP, Dias MOS, Junqueira TL et al (2013) Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production. Bioresour Technol 142C:390–399. doi:10.1016/j.biortech.2013.05.052

    Article  CAS  Google Scholar 

  • Matus JT, Loyola R, Vega A (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot 60:853–867

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA et al (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934. doi:10.1104/pp.105.061382

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171:759–770. doi:10.1111/j.1469-8137.2006.01785.x

    Article  PubMed  CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  PubMed  CAS  Google Scholar 

  • Montané D, Salvadó J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenerg 22:295–304

    Article  Google Scholar 

  • Monteith JL, Moss CJ (1977) Climate and the efficiency of crop production in Britain. Phil Trans R Soc London 281:277–297

    Google Scholar 

  • Moore PH, Maretzki A (1996) Sugarcane. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops: source-sink. Relationships. Marcel Dekker, Inc, Hong Kong, pp 643–669

    Google Scholar 

  • Morales LO, Brosché M, Vainonen J et al (2013) Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation. Plant Physiol 161:744–759. doi:10.1104/pp.112.211375

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Munarin F, Guerreiro SG, Grellier MA (2011) Pectin-based injectable biomaterials for bone tissue engineering. Biomacromolecules 12:568–577

    Article  PubMed  CAS  Google Scholar 

  • Munarin F, Tanzi MC, Petrini P (2012) Advances in biomedical applications of pectin gels. Int J Biol Macromol 51:681–689

    Article  PubMed  CAS  Google Scholar 

  • Naseer S, Lee Y, Lapierre C et al (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. PNAS 109:10101–10106. doi:10.1073/pnas.1205726109

    Article  PubMed Central  PubMed  Google Scholar 

  • Ng S, Giraud E, Duncan O et al (2013) Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses. J Biol Chem 288:3449–3459. doi:10.1074/jbc.M112.416727

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Novaes E, Kirst M, Chiang V et al (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561. doi:10.1104/pp.110.161281

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • NREL–National Renewable Energy Laboratory, DOE-USA (2009). http://www.nrel.gov/biomass/biorefinery.html, Accessed 19 Feb 2014

  • Oliveira AJ, Ramalho J (2006) Plano Nacional de Agroenergia. Brasília: Embrapa Informação Tecnológica 110

    Google Scholar 

  • Parameswaran N, Liese W (1976) On the fine structure of bamboo fibres. Wood Sci Technol 10:231–246

    CAS  Google Scholar 

  • Parvathi K, Chen F, Guo D, Blount JW (2001) Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Plant J 25:193–202

    Article  PubMed  CAS  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568. doi:10.1111/j.1365-313X.2008.03463.x

    Article  PubMed  CAS  Google Scholar 

  • Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:304–311. doi:10.1016/j.pbi.2009.12.009

    Article  CAS  Google Scholar 

  • Peaucelle A, Braybrook S, Höfte H (2012) Cell wall mechanics and growth control in plants: the role of pectins revisited. Front Plant Sci 3:121. doi:10.3389/fpls.2012.00121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pereira EB, Martins FR, SL A, Rüther R (2006) Atlas Brasileiro de Energia Solar. p 60

    Google Scholar 

  • Preston J, Wheeler J, Heazlewood J et al (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979–995. doi:10.1111/j.1365-313X.2004.02280.x

    Article  PubMed  CAS  Google Scholar 

  • Radin J, Bressan R, Hasegawa PM, et al. (2010) Responses and adaptations to abiotic stress. In: Taiz L, Zeiger E (eds) Plant physiology, 5 edn. Sinauer Associates, Inc, p 781

    Google Scholar 

  • Rae AL, Grof C, Casu RE, Bonnett GD (2005) Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. Field Crop Res 92:159–168

    Article  Google Scholar 

  • Rae AL, Perroux JM, Grof CPL (2004) Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter. Planta 220:817–825. doi:10.1007/s00425-004-1399-y

    Article  PubMed  CAS  Google Scholar 

  • Ralph J, Lapierre C, Marita JM et al (2001) Elucidation of new structures in lignins of CAD-and COMT-deficient plants by NMR. Phytochemistry 57:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106. doi:10.1126/science.1200660

    Article  PubMed  CAS  Google Scholar 

  • Roberto IC, De Mancilha IM, Sato S (1999) Influence of k L a on bioconversion of rice straw hemicellulose hydrolysate to xylitol. Bioprocess Eng 21:505–508

    CAS  Google Scholar 

  • Rogers LA, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:17–30. doi:10.1111/j.1469-8137.2004.01143.x

    Google Scholar 

  • Rogers LA, Dubos C, Cullis IF et al (2005) Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. J Exp Bot 56:1651–1663. doi:10.1093/jxb/eri162

    Article  PubMed  CAS  Google Scholar 

  • Rose S, Botha FC (2000) Distribution patterns of neutral invertase and sugar content in sugarcane internodal tissues. Plant Physiol Bioch 38:819–824

    Article  CAS  Google Scholar 

  • Ruel K, Berrio-Sierra J, Derikvand MM et al (2009) Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol 184:99–113. doi:10.1111/j.1469-8137.2009.02951.x

    Article  PubMed  CAS  Google Scholar 

  • Sablowski RW, Moyano E, Culianez-Macia FA et al (1994) A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 13:128–137

    Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707. doi:10.1146/annurev.arplant.59.103006.093219

    Article  PubMed  CAS  Google Scholar 

  • Santos S, Villaverde JJ, Sousa AF (2013) Phenolic composition and antioxidant activity of industrial cork by-products. Ind Crop Res 47:262–269

    Article  CAS  Google Scholar 

  • Sarrouh B, da Silva SS (2013) Repeated batch cell-immobilized system for the biotechnological production of xylitol as a renewable green sweetener. Appl Biochem Biotechnol 169:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Schmid J, Amrhein N (1995) Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39:737–749

    Google Scholar 

  • Sederoff RR, MacKay JJ, Ralph J (1999) Unexpected variation in lignin. Curr Opin Plant Biol 2:145–152

    Google Scholar 

  • Seo PJ, Lee SB, Suh MC et al (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152. doi:10.1105/tpc.111.083485

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sewalt V, Ni W, Blount JW, Jung HG (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-phenylalanine ammonia-lyase or cinnamate 4-Hydroxylase. Plant Physiol 115:41–50

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49:981–994

    Article  PubMed  CAS  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS biology

    Google Scholar 

  • Silva M de A, Gava GJ de C, Caputo MM, et al (2007) Uso de reguladores de crescimento como potencializadores do perfilhamento e da produtividade em cana-soca. Bragantia 66:545–552

    Google Scholar 

  • Skarjinskaia M, Ruby K, Araujo A et al (2013) Hairy roots as a vaccine production and delivery system. Adv Biochem Eng Biotechnol. doi:10.1007/10_2013_184

    PubMed  Google Scholar 

  • Smith DM, Inman-Bamber NG, Thorburn PJ (2005) Growth and function of the sugarcane root system. Field Crop Res 92:169–183

    Article  Google Scholar 

  • Sousa AF, Gandini A, Silvestre A (2011) Novel suberin-based biopolyesters: from synthesis to properties. Polym Chem. doi:10.1002/pola.24661

    Google Scholar 

  • Sousa AF, Pinto P, Silvestre A (2006) Triterpenic and other lipophilic components from industrial cork byproducts. J Agric Food Chem 54:6888–6893

    Article  PubMed  CAS  Google Scholar 

  • Souza AP, Leite DCC, Pattathil S et al (2012) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenerg Res 6:564–579. doi:10.1007/s12155-012-9268-1

    Article  CAS  Google Scholar 

  • Thompson AE, Ray DT (1989) Breeding guayule. Plant breeding reviews. doi:10.1002/9781118061039.ch4

  • Thomson VP, Cunningham SA, Ball MC, Nicotra AB (2003) Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Oecologia 134:167–175. doi:10.1007/s00442-002-1102-6

    PubMed  Google Scholar 

  • Tsiantis M, Schneeberger R, Golz JF et al (1999) The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Sci 284:154–156

    Google Scholar 

  • Vane CH, Drage TC, Snape CE (2006) Bark decay by the white-rot fungus Lentinula edodes: Polysaccharide loss, lignin resistance and the unmasking of suberin. Int Biodeterior Biodegrad 57:14–23

    Article  CAS  Google Scholar 

  • Vanholme B, Desmet T, Ronsse F et al (2013) Towards a carbon-negative sustainable bio-based economy. Front Plant Sci 4:174. doi:10.3389/fpls.2013.00174

    Article  PubMed Central  PubMed  Google Scholar 

  • Viana C (2013) Álcool de bagaço é realidade no país a partir de 2014. Brasil Econômico

    Google Scholar 

  • Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63:505–515

    Article  PubMed  CAS  Google Scholar 

  • Wargent JJ, Gegas VC, Jenkins GI et al (2009) UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation. New Phytol 183:315–326. doi:10.1111/j.1469-8137.2009.02855.x

    Article  PubMed  CAS  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  PubMed  CAS  Google Scholar 

  • Whittaker A, Botha FC (1997) Carbon partitioning during sucrose accumulation in sugarcane internodal tissue. Plant Physiol 115:1651–1659

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233. doi:10.1016/j.tplants.2010.12.005

    Google Scholar 

  • Zhong R, Lee C, Zhou J et al (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782. doi:10.1105/tpc.108.061325

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhong R, Ye ZH (2009) Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 4:1028–1034

    Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye Z-H (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266. doi:10.1105/tpc.108.063321

    Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159. doi:10.1016/j.copbio.2008.02.004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Julio Fagundes Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lopes, F.J.F., de Carli Poelkin, V.G. (2014). Advances in Methods to Improve the Sugarcane Crop as “Energy Cane” for Biorefinery: An Appraisal. In: da Silva, S., Chandel, A. (eds) Biofuels in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-05020-1_7

Download citation

Publish with us

Policies and ethics